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Abstract

We consider the trajectory planning problem for the
class of XYnR planar underactuated robots, having
the first two (rotational or prismatic) joints actu-
ated and the last n rotational joints passive. Under
the assumption that each passive link is attached at
the center of percussion of the previous passive link,
the dynamic model assumes a simplified form and
we show how to recursively design a dynamic feed-
back that completely linearizes the system equations.
This result allows to plan smooth rest-to-rest motions
using polynomial interpolation. As an erample, we
report the numerical results obtained for trajectory
planning of an RR2R robot.

1 Introduction

Robots with passive joints are underactuated me-
chanical systems, i.e., having N degrees of freedom
(dof’s) and M < N command inputs [1]. The dy-
namics of the N — M passive joints imposes second-
order differential constraints (which may even be
integrable [2]) that limit the feasible set of system
trajectories. Therefore, the trajectory planning and
associated control problems for robots with passive
joints are difficult and unsolved in the general case.

For robots with two dof’s and a single actuator, such
as the planar RR (a bar denotes a passive joint),
there exists no closed-form generator of feasible tra-
jectories. FEither a numerical planning strategy is
then used (e.g., based on time scaling [3]), or a feed-
back control approach is directly applied [4, 5].

Special attention has been paid to XYR planar
robots, having the first two actuated joints of any
kind (prismatic or rotational) and a third rotational
passive joint. In [6], a trajectory planning algorithm
is determined through the composition of transla-
tional and rotational motions of the last link, while
in [7] the existence of a linearizing (or flat) output
is used to solve the trajectory planning and track-
ing problems via dynamic feedback linearization. In
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both cases, the so-called center of percussion (CP)
of the passive link plays a central role.

More in general, one can check whether a Lagrangian
system with degree of underactuation equal to one
(i.e., N— M =1) is flat [8] and thus determine an
associated motion planning strategy.

There are barely planning or control results for
robots with N — M > 1 passive joints. In [9] it has
been shown that a chain of n coupled planar rigid
bodies subject to two cartesian force inputs at one
end is flat when each body is hinged at the CP of
the previous one, being the CP of the last body the
linearizing output. Interestingly, this can be seen
as the dynamic counterpart of the nonholonomic n-
trailer wheeled mobile robot with zero hooking [10].
In our terms, the above system is actually an XYnR
robot and one can try to generalize the trajectory
planning results holding for the XYR robot. In fact,
the algorithm of [6] has been adapted to the XYnR
robot in [11]. This method, however, needs to de-
compose the global motion into a long sequence of
translational and rotational phases for each passive
link. Moreover, this approach imposes limitations in
the design of a tracking controller for the piecewise
planned trajectory.

In this paper, we extend the approach presented
in [7] to the trajectory planning of XYnR robots
moving in the absence of gravity, under the same
hinging hypothesis of [9, 11]. In particular, we ex-
ploit the intrinsic recursive nature of the dynamic
system (the existence of special points whose accel-
eration is related to the orientation of the passive
links) in order to explicitly design a dynamic feed-
back linearizing law. In this way, we can determine a
single smooth robot motion that joins any initial and
desired robot configurations, using a simple polyno-
mial interpolation strategy. We also determine the
singularities that should be avoided during planning.
As a side but relevant result, after dynamic lineariza-
tion, it is easy to achieve stable tracking of a nominal
trajectory under perturbed conditions by using a sin-
gle linear feedback law.
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Figure 1: The generic XYnR underactuated robot

The paper is organized as follows. In Sect. 2, we de-
rive the general model of an XYnR robot with n pas-
sive joints moving on a horizontal plane (i.e., without
gravity), and then specialize it to the particular hing-
ing of passive links. An intrinsic dynamical property
of XYnR robots is presented in Sect. 3. This is used
in Sect. 4 in order to obtain dynamic feedback lin-
earization of the system in a recursive fashion, from
which the associated trajectory planning strategy di-
rectly follows. As an example, numerical results for
a rest-to-rest smooth motion of an RR2R robot are
reported in Sect. 5.

