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Abstract. An approach based on the exact augmented Lagrangian function is developed

for the optimization of large scale systems constituted by interconnected units. The
decomposition and coordination strategies are examined and various schemes of upper
level coordination are proposed, all of which are formulated as unconstrained quadratic
minimization problems. Convergence analysis is performed exploiting a parallel with
minimization by relaxation methods. A numerical example is included.
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INTRODUCTION

A common characteristic of complex systems is that
their mathematical models are of large dimension,
but structured.Usually this means that large scale
systems have an underlying physical or functional
structure of interacting constituents i.e. acertain
number of interconnected subsystems may be iden-
tified.

Motivated by the presence of this structure, spe-
cific decomposition and coordination methods have
been developed for the optimization purpose. In
the mathematical programming framework the first
multilevel methods were based on the Lagrangian
approach (Lasdon, 1970), since the Lagrangian
function retains the separability of the problem
formulation.

Duality gaps limit the effectiveness of these
methods in absence of convexity assumptions so
that the application of augmented Lagrangians
theory to multilevel problems has been considered;
due to the added penalty term this approach has
the drawback of destroying separability.

Various solutions have been proposed: Stephanopou-
los and Westerberg (1975) introduced a linear ap-
proximation of the nonseparable crossterms while
Watanabe et al. (1978) transformed these terms
into the minimum of a sum of separable terms.

The class of methods proposed by Findeisen et al.
(1980) are based on a suitable augmentation of the
Lagrangian function without approximating terms
and using mixed multiplier/interaction variables
prediction; the resulting coordinator task is
formulated as a saddle-point problem. Finally, in
Bertsekas (1979),an alternative augmentation of
the Lagrangian function allows local convexifica-
tion by simply duplicating the number of primal
variables.

A clear classification and comparison of these ap-
proaches is quite diffucult due to the differences
in basic decomposition schemes and applicability
conditions, lack of convergence analysis or re-
sults and application-oriented nature of multi-
level procedures; see however Cohen (1978, 1980).

As a further development we propose in this paper
a method based on recent results in nonlinear pro-
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gramming: the exact augmented Lagrangian approach
introduced by Di Pillo and Grippo (1979, 1982) and
Lucidi (1985), which consists in adding to the
Lagrangian function a penaltyterm on the whole sub-
set of the first order necessary conditions cor—
responding to equalities.

In particular it was shown by Di Pillo and Grippo
(1979) that, under suitable hypotheses, the solu-
tion of an equality constrained problem of the form:

minimize J(s) =
subject to g(s) = 0, s ER

and the corresponding Lagrange multiplier o € R",
can be found by computing the unconstrained minimum,
with respect to s and 0, of the function

$(s,0)=3(s)+0 g (s)+n] g ()] *+[M(s) (VI (s)+Tg (s)0)| *

for a value of the penalty coefficient n larger
than a threshold value n"> 0 and for an appropriate
choice of the matrix M(s) such that MVg is an m>*m
nonsingular matrix, where Vg denotes the transpose
of the Jacobian matrix of the constraints.

The extension of the proposed approach to nonlinear
programming problems with inequality constraints:

minimize J(s)
subject to g(s) < 0, s €R"

was studied by Di Pillo and Grippo (1982) and by
Lucidi (1985) by using the device of converting
inequalities to equalities via squared slack va-
riables. In particular it was shown by Lucidi (1985)
that the solution of the above problem can be ob-
tained by the unconstrained minimization, with
respect to s € R" and 0 € R®, of the continuously
differentiable function:

T(s,0) = J(s)+07( g(s)+Y(s,0)y(s,0)]
+n|g{s)+‘£(s,0}y(s,0)|2

w228 (03(5) 495 ()0 +v 6% (5,00 o],
where

a.
A ﬂmin{o,gi(s) + 5%}

y?(s,ﬂ)
G(s,0) & diaglg, ()} ¥(s,0) A diagly,(s,0)}

for a given value of U > 0, ¥ # 0 and a value of
n larger than a threshold value n° > 0.
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In both cases, the search for a saddle point of
the ordinary Lagrangian is replaced with the
search for an unconstrained minimum of $(s,0) or
T(s,0).

