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Abstract. The control problem for robot manipulators with elasticity at the joints is
considered. This class of robot models does not satisfy in general the necessary and
sufficient conditions for linearization and for input-output decoupling using nonlinear static
state-feedback. Instead, both these control problems can always be solved by using the
more general class of nonlinear dynamic feedback. The model of robot arms with joint
elasticity satisfies conditions that enable to construct such a decoupling and linearizing
dynamic feedback. The procedure is applied to a planar two-link robot with one elastic joint.

1. Introduction

Experimental and simulation studies on industrial robot arms [1,2] have shown that
elasticity of the transmission elements between actuators and links has a relevant influence
on robot dynamics. In particular, robots that use transmission belts, long shafts or harmonic
drives often show a vibrational behavior. In these situations, we say that joint elasticity is
present in the structure. The main effect of joint elasticity is that the position of the actuator
(i.e. the angle of the motor shaft) is not uniquely related to the position of the driven link. As a
consequence, the conventional rigid arm dynamic model does not describe completely the
relation between applied torques and links motion.

The modeling and control of robot arms with joint elasticity has recently become an
active area of research. A dynamic model including the full nonlinear dynamic interactions
among the inertial properties of links and actuators was first introduced in [3] and then used
in [4-11]. The relevant feature of this model arises strictly from a control theoretical point of
view. It is known that for robots with rigid links and transmission elements, linearization and
noninteraction can always be achieved by means of a nonlinear static state-feedback (see
e.g. [12]). These two properties may be lost in presence of joint elasticity, as for example in a
planar two-link arm [4,5] which is the most common kinematic arrangement. Due to this,
alternative approaches have been proposed to control robot arms with elastic joints:
singular perturbation techniques [6], integral manifold design [7,8], model-reference
adaptive control [9]. None of these methods is able to mimic the results obtained in the rigid
robot, that is an exact linear and decoupled behavior in the closed-loop system.

There are some simple robots with elastic joints, like the single-link [10] and the two-
link cylindric arm [11], for which the so-called inverse dynamics method can still be
successfully applied. Thus, for this class of robotic systems the feedback linearization
property, in the sense of [13,14], depends on the robot kinematics.

A different approach has been proposed in [15,16] for the control of a two-link and of
a three-link anthropomorphic arms with joint elasticity. In both cases, the use of dynamic
nonlinear state-feedback allows to obtain both input-output decoupling and exact state
linearization in the closed loop. The results are based on sufficient conditions for full
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linearization via dynamic feedback which exploit the properties of the maximal controlled
invariant distribution of the system [17].

In this paper, we give more generality to these results by showing that part of these
sufficient conditions are always satisfied by the dynamic model of robots with joint elasticity.
We briefly report also on the detailed analysis made in [18] of the most important kinematic
structures of robots in this class; hybrid models, in which elasticity is present only at certain
joints, are also considered. These results suggest that any robot with elastic joints can be
fully linearized via a nonlinear state-feedback, which is either a static or a dynamic one.

2. Dynamic model of robot arms with joint elasticity

A robot arm with N elastic joints can be seen as a chain of 2N elastically coupled
rigid bodies, N actuators and N links. The 2N mechanical degrees of freedom of such a
structure, are controlled by only N independent inputs, the motor torques acting on the
actuator side of the elastic joints.

To derive the dynamic equations of motion it is convenient to follow a Lagrangian
approach. Two variables are associated to the i-th elastic joint (see Figure 1): qy;.q, the
position of the i-th actuator with respect to the (i-1)-th link, and qy;, the position of the i-th link
with respect to the previous one.