2 Dynamic model

A picture of an XY7nR planar underactuated robot is
shown in Fig. 1, where the first two actuated joints
(that may be prismatic or rotational) have not been
sketched.

Let ¢ = (z0,%0,0) be a set of generalized coordi-
nates, where (2o, yo) are the cartesian coordinates of
the first passive joint and 6 = (64,...,6,) are the
(absolute, i.e., w.r.t. the z-axis) orientations of the
n links associated to the passive joints. This choice
simplifies model analysis, capturing all the following
cases of interest: RRnR , RPnR, PRnR and PPnR.

Without loss of generality, we consider the accelera-
tions (az,ay) = (£0, §o) at the base of the first pas-
sive link as the (only) inputs to the system?, thus fo-
cusing our analysis on the dynamics of passive joints.

2.1 Dynamics of passive joints

We use the notation introduced in {12] to write the
equation of motion of the n passive joints. To this
end, for j = 1,2,...,n, let m;, d; and I; be respec-
tively the mass, the distance between the joint j and
the j-th link center of mass, and the moment of iner-

1By a preliminary nonlinear static feedback and a change
of coordinates one can always represent the dynamics of the
proximal actuated joints by means of the cartesian accelera-
tion (Zo, jjo) at the base of the first passive link [13].

tia of the j-th link. Moreover, let /; be the distance
between joints j and j+ 1, for j = 1,2,...,n — 1.
Assume that ; > 0 and d; > 0. For compactness,
let I;; be defined by

L (G<k)
be=4{ 4 (=k) (1)
0 (G>k)
and s; = sinf;, ¢; = cos6;, s;x = sin(f; — O),

cjx = cos(8; — 6x), 5,k = 1,...,n. The position
of the center of mass of the k-th link is given by

e = [ Zo +EZ:1 ljij ] '

2
Yo+ > 5 Liks; @)

The total kinetic energy T is given by
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Since the n joints are passive, the associated La-
grangian equations of motion can be written as

d (0T or .
d_t('éé:)_a_(h_o’ i=1,...,n. (4

Performing computations [13], the passive joints dy-
namics become

n

Z(Mikcikék + mylix (cifio — sido) + Miksikéﬁ) =0

k=1
(5)

for i =1,...,n. Note that it is My, = M.

2.2 Model simplification

Divide the -th eq. (5) by > p_; milic > 0. The
resulting (scaled) inertia matrix of the system is no
longer symmetric and the following quantities appear
in the dynamic equations: M;;/ (ZZ=1 mylix) = 15
for ¢ > j, and M;;/ (3 melix) = Xij for i < j,
from which it also is I; > A;;, 4,5 =1,...,n.

The center of percussion of the i-th link (CP;) is
I,+m d?

located on the link body at a distance K; =
from the ¢-th joint. If the mechanical design of the
robot is such that the (i + 1)-th link is hinged at
the CP; of the i-th link (with ¢ =1,...,n — 1), the
diagonal elements of the scaled inertia matrix assume
a special form. In fact, imposing l; = Kj, it is [13]:
Mii/ (%o, mulix) = L.
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For compactness, we shall denote by [, = K, the
distance of the CP, of the last link from joint n.

Under this hypothesis, egs. (5) can be rewritten as

> Uiy + 5i65) + 3 Nijlessby — 53;63)
i<i 3>
—8io +ciio=0  (6)

fori=1,...,n, or, in compact matrix form, as

Zo

B+BT | ° | +C.6 =0, (7
au y

where we set § = [01,...,0,]7 and 62 = [62,...,62]T.
Later on, we shall use also the factorxzatlon

Cu ()62 = S,(6,6)4.