Application of this approach to large scale non-
linear problems, followed by a suitable decomposi-
tion, allows:

= to solve the problem by a general multilevel
method with an efficient coordination process
without the need of convexity assumptions;

= to look at multilevel methods as a straight-
forward generalization of well-known minimiza-
tion by relaxaticn methods;

= to derive simple convergence analysis and an

acceleration procedure for the proposed algorithm.

LARGE-SCALE EQUALITY CONSTRAINED PROBLEMS

We consider a large scale optimization problem
given in the following form:

N
Problem 1 min [ f, { (%p0c))

i=1

s.t. z, = t,(x.,c.
i 1( :.’cl)

N
x. = ) H.z, i=1,2,...,N
i is‘l 1] ] » " » £

n: k. me
where x .€R l,ziER 1 and cER ! are the i-th sub-
system interaction inputs and outputs and the i-th
nj _m
local control vector; the fi: R 'xR '

n; m. k.
R xR >R are

*+ R are
local objective functions and S
the input-output subsystems models. The Hij are
(nixkj)interconnectionmatriccswhoseelements are
0/1.

Problem 1 can be interpreted as the task of regu-
lating N (usually a large number) interconnected
static systems, minimizing the sum of the local

(generally nonlinear) cost functions. We can rew—
rite Problem 1 in a more compact form as:

min f{x,c)

ti{x,c)-z
s.t. pg(x,c,z) = =0
Hz-x

T T, T
[ = o
[xl...xN] R , n lzlnl and analo
furthermore,

where x 4

gously, z € Hk, c €RY;

t A [tf...t;]T BX and H 4 {H..},an (n*k) matrix.
2 = 'y
Note that the subsystem linear interconnections
imply no loss of generality since all nonlinearities
can be included in the subsystem models. Moreover
each and every output is connected to one and only
one input of a different subsystem, thus the matrix
H is an orthonormal matrix, i.e. H™l = HT, kx=n,
Local feedbacks are included in the subsystem
models so that Hii = 0, for all i,

We will admit that the following assumptions hold,
where {1 is a given compact subset of R xR™ xRD:

Al) the functions f,t are twice continuously dif-
ferentiable with respect to the variables x
and c on R xRM;

A2) the gradients of the constraints are linearly
independent at every point (x,c,z) in the
compact subset {I.

The Lagrangian function for Problem 1 is defined as:
L(x,¢,2,3,p) & £(x,c) AT (E(x,c)=2)+p" (Hz=x)

where A € R“, pE R" are the Lagrange multipliers.

An exact augmented Lagrangian function for this
problem is

S(x,C.z,A.P;n)QL(x.c,z.l.p)+n(|t(x,c)~z[2+[uz-x|2)
+lM(x.c.c)?L(x,c,z,l,p)lz (1)

where M is a 2n*(2n+m) matrix whose elements are
twice continuously differentiable and VL denotes
the gradient of L with respect to (x,c,z). Then,
under the hypothesis that the matrix M Vg is a
2n%2n nonsingular matrix in £, the solutions of
Problem 1 contained in 0 and the corresponding
Lagrange multipliers coincide with the uncon-
strained minima of function § 1n PRMRD for n
larger than a threshold value n* which depends on
the compact set 01,

A proper choice of the matrix M for this case is
indicated by the following

PROPOSITION. If the matrices ? ti' i=1l,...,N have
full columm rank, i.e. g

rankl] V_ t. k. < m.
leil]'-'l—I

and if the matrizx M (x,c,z) i8 chosen as

T
yaf @ Vet g

M(x,c,z)=u s >0 (2)

=l 0 0
n

then the matrixz M Vg iz nomsingular.
PROOF. See De Luca and Di Pillo (1984).