With this selection of 2N generalized joint coordinates q, the description of the link
kinematics is the same as in the rigid robot case. The potential energy U(q) and the kinetic
energy T(q,q') are computed in the usual way, considering the arm as an open chain of 2N
rigid bodies, links and actuators. U(q) contains, beside the gravitational contribution Ug(a),
also the elastic energy stored in the joints

N N
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where K; > 0 is the elastic constant of joint i and NT; > 1 is the transmission ratio. The
Lagrangian L=T - (Ug +U, ) obeys to the Euler-Lagrange equations which particularize as:
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with i=1,...N; 7 ; is the torque supplied by the actuator at the i-th joint. Performing the
indicated derivatives, the dynamic model can be written as:

BE(Q) q+ cE(qvq) + eE(q) + rE(q) =T
In these 2N second order nonlinear differential equations, the forcing term 1¢ has even
components equal to zero and odd components equal to the N-dimensional vector 1 of
motor torques. Bg(q) is the symmetric, positive definite inertia matrix, ¢£(q,q') collects the
centrifugal and Coriolis terms, eg(q) contains the gravitational forces while the elastic term
re(q) is linear in the elastic joint displacements. The modeling of the hybrid case, with only
some of the joints being elastic, follows in a similar way (see the case study in Section 5).

To derive the state and output equations associated to this system, it is convenient to
define a 2NxN odd-columns selection matrix Bs = block diag { [1 0]T } and a Nx2N even-

rows selection matrix Cg = block diag { [0 1] }. Defining the state as x = (Xp,Xy ) = (q,9") and
the inputasu =1,
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X = =f(x) +g(x) u
-Bg(
where for compactness Ne(x) = ce(X) + eg(x,) + re(x p)- For the definition of the outputs, the
proper "joint" variables to be set under control are indeed the link positions
y =C, X, = h(x)
or, in scalar notatlon Yi=Xp2i =0gi,i=1,..,N.

3. Full linearization via nonlinear state-feedback

Consider a smooth nonlinear system of the square type (same number of inputs and
outputs) in the form

x = f(x) + g(x) u y = h(x)

x e R u,y e RM A possible control strategy for this class of systems is to use state-
feedback and state and input-space transfomations in order to obtain a closed-loop system
which is linear, controllable and observable, and input-output decoupled (or noninteractive).
The achievement of all these objectives is sometimes referred to as full linearization.

Necessary and sufficient conditions for the solution of various subsets of this problem
are well-known, see e.g. [12-14,17,19]. Beside these, sufficient conditions exist for the
solvability of the full linearization problem using either static or dynamic state feedback. The
appealing feature of these conditions is that they are constructive in nature and relatively
easy to check.

The full linearization problem using static feedback (FLS) consists of finding a pair
(ouB), with B nonsingular, such that using u = a/(x)+B(x)v, the closed-loop system becomes
diffeomorphic to a controllable and observable triple (A,B,C), with y; depending only on vi,
for i = 1,...,m. Everything may hold only locally around an equilibrium point x,. To state
sufficient conditions of solvability, the relative order r; of each outputy; is introduced as the
least integer such that

ri-1
Lg Ly h®#O
These nonzero row vectors are by definition the rows of the mxm decoupling matrix A(x).

. Theorem 1 [18]. FLS can be solved if:

m

(S1) A(x)is nonsingular  (S2) D.r, = n
i=1
The full linearizing feedback and the diffeomorphism needed to display linearity are given in
this case by the standard theory of decoupling via static state-feedback.

The full linearization problem using dynamic feedback (FLD) consists of finding a
quadruple (a,b,c,d) and an integer v, such that using

z =a(x,z) + b(x,z) v u=c(x,z) +d(x,z) v
with ze RYand ve R™, the closed-loop system becomes diffeomorphic via = T(x,z) to

n=An+Bv, y=0Cn
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with (A,B) controllable, (C,A) observable, and y; depending only on v;, i = 1,...,m. The
dimension v of the dynamic compensator state z is not specified a priori. A result which

guarantees the existence of a solution to FLD has been introduced in [16,20] and is based
on the properties of the so-called A* , the maximal controlled invariant distribution contained

in the kernel of the output operator. In order to compute this distribution, the following dual
algorithm is used:

A* Algorithm [17]. Under regularity assumptions on the codistributions involved, the
following sequence for k = 0,1,...

Q.= meL @ nG X 2 Ly, @ N G

where
Q,(x) =span {dh(x),i=1,...m} G(x)=span{g;(x),i=1,.,m}
converges at an iteration k* < n-1 to the annihilator of A*, in the sense that

Q.,0=Q.x) and  A*(X)=(Q,. (X))~

k‘+1( K

The following two lemmas are used in order to restate geometrically the conditions of
Theorem 1 and to find a generalization of it which guarantees the solvability of FLD.