3 Model analysis

We present a dynamical property of system (7). Con-
sider the points P; = (z;,¥:), (i = 1,2,...,n), whose
coordinates are

FIRH N H D SR

j>i

Points P; (¢ = 1,2,...,n) are related to the whole
configuration of the robot, but while P, and P,_; are
located on the kinematic structure of the robot, both
on the n-th passive link, all the others are external,
as shown in Fig. 2 for an XY5R robot. Note also
that P, coincides always with CP,. Differentiating
eq. (8) twice, we obtain the acceleration of point P,

=z (2] [2]9)

J<i

+ ;Aij([}jf]éj+[:§;]9;)_ ©

Solving for (&0, §jo) and substituting in eq. (6), it is

S,‘flf,‘ :cig}i, T = 1,2,...,77., (10)
so that the linear acceleration of each point P; is
oriented as the i-th link (i.e., by ;). We denote
point P; as link related acceleration point (LRAP).

LRAP’s present a backward recursive form, so that
(Z:,9:) can be written in terms of the acceleration
(ii-{-l,yiﬁ-l) of Pi+1 and the dynamics of 01‘_{.1 as

Yi Yit+ 1+101+1 —Cit10i41

(11)

or, conveniently, in terms of the CP,, acceleration as

[G)-[eJrgur [2255] oo

=

[m,] = [x’“} F(lig1—Aiit1) [S'HH’“ + c’+191+1} ,

Figure 2: LRAP’s of an XY5R robot

Finally, due to egs. (10) we can also write

T | _ | G|
5 [x]ee
where Ci(o) =i2+ g'jf can be evaluated recursively,
knowing &, and §,, and using eq. (11) or eq. (12).

i=n,n—1,...,2,1 (13)

4 Dynamic feedback linearization

The previous considerations about LRAP’s show
that, knowing the dynamics of the center of percus-
sion CP,, of the last link, one can determine recur-
sively the dynamics of all the passive joints of the
robot. In the following, we use this property of CP,,
to achieve full linearization of the system, performing
a dynamic extension of the state space in a recursive
fashion.

Substituting eq. (7) in eq. (9) for i = n, the acceler-
ation of CP,, can be written in compact form as

[:ﬂ (I — Buy LB BT,) [zg] (14)

+(Boul = BuuLB718.) 0 = 4 [zg] + 56

where I is the 2% 2 identity matrix and L = diag{l;}.
Rotating the acceleration inputs by 6,

. 1 I 1 .
Zo C1 —81 Zo . Zo
. = . =R . 15
[yoJ [31 C1:||:1y0:| 1[‘1/0]"( )
the second column of mafrix A = ARl is zero
(see [13]), so that matrix A is singular and the ac-
celeration of CP,, actually depends only on i, i.e.,

the acceleration input component along the first pas-
sive link. Recalling eq. (13), we can write the CP,

acceleration as
En | _ || A0 16
HEME (16)

where ¢ = V&2 + §i2 is a function of (8, 0) and the
input 1Zo, through egs. (14) and (15). Differentiating
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eq. (16), the (k + 2)-th derivative of CP,, position is

[k+2) (k)
Tn Cn
—R, 17

where we denoted by zlfl the i-th time derivative of
a function 2(t), R, represents the rotation matrix by
0., and we have set

CT(Lk) - C‘.qglk—l) iy 5(1;-1)

£ g1 g‘zczk—l)’ (18)

with C,(,O) evaluated as in eq. (16) and 5,(,0) = 0. The

introduction of the new variables C,(lk) involves a dy-

namic extension by an integrator on the input (,(Lk—l)
plus a static feedback that depends on the robot state
and on the added states C,(lo),..., ﬁk"l). On the
other hand, the definition of variable £$Lk) involves
a pure static feedback from the original robot state
and from the added states C,(LO), ey Q(,k—l). As a con-
sequence, the dynamic linearization algorithm adds
one integrator for each output derivative (starting
from the second one). At the 2(n + 1)-th derivative
(see eq. (17) with k = 2n), €™ is a function of the
original robot state, of the states (C,(,O), RN C,(f"“u)
added during the dynamic extension, and of the in-
put 4jp [13]. Therefore, introducing two new com-
mand inputs (ug,uy), we use the input-output de-
coupling law