The hypothesis of the above proposition means that
every subsystem has to be regulated by a number of
effective control inputs not less than the number
of local interconnection outguts. By straightfor-
ward calculation of VL -IV L V LTy e ]T and sub-

stitution of (2) in the expresszon of S, we have:

S(x,0,2,A,p3N, 1) =f (x,c)+A T (t(x,c)=2)+p" (Hz-x)
+n('t(x,c)—z|2+|ﬁz—XE2)
(|7 e £+9 0|2
7,847, ta-p) ). 3

A solution of Problem 1 can then be found minimi-
zing (3) with respect to x,c,z,A,p by the fol-
lowing tuc level iterative procedure, where
Hy A [H, P s el B

il 12 iN

1) For fixed values z,p minimize $ w.r.t. x,c,);
this problem splits into N independent low
level ones:

: i -, -

min S (xi,ci,z,li,p,n,u),

X.,Coyhs

1" 1" 1

where

SE(x; 00,2050 Bimal) B F;(xyaci)AAL(E, (x,c.)=2:)
$3C1 220N PeThl) 8 20K a0 2 A N, (Xy0ey2m2;

=T, = = 2 = a2

*pi(Hiz-xi)+n(lti(xi,ci)-zi)l +|Hiz—xi] ) (&)

(|, 1T €47 e A2, £47 51D
¢ i e i c; 174 X i x5 L7 *4 *

2) At the coordination level use the low-level
solutions x,c,A and minimize S with respect to

zZ,p.

Due to the quadratic dependence of S on z,p the
coordination is a very simple problem. The gra-
dients and the Hessian of S w.r.t. the coordinating
variables are given by:
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75 = Hp = A + (22t (x,c) - H'x)
9p$ = Kz-x+2u(p-?xf(x,c) —V‘xr_(x,c))\)
5 an1 ut
v(z )S - ! ()
P H 21

The Hessian matrix is positive definite for p > 0
and n sufficiently large, thus implying that the
first order necessary conditions at the coordinat-
ing level (V s=0, VpS‘-‘O) are also sufficient

for a minimum w.r.t. z and p, for every value of
the first level variablesx, c and A. Furthermore
the inverse of the Hessian matrix (5) is analyti-
cally available. Thus the coordination task can be
accomplished by a Newton iteration which gives new
updates z and p in the closed form:

z _ z [vz- i ]-1 V.5 (%,8,2,A,p)
5] Ls @»° Vs (.52,
(6)
w1 -HT|[ Fe2n(e(x,0)+H %)
1 n
= Bun-1 _ o o
-H imIn x+2u(fo(x,c)+th(x,c)J\)

A basic two-level algorithm for solving Problem 1
by means of the proposed exact augmented Lagrangian
function is then the following.

ALGORITHM 1

1. Choose n,uU and a starting point in the extended
space of primal and dual wvariables; label it by
0 and set k = 0.

2, Solve the N low-level subproblems for fixed zk,

X i k k i
min S (xi,ci,z ,Ai,pi), i=1,...,N

b -
b LA St

and denote by x¥+1.c§*1.X%+l

the minimizing
values. -

3. Calculate zkﬂ',pk+1 by (6) for x =xk+1.E =ck+l,
% Aki‘l'

4. If some stopping criterion is satisfied then set
x*=xk+l,c*=ck+l‘2*=zk+1,p‘=pk+1.l*-lk+l
and stop; else set k=k+1 and go to 2.

A feature of this algorithm is that it is unaf-
fected by the number N of interconnected systems.
Notice also that for decomposing the functiom S it
would be necessary to fix only the interconnection
outputs z at the second level; inclusion of p as a
coordinating variable allows a more balanced part-
ition of tasks among levels at pratically no ad-
ditional cost for the coordination procedure.

We point out that a direct substitution could be
made of x in terms of z (or viceversa) using the
interconnection equation explicitly (Findeisen et
al., 1980); our choice, despite the increase of
dimensionality of the local subproblems, is moti-
vated by the appealing coordination process (6)
that can be obtained thanks to this duplication of
variables. Moreover no such direct substitution is
possible when local inequality constraints are
present, unless they were separable in terms of
controls and interconnection inputs.