Lemma 2 [17]. If A(x) is nonsingular, then:

.[\43
<

]
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n
-

r.-1
a) A*=(span{dhi,...,dL; hi;i=1,...,m})l b) A"=0 &

m
Lemma 3 [18]. If Z Lg (N G c Q, k=0,1,.., then there exists an a(x) such that

=1 i
setting f (x) = f(x) + g(X)o(x):

p.-1 m
a) A* =(span{dch, .., dly’ h;i=t,.,m})* b) A*'=0 & Y p-=
i=1

The assumption in Lemma 3, that we will refer to as structural condition , is a relaxation of
the one in Lemma 2. Checking of this condition and computation of the indices ; are

directly performed via the A* algorithm. By construction, it can be shown that ; > r; for all i,

with strict equality holding for the smallest integers. Under the above structural condition,
these indices p; are the multiplicities of the zeros at infinity associated to the given nonlinear

system. We can state finally the following
Theorem 4 [16,18]. FLD can be solved if:

m
(D1) Z Ly @0 G cQ, foralk (D2) A* =0.
=1

The following three-step procedure computes the full linearizing dynamic feedback [16,18]:
Full Linearization Procedure

Step 1. Apply a static state-feedback u = a(x) + B(x)w, with o(x) as in Lemma 3 computed
directly through the A* algorithm, and B(x) = Q(x)-1, with entries of Q(x) given by

w1
q; (x) = Lgi Ly h(x)
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Step 2. Apply a dynamic extension on w, that is add to each input channel w; a number of
integrators equal to p-j;, where p = max {i;,i=1,...m }

=2, ... 2. =W,
i,2 TR i
The state z of the compensator is built up of dimension v equal to the sum of the (u-p; ). for
Step 3. Apply a static decoupling feedback:

W=Zi1 Zj4

W = 0(x,2) + B(x,2) V
on the extended system (denoted by overbars), where

Bx.2) = B = B0y = (L L TR ¥

! a(x,z) = - K(x)'1. col {L. ”hi (x,2)}

The feedback law resulting from the composition of these three steps is the required
dynamic compensator that solves FLD. The closed-loop system becomes equivalent to m
chains of input-output integrators of equal length p.

4. Full linearization of robot arms with elastic joints

In order to apply the above procedure for full linearization to robots with joint
elasticity, we may prove first that the sufficient conditions of Theorem 4 are satisfied.

Theorem 5. The dynamics of robot arms with elastic joints satisfies the structural condition.

Proof (sketch of). It is convenient to perform a coordinate change in the state space from x =
(q, q") to z = (q, Bg(q) q'). In these coordinates, i.e. describing the system in terms of

position and momentum, the state and output equations become

=)
BE(z1) z, 0
- -e(z)+——aT(z) +[BS]U y=[CS O]Z
E\™1 az1
In order to show that (D1) of Theorem 4 holds, induction is used on k. Starting from <, NG+

=Qq =span {[Cs 0]} since Lgh(z) = 0 then Lgi (Qg) =0 c Qq fori=1,...,N and condition
(D1) holds for k = 0. Assume that it holds true at the generic iteration k-1. By using the
invariance under feedback of the A* algorithm, Q, can be expressed as the span of exact
one-forms d\. The constant and simple structure of the input vector fields allows to
characterize also the distribution G L. Then, it is easy to show that

N
ngi(Qk nGYH@z)=0c Q@

and (D1) holds also for iteration k. This completes the proof.m

Together with the above result, the validity of condition (D2) of Theorem 4 for robot
arms with joint elasticity would imply that all instances of this class can be fully linearized via
dynamic state-feedback, when static feedback is not enough. Unfortunately, to prove in
general that A* = 0 for these robots seems to be a hard task. However, a study done in [18]
shows that for the most common and significative kinematic structures also the condition
(D2) is satisfied. Table 1 contains a synopsis of the obtained results. It is worth noting that:
a) the uniform structure of relative orders of the rigid robot case is lost in general; however, if
static feedback is enough for linearization, uniform r; are found (but not viceversa);
b) the length of the closed-loop chains of integrators depends on the kinematic type of the
arm and is always greater or equal to four, as opposed to constantly two for the rigid case.
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As a consequence, the difficulty of a general proof of condition (D2) stands in the
different possible ways through which the property A* = 0 is achieved.