)
C'Szzn T [ Uy ]
=R, 19
[ S‘Zn) n uy ( )
from which we obtain
[2(n+1)]
Th | ue
[ 2] ] = [ uy ] , (20)

i.e., two chains of 2(n + 1) input-output integrators.
Since the dimension of the original robot state is
2(n+2) and the added states ¢{¥) (k =0,...,2n~1)
are 2n, there is nothing left beyond the input-output
dynamics (20). We have thus obtained full lineariza-
tion and input-output decoupling of the system.

The designed dynamic linearizing feedback with in-
puts (u;,u,) and outputs (%o, §o) is thus

W =

k) = okt g g on—1
g - ﬂf) +6,¢F k=1,....2n-1
CT(?n) = Cplz + Sply
51(1.211) = —Splg + Cplly (21)

Yig = £(8,6,¢)

Yo = g(6,6,¢%,....¢2"V,E0)
o = ¢ 'Eo—s1 o

do = s1'do+catio

where f and g are the inverse functions that re-
turn the value of %y —obtained from CS,O) using
egs. (14-16)— and !{j; —determined from eq. (19)—
respectively, from the actual states of the robot,
from the states (&, ..., ¢82™ V) inside the dynamic
feedback law (21), and from the new inputs (ug,uy)

to the system.

Assume that a trajectory for the CP,, position out-
put has been assigned, together with its derivatives.
In order to calculate the mapping from the lineariz-
ing outputs to the extended system state, we will
take advantage of the recursive properties of the
LRAP’s. Note first that, from eq. (13), the (k+2)-th
derivatives of the position P; of the i-th LRAP is

[k+2] (k)

z; ¢;

: =R |G 22
[ ylo+2 } [ £® jl (22)

G = gD g
g = €5V 1ot

where

(29)

with Ci(o) given by egs. (11-13) and §§0) = 0, for
i=mn,...,1. Assuggested by eq. (11), the derivatives
(22) can be evaluated knowing the dynamics of 6;4;.
In particular, one can compute, for 6;, with backward
recursion ¢ = n,..., 1, the behavior of the following

variables
6; = atan2{sign(¢?)ii,sign(¢{?);}
Ci(k) = cix[ik+2]+siy£k+2] k>0
5’“’ = —sim£k+2]+ciy,[k+2] k>1 (24)
b= DU,

In order to proceed back recursively and determine
the dynamics of joint 6;_1, one needs also to evaluate

6 — 20,¢(Y
@

€3 _ 3¢®g, — 2662 — 3¢V,
¢

Il

6; (25)

o) (26)

required to compute (x[-k],yl[k]), (k = 2) [see eq. (12)).

1

Using eqs. (12) and (22-26), there is a mapping
from z,(t),yn(t) and their time derivatives up to
the 2(n + 1) degree to the states 6(t), #(t) and
C,(lo)(t),...,C,(,Z"-l)(t). Finally, using eq. (8) with
i = n and its first derivative, we map the linearizing
output also to zo(t), yo(t) and Zo(t), Yo(t), complet-
ing the state transformation.

From egs. (24-26) it is easy to see that the coor-
dinate mapping suffers from singularity problems.
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In particular, if the acceleration of the i-th LRAP
vanishes (i.e., Ci(o) = 0) at some time instant, the
derivatives 0,[k ,k > 0, will not be defined. Using
backward recursion, one can show [13] that C,-(O) #0,
foralli =n—1,...,1, provided that the acceleration
Cn ) of the CP,, output never vanishes during motion.
Therefore, if a trajectory for the CP,, is planned so
that |C(O)| # 0 during the whole motion, singularities
are always avoided.