LARGE SCALE PROBLEMS WITH BOTH EQUALITY AND
INEQUALITY CONSTRAINTS

A more general large scale optimization problem in-

cludes, beside the equality constraints considered
in Problem 1, additional local inequality con-

straints of the form:
vi(xi,ci) <0, i=1,2,...,N

L | Ti : ;
where v,: R "X R~ *R °. Transforming these ine-
qualities via squared slack variables into

vi(xi,ci)+Yiyi =0, 1i=1,2,...,N

=
with y, €R E Y, A diag{yij. i=1,...,r;}, and

using a compact notation, we are lead to consider
the following

Problem 2 min £(x,c)
Lex,cl g, (x,c,2)
s.t. gix,c,z,y)= . =0
v(x,c)+Yy gy (x,c,y)
i T
where Y 4 d1ag{Y oy A [y1 ,V,lv vyl €R
N
and r = )' T, The Lagrangian function for Pro-
i=1

blem 2 is defined as:

L(x,¢,2,5,0,p,0) A& £(x,0)+A  (t(x,0)=2)

T T
+p  (Hz=x)+p (v(x,c)+Yy)
with p € R® Kuhn-Tucker multiplier.

Given a compact subset { of R" xR" xR", the fol-

lowing assumptions are assumed to hold:

A3) the functions f,t,v are twice continuously
differentiable with respect to the variables
x and ¢ on R x R™;

A4) the gradients of the active constraints are
linearly independent at every point (x,c,z) in
the compact subset {;

A5) define the index set Jl(x,c) as

x,0) b {j: 13 xgaep) > 0h;

then the Hangasarian—Fromothz regularity as-
sumption holds on £, i.e. for any (x,c,z) €

2n

} avg .+ ¥ J.8iw. =o,
k=1 KLk oy et 3N

with B;zc for all j € J%, i=1,...,N, implies

that B; =0 for all j € J%, i=1,...,N and

{xk =0 for k=1,...,2n; here g]‘.k denotes the
k=th component of 81 and the gradients are
taken w.r.t. the primal variables (x,c,z);

A6) strict complementarity holds at any Kuch-Tucker
pair (x,c,z),(X,p,p) such that (x,c,z) belongs
to the compact set (.

An exact augmented Lagrangian function can be con-—
structed for Problem 2, considering the presence
of both equality and inequality constraints; we get:

T(x,c,2,A,p,p) = f(x,c)ﬂT(t(X,c}-z}wT{Hz—x)
+pT(v(x c)+Y(x c p)y(x c,p))
(]t x,0)- z| +} Hz-x| +!v(x ,e)+¥(x,c,p)y(x,c,p)] %)

T 2
+u(|vg) VL |vg2 TLay 2vé (x, e)e] ™) (7
where o
2 - wmt Pij
yij(xi,ci,pi) ~m1n{0,vij(xi,ci)+ ™ i

j=1,..0,ry, i71,000,N, (8)
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Y(x,e,p) = diag{yij(xi,ci,pi); JLyveesTyyiml, N,
V(x.c)'-diag{vij(xi.ci}; j=1....,ri, i=1,...,N}.

VL denotes the gradient of L w.r.t. (x,c,z) while
Vgl and vgz denote the transpose of the Jacobian

matrix of the equality and inequality constraints;
in all cases derivatives are taken with respect to
the primal variables of the given problem. We have:

?xL Uxf + thl + vxvo -p
VL= VL |= VE+V EA+V vp .
c c T c c
_szq | Hp =2 |
V.8 v.t -I vy
Vg = ?cg - vt OT Ucv
vzg -1 H 0

Finally, back substitution of the explicit ex-
pressions of the yij(xi,ci,pi) (8) into (7) yields:

T(x,¢,2,A,p,051,N,Y) = £(x,c)+AT (£ (x,c)=2)
+p" (Hz=x) +0"v (x, )41 (| t (x, ) ~z] 2] Hiz=x] 4] v(x, )| D)
*U('thTvxL+?CtT?cL+(R—HTp)I2+|{p—HA)—?KL!Z

T, T, 2.8 2
+I\?xv vxmvcv chw v p| )

N gy L Piia2
-n i£1 j£1 [minf0,v; . (xyep) + 5207 (9)

Again as for Problem 1, the solutionsof Problem 2
contained in { and the associated Kuhn-Tucker
multipliers coincide with the unconstrained minima

of function T in 2xR"xR" XRr. provided that n is
larger than a threshold value 1" depending on 0.