5. A case study

Consider a two-link robot arm moving on a horizontal plane.The first link is actuated
through a direct-drive motor. The second joint shows a significant elasticity. For simplicity,
center of masses are assumed to be located at the joints (the motors) and at the tip (a load).
For the various definitions refer to Figure 2. In this hybrid structure q will have three
components: gy = rotation of the first link w.r.t. the base frame; g, = rotation of the motor at

the second joint; q; = rotation of the second link w.r.t. the first link. Since Ug = 0, the potential
energy U is given by

9 2
< ﬁ)
The kinetic energy T of the system is the sum of the three terms T ;o11, Tmot2» Tioad @nd can be
rewritten as a quadratic form in the velocity q'

]
U=U,=-5K(q

1. ]
T=50dBg(a)q
The inertia matrix Bg (q) of the elastic system is

A;+2Ajcos g,  JR, A,+Ajcos g,

Be@=[ IRy i 0
A,+A,cos g, 0 A,

while the Coriolis, centrifugal and elastic forces are collected in

2 r o -

'Aa sin q3 (ZQ1q3 * q3)
& L (q & i)
ne(9,) = 0 NI N
) 52 q
A.sinq, q -2
3 3 M K(a, NT) J

The following constants are used:

2 2 2 2
A, =JR+JR,+ JRp+ m, 1+ mp(l1 +1,) A= JRp+ mpl2
2
Ay = mpl1 Iy Ay=(m+ mp) 1, p) Iy
For this robot with mixed joints the state, input and output are defined as x = (qy, gy, g3, 1",
d2', 93), U= (14, 72), ¥ = (94, 93 ); thus, n = 6 and m = 2. The drift and input vector fields, f(x)
and g(x), and the output function h(x) are respectively:

Ag=(m,+m

’
f(x)=[x4 Xs X fa(XpXgXuXg)  f5(XpXq.X,Xe) ffs("z'x:a"(:v’(e):l
T
0 0 O g41 (X3) 'g41 (X3) 961 (x3)

g(X) ¥ 0 0 O '941 (Xa) 952(X3) -961 (X3)
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o
h =[x %]

where

A, ) 1 1) COS X4
O41 = Os5p =941 K3+ 35— Og1 =704y Xg) - —————

A (A4-A3c032x3) P2 R ER IR, A4-A30052x3
X A2 NT

; _Azsinxs(x4+x6)2+Aasinx3cosx3 x42 +K(X3-NT)[ T )+cosx3]
=

A4-Aacos?'x3 A4-A3cos Xq

K X3, , 1
f5 ='f4 +W(X3'ﬁ) (3?1'2941()(3))

K(X __)[ﬁi-(S_NTL.l.)COSX ] 2 2
f : 3 NT' A, NT 37 Agsinx, X, + AgSin X5 COS X (X,+Xg)
=-f, - =
i A,- A3 coszx3 A4 - A3 coszx3

It is easy to verify that the relative orders of the outputs are ry =r, = 2 and the
associated decoupling matrix

941(Xg) - Gyy(x5)
961(Xa) - Ggy(X5)

is structurally singular. Thus, the results of Theorem 1 cannot be used. Instead one can
apply the A* algorithm, keeping into account the result of Theorem 5 in order to reduce the
computational burden. From this algorithm, a feedback modification by
) f4(X0X5.%4Xg)
ofx) = 941(X3)
0
of the drift vector field f(x) yields a new

AX) =L L, h(x) =

= ~ i
=100+ gam) =[% %5 Xs 0 TskaX0) felxpxpx)]
with

v 961 (x) f4(x)
fs (X5Xg) = f,(x) +f5(x) fg (X5 X5,%,) = fo(x) - O
41
where the functional dependencies of the lhs terms can be checked directly from the
expressions of the model. Then

2 3
=(span {dh, ,dL+h, ,dh,,dLyh,, dLy h,,dLy h2})J‘=O
and puy =2, u=p, =4. Since