As a matter of fact, the addition of the local
inequality constraints implies a relevant complica-
tion in the expression of T. Nevertheless by fixing
the vectors z (interconnection outputs), p (inter-
connection constraints multipliers) and X (input-
output equations multipliers) at the values Z,p and
A respectively, T can be decomposed so that:

f N
min T = min <min T} = min E
z’lp'A xlcjp

min T*
Z,pyA( i=1 xi’ci'pi
where

i -
T =T (x;,c;,2,0,4,0;51,7,Y)

lie=

=T e P T
£ Craepdsd (it e 0w, (H =% )0 v, (2,600

+

n(e; Gxpae )2 | 2o zmx | 2o, (e 1D

+

T - -
ATy B O £5*Vy 80047y viPyy)
b § 1 1
T = - T- 2
+ vc_ti (vc_ fiwc‘tiliwc ."ip:‘.)+()‘ ;7HP) |
1 1 1 1
- - o B
HOR;-H A=V, £.40, €449, vi0ip)]
1 1 1
'I - -
1V 7Oy B0 TAY, vibioD))
1 1 1 1
T " 2.2 2
PV T £ T AT P Y Y] D
1 1 1 1
7 Pijy 2
-n jgllmxn{o,vij(xi,ci) - 2n}] g (10)
with Vi A d;ag{vij; j= 1,...,ri}.

OQur primary goal is to derive now a coordinator as
simple as possible for minimizing T w.r.t. z,p and

A. Notice that the exact augmented Lagrangian func-
tion is quadratic with respect to all coordination
variables z,p and A. In principle one can solve
directly this 3n-dimensional quadratic problem,
obtaining a one-level coordinator. However since n
is usually large, a decomposition of the coordina-
tor task may result in a computational saving; we
propose here in fact a three-level coordination
algorithm.

First we derive the gradients of T with respect to
the coordinating variables:

VZT = HTp—A+2n(22-t(x,c)~HTx)

VT = Hz-x
P

T T
+2p(=(V t+H) (V77 LVt

7_LeA-H'p)
+2(p-Hl—VKL)
vvxv(vvavxL+vchch+y2v2p))
vAT-t(x,c)—z
+2u((I+VXtT?xt+VctTvct)(vxtTVxL+UctTVCL+R-HTp)
-(?xuﬂ)T(p-m—vxL)
+(vchvxv+vcchcv)(vvavxL+vchch+y2vzp)J.
If we are interested in splitting the coordination

procedure in three levels, we need to look at only
the following second order expressions:

2
?zT 4nI

T T
VT = 2u(-’eI+(vxt+H) (V'xtﬂ{) +V vV )

v

>M YoM

T T 2
T 2u((x+vxt th+vct vct}
E
+(th+H) (‘?xtﬂl)
T, T, T T, T
+(er_ ‘?wict ch) (vxt vwict vcv) )

each of which is positive definite (as a sum of
unit matrices and positive semidefinite matrices)
for any positive values of n and u. By letting the
coordinator operate separately on z,p and A va-
riables in a three-level structure, we are assured
that by satisfying the first order necessary con-—
ditions VZT =0, vpr =0, ?AT = 0 at each level

the function T is minimized w.r.t. the correspond-
ing variable. Summarizing we get the following
algorithm.

ALGORITHM 2

1. Choose n,u,Y and a starting point in the ex-—
tended space of primal and dual variables;
label it by O and set k = O.

2. Solve the N first (low)-level subproblems for
fixed zK,p¥,ak:
min Tl(xi,ci.zk,pk,lk

Xy Cu s
i2%10P4

ERPE R S en

and dencte by xg*l,cgfl,o§+1 the minimizing

values.
3. Solve the quadratic problem:

k+1,ck+1 k k k*])

min T(x 22 5PyA P

p
(that is solve for p the V.T = 0 condition with

fixed xk+1,ck+l,pk+1

pk+1 the minimizer.

and zk,lk) and denote by

4. Solve the quadratic problem:
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+1 k+l
c

L3 »

min T(xk zk,pk+1,l.pk+1)

A

(that is solve for A the 73T = O condition with

k+1 k+l k+l k+l
»C s s P

fixed x and zk) and denote by

lk*l the minimizer.
5. Solve the quadratic problem:

k+1 ck+1 k+1 . k+l k+l

min T(x yZiP A T, )

z
that gives explicitly

I A

— H k+1 +HTxkﬂ

)+ 3(e G, ).

(11)

6. If some stopping criterion is satisfied then
set
*  k+l * ksl ¥ k+l ¥ k+l
X=X ,c=¢c L,2=2 ,p=p

* *
A Ak+1,o 5 Dk+1

and stop; else set k = k+l and go to 2.

Note that in step 5 the minimization of T can be
carried out analytically giving (11); this ex-
pression is a function of terms belonging to dif-
ferent subsystems so that no elimination of the
variable z is possible (as done with the slack
variables) without loss of separability. However
we can use (11) during the coordination task,which
is not in a decomposed form, thus reducing the
number of levels of the coordinator to two. In-
troducing (11) into the expression of T we get a
funetion T'= T'(x,c,p,A,PiN,U,Y); the coordinator

minimizes then T' w.r.t. p and A and updates zk+1

via (11) before returning to the lowest level.

Notice that with this procedure the coordination
complexity is exactly the same one present in an
augmented Lagrangian approach (Findeisen et al.,
1980). In any case the order in which variables

are assigned to levels can be interchanged.

CONVERGENCE ANALYSIS

We provide here a discussion of convergence for the
proposed method. The basic idea is to recognize
that the multilevel algorithm for minimizing S or T
is nothing but a block relaxation method (BRM) (see
e.g. Ortega and Rheinboldt, 1970). To get a deeper
understanding of this analogy one should note the
following points:

- each level operates a vector minimization which
corresponds to a step over a block of variables
in the BRM;

- optimization is carried out iterating sequential-
ly from the first to the last level as in the
cyclic exploration of all blocks of variables in
the BRM; no inner loops are inserted in the pro-
cedure as it is instead done in many multilevel
schemes (Mahmoud, 1977, Singh and Titli, 1978);

- new level updates are utilized in computations
as soon as available, that is in the optimization
at the next level: thus the algorithm operates in
a typical Gauss-Seidel mode.

The block relaxation approach for minimizing a
function T(s), s € R", is a generalization of the
well-known univariate method; the one-dimensional
line search along a (coordinate) direction, which
constitutes a step in this algorithm, is substitu-
ted by a minimization of the function on one of the
subspaces in which the n-dimensional space has been
partitioned. A sufficient convergence condition for
this method is established by a theorem of Bazaraa
and Shetty (1979) which holds for a general class
of algorithms that minimize a function searching

L5S|—M*

along independent directions, and which is recalled
here for convenience.

THEOREM. Let T: R" = R be a differentiable function
and consider an algorithm whose map A gives avector
§ € A(s) by minimizing T along the wnitary search
directions d,...d , starting from s. Suppose that:

a) Je > 0 s.t. |D(s)| > € for all s € R", where

D(s) s the n*n matriz whose colwmms are the
search direetions di (eventually dependent ons);

b) the mintmum of T along any line in R" is unique.