5 . oy, o,
L hy (%) =fg (X5X5.%,) L hy(x) = @ Xg + 8_)(3 X
the following matrix will be nonsingular
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-
Ly Lih ) Ly Lyh, ()

B(X) = 3 3
LyLi ) L L7 hyx)

and the first step of the full linearization procedure, u = o/(x) + B(x) w, is completely defined.
Next, a dynamic extension of order p - puq = 2 is performed on the new input wy

W1 = 21 Z1 =Z2 Z2 =W1 W2 =W2

Using the overbar to denote the extended state (x,z) = (x, 24, 23) € RS, the state and output
equations of the extended system become

x=TR+g@u=[% % % z T® T® z o]
0 0 0 O 0 0 0 1
. -
0 0 0 0 gpx) 0 0 0O

y=h(x)=h(x)
Finally, the system above can be decoupled and linearized by means of a static decoupling
feedback from the extended state. The decoupling matrix for this system has the form

B . 1 0
AW =L LR =f,

globally nonsingular and with relative orders both equal to 4. Thus

r1+r2=8=n

and both conditions of Theorem 1 are fullfilled. The static decoupling feedback of step 3 is
given by

w = a(X) + B(x) v

A =-A) | o _

L., (%)

R Tiwt - = 1,4
B(x) = A(x) a() =-A(xX) L,
The final system is equivalent to two chains of four input-output integrators between v and y.

Two of these eight states are due to dynamic compensation. The structure of the nonlinear
dynamic compensator which acts as linearizing controller is summarized in Figure 3.

6. Conclusion

The kinematic class of robot arms with elastic joints which requires nonlinear
dynamic compensation for linearization and decoupling is quite large. It includes all
structures having at least two rotary elastic joints with parallel axes of rotation, e.g. a planar
two-link arm or the first three links of an anthropomorphic robot arm. In any case, full
linearization can be achieved. For the whole class of robot arms with joint elasticity, the
obtained linear closed-loop system is represented by input-output integration paths which
are of order equal or greater than four. This length may be considered as a rough measure
for the difficulty of controlling the dynamic motion of the arm and has direct implications on
the definition of the class of desired trajectories that can be reproduced as system outputs.
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The results obtained with the present exact design may be used also to gain some
better understanding on the implementation of different and possibly simpler control
strategies. For instance, the uniform length pu of the closed-loop chains can be used to select
the dimension of a linear reference model in an adaptive approach.

A physical interpretation of the role of dynamic state-feedback in robots with joint
elasticity can be given. In these manipulators dynamic compensation /oosen the couplings
among the elastic phenomena at different joints in the structure. In fact, whenever two elastic
joints do not interact (e.g. when their axes are orthogonal) only the rigid degrees of freedom
of the arm need to be decoupled and static feedback serves this purpose. For hybrid
structures, with only some of the joints being elastic, dynamic compensation is used instead
to balance the length of the input-output paths from joint torques to links motion; by slowing
down the response of the rigid joints, the torques acting through the elastic ones will have
enough time to come into effective play and counteract the dynamic cross-effects.
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i ipliciti dynamic  closed-loo
j::i:tfs typa:of robot or?dlztrzeri multf:ICItleS f::e‘:;%d; integratorsp
1 single link 4 4 no 1x4
2 cylindric 4,4 4,4 no 2x4
2 polar 4,4 4,4 no 2x4
2 planar 2,2 2,6 YES 2x6
2 hybrid polar @) 3,2 4,2 YES 2x4
2 hybrid planar b) 2,2 2,4 YES 2x4
3 anthropomorphic 3, 2,2 4,2,6 YES 3x6

a) first joint elastic b) second joint elastic

Table 1 - Control properties of robot arms with joint elasticity

m, JR, ‘ T
actuator i NT >1 =
! \ {K, NT} of joint 2
m,=masses JR;= inertias
Figure 1 - Definition of variables for elastic joint i Figure 2 - A two-link planar robot arm

with the second joint elastic

:

W =o(X)+BE) v

Two-link robot
with one y
elastic joint E—

\ 4
:i:mN
/N

u =o(x)+Bx)yw

nonlinear dynamic compensator

Figure 3 - Linearizing controller for the two-link arm with one elastic joint