Then if ML e acs™ and the sequence {s") s con-
tained in a eompact subset of R, each accwmulation

point s of {s") satisfies VI(s) = 0. O

Since in a multilevel procedure different variables
are treated at different levels, the only thing the
algorithms of the previous sections must take care
of is that of generating independent search direc-
tions locally to each level, since we have:

D(s) = diag(D;(s;), i = 1,...ﬁq}, D;:m; X ng,
where s = (51‘5;...52)1., s; €ER ', and q>2 is the
number of levels. Furthermore the first level has
this task decomposed in N independent subproblems
so that the particular local structure can be ex—
ploited to provide the proper set of search direc-
tions (i.e. Newton, Quasi-Newton, conjugate direc—
tions, coordinate directions, etc.).

Notice that hypothesis b) of the above theorem is
particularly strong, but it has been shown that
differentiability alone may not be sufficient for
the method to succeed (Powell, 1973). Moreover,
usually the univariate method, after initial pro-
grees, tends to slow down in later iterations
especially along valleys stretched not in the co-
ordinate directions. In order to improvethe con—
vergence properties new search directions can be
introduced as the minimization goes further. A
popular method is that of pattern search performed
along directions individuated by some pattern of
preceeding iterates, usually the last two as in the
Hooke-Jeeves algorithm; this can be easily extended
to the case of block relaxation.

The similarities between multilevel computation

and relaxation methods have already been pointed
out by some authors (Looze and Sandell, 1981,
Xinogalas et al., 1983) and follow directly from
the theoretical framework of Cohen (1978 , 1980).
However notice that multilevel methods based on
Lagrangian and augmented Lagrangians have,in this
perspective, two major drawbacks: first, they
search for a saddle point, each level trying to
satisfy a subset of first order necessary condi-
tions; in general, no explicit search directions
are computed at the coordination levels. Hence,

one has to check that each level computation or
update moves toward the optimum. Second, recombina-
tion of variables of distinct levels makes no sense
in methods based on ordinary or augmented Lagran-
gians which treat at different levels variables of
the primal and of the dual type.

If we use instead the exact augmented Lagrangian
function for solving a large scale optimization
problem in the form of Problem 1 or 2, by means of
a multilevel scheme then:

- the coordination level(s) minimize the exact
augmented Lagrangian function with respect to
the subset of global variables, for every value
of the local variables as shown in the previous
sections. This enforces stability to the whole
multilevel process;

- it is possible to improve the basic Algorithm 1
and 2 introducing an additional minimization step
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across the level (like the one in the Hooke-
Jeeves method), thus reducing the sources of
inefficiency which otherwise affect all mulei-
level iterative schemes.

This additional step is just a unidimensional mini-
mization along a direction determined by the last
two iterates of the algorithm. In this step the
exact augmented Lagrangian function is used as line
search function at little additional computational
expense. Introducing this modification e.g. in
Algorithm 2 we get:

ALGORITHM 3

A. De Luca and G. Di Pillo

the design problem is to minimize

3
f(x,c) = _E fi(xi,ci)
1=1
subject to the interconnection constraints (x =Hz)
shown in Fig. 1.

Starting from the origin of the extendend space of
primal and dual variables, as in Findeisen et al.
(1980), several runs were performed with different
penalties n,y and constant ¥“ = 4 also to compare
the relative merits of the various schemes (Table 1).
K is the number of iterations needed in order that
two successive coordinator predictions differ in

1. = 5. As in Algorithm 2. norm by less than £ = 10“5. The feasibility of the
6. set s* = (DT DTN TEHHTEMLTERMLTT g
k
P {(xkﬂ-xk)r(ckﬂ—ck)T(zk”-zk)T(pkﬂ-pk)‘r(Akﬂ~Ak)T(pk+1—pk)T)T
and solve
I(sk+ukdk) = min T{sk +adk} n H K £ Ielz Algorithm
ER -
denoting by K¥1 o K gk . 10> .1 66 6.1370 .9+1072 3
t s =s +ad th ) -
: enoting o " ¢ mmimeer 10> .01 152 6.1182  .4-107 3
. If some suitable stopping criterion is satisfied 3 -3
then stop; else continue. 10 01 242 6.1258 +6°10 £ 2
8. Update 5:10% .05 123 6.1270 40107 3
k T
(DT DT TR L TRk L Tk LT
Table 1
N sk+1
' final point is given in terms of the Euclidean norm
9. Set k = k+1 and go to 2. T k

This very simple modification has been tested with
good performance in the example reported in the

next section. In particular the direction d* so ob-
tained gives better results than a steepest descent
additional line search, thus confirming the validi-
ty of the analogy between coordinate descent methods
and multilevel optimization.

NUMERICAL EXAMPLE

The proposed multilevel algorithms have been tested
on an example, which has convex objective functions
and nonlinear inequality constraints, referenced in
Findeisen et al. (1980) where it is used as a
benchmark problem for several multilevel methods.
For another numerical example see De Luca and Di
Pillo (1984). Given a plant consisting of three
interconnected dynamic systems described by their
steady-state models as follows:

+ 2x

of the vector e=H'x —t(xk,ck) which measures the
error in the satisfaction of the interconnection
constraints, when the current input-output model is
used.The effectiveness of the proposed acceleration
step (Algorithm 3) with respect to the basic Algo-—
rithm 2 is self-evident. No particular benefits
were obtained reducing the number of coordination
levels from three to two as explained in the pre-
vious section. Furthermore, choosing different pro-
cessing orders for the coordinator variables (namely,
with (z,p,A) or (p,A,z) treated respectively at the
second, third and fourth level) showed different
paths from the starting point to the solution, but
no significant differences in the terminal figures
(number of iterations and feasibility).Subproblem
minimization was carried out by a Quasi-Newton
method with BFS updates; the same was done for the
upper levels minimizations, whenever these were not
performed analytically. Finally, note that since
the method considered is a nonfeasible one, it
generates a sequence which usually lies beyond the
feasible region, so that troubles could arise with
functions not defined everywhere.

o bl S e 11
O - . CONCLUSION
(Xl) vy he)  =(e *ey o1 =%y %y, =.5) <0 '
4 2 We developed a new multilevel method for the so-
fl{x]'cl) = (xll e B 5(Cll+ CIZ"Z) lution of large scale structured optimization pro-
blems by means of the exact augmented Lagrangian
T T, approach studied in Di Pillo and Grippo (1979,
21 721 T2z 21 T2z 1982) and Lucidi (1985). The decomposition of this
222-2c22_c23-321+x22 function is obtained by fixing, in the general
.5c21+c22+2c23 =1
(EZ) vy(xy,¢5)= <0
4c2 F20, K F o X FCL ot 5c2 +x2-6
21 21721721 T21m23 2y 21
£t I R .
2 x2'c2)"2(c21 2) +c22+3c23+4x21+x22 case, the subsystems outputs and the equa}lty con—
T T straiuts multipliers. The resulting coordinator
31 731 U3z 31 procedure is organized as a three-level minimiza-
(23) V3(x3.c3) =(-cq 7%3,7-5 -ey, Cqp = 1) <0 tion, one of which can be analytically solved while
2 2 2 the cther two are positive definite quadratic pro-
f3(x3vc3) = (cq,+1) "+ (x5,-1) *2.5¢3,, blems. The efficiency of the coordination task is
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enhanced when no local inequality constraints are
present, being then strictly independent from the
number of subsystems. Numerical experience with
this method was satisfaxtory giving results which
are competitive with the ones quoted in the lite-
rature. One of the limitations of the present ap-
proach is its intrinsic nonfeasibility before ob-
taining the optimal solution, so that no on-line
applications are possible. However this approach
gives some further insight in the mechanism of
convergence of multilevel methods; the parallelism
between some classical minimization methods and
those based on decomposition-coordination had
already been recognized but could not be stressed
in a primal-dual framework. We could instead ex-
tend in a multilevel context some simple ideas
from general nonlinear programming such as the
intra-level acceleration step, whose effectiveness
was confirmed by numerical examples.
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Fig. l: Subsystem interconnections of the numerical example.