5 Case study: the RR2R robot

We now show explicitly the linearizing feedback for
an RR2R planar robot with the first two joints
(X=Y=R) actuated and the last n = 2 passive joints.
Using eqs. (7), the dynamic model of the passive
joints is rewritten as

L6y + Migciafy — 8170 + crfo + M2si202 = 0
lic1261 + 1202 — so%o + cafjo — l1s126; = 0.

Particularizing egs. (21), the 4-th order dynamic lin-
earizing feedback is:

'50) - C(l)

'(1) _ C(Z) Eél)

D = i

§3) _ 2()4) B ézﬁés)
2()4) = CUg + SoUy
4y _  _
& = —Sug+ Cuy
1 - . o
lio = — (—————12 12€12 C(O) + l20§) + l10%
cz \ lz— X2
N lyc? .
o = 2 (g -0 - w -0y
j7e;
g = ¢ 152'0 -8 1:‘./.0
Yo = 81 Yo+ e 12170
in which
O G,
éz) - B C(O) + 20 C(l)
= 067 1307 1360, 12663
(0)
;i $12 2 2 ) . 812
G, = —-——= + 6 = ==
2 c12 (lz — A1z 2) et
1 s
9[3] = _ _12. Y
2 12 (01 ) Ci2 B

where we introduged the function p, with g =
Cg(l)/(lz — A12) — 202u812/c12, and defined:
~ 62)[is — 62(6; ~

1 .
® = —-—[2(6, 02)) + pb] — —u
Ci2

Figure 4: Trajectory planning: Céo)

U = 4606 + 66,¢57 + 3¢SV6; + 86,0,65) + 4635

s12 (l1 + A12¢12 ,(0) -2)
b= —| —"-="T"= g5 1.
c12 (11(12—)\12) 2 10

From the expressions of &y and 4y, singularities
occur when the third and fourth links become or-
thogonal (c12 = 0). Specifically, a motion starting or
ending with a configuration having the two passive
links orthogonal is not feasible.

We present the numerical results obtained for a rest-
to-rest motion from (xgs, Yos, 615, 92s) = (1,1,0,7/8)
[m,mrad,rad] to (Zog,%og,01g,029) = (1,2,0,7/4)
[m,m,rad,rad] in T = 10 s. The first two (actuated)
links have length l;; = 3.5 m and l;2 = 2.5 m, while
the last two (passive) links are uniform thin rods of
unitary mass and length. Therefore, Iy =l =2/3m,
and A1 = 2/7 m. We set C(o) C(O)

to avoid dynamic singularities, and (5, @) _
¢ = 1,2,3. The nominal trajectory is p]anned us-
ing 11-th order polynomials for the CP, coordinates
(z2,y2), by imposing the proper boundary conditions
(initial and final values of (z2, y2) and of their deriva-
tives up to the fifth order).

0.1, in order
(") =0

’

The acceleration inputs (Zg,§o) to the system are
shown in Fig. 3. The high values of (&g, o) around
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Asm motion
T

Fig'u're 6: RR2R arm motion

t = 8 s come from rapid rotations of the passive
joints, and correspond to a decrease of Céo) (see
Fig. 4). However, the (positive) evolution of (,'2(,0) is
always bounded away from zero and dynamic singu-
larities are thus avoided Vt = [0,T]. A stroboscopic
view of the cartesian motion of the two passive links
is shown in Fig. 5, while Fig. 6 shows the motion of
the complete arm. Note that the passive links never
become orthogonal during the trasfer.

6 Conclusions

We have considered the problem of smooth tra-
jectory planning for XYnR planar underactuated
robots, with n passive rotational joints and in the
absence of gravity. The system has been fully lin-
earized through dynamic feedback under the assump-
tion that each passive joint is hinged at the center of
percussion of the previous passive link, and exploit-
ing the recursive acceleration properties of the sys-
tem. Rest-to-rest trajectory planning is then easily
carried out, suitably avoiding dynamic singularities.

Current work involves inclusion of gravity and tra-
jectory tracking problems. We are also exploring
the modifications needed when removing the special
hinging assumption at the passive links, at least for
the case of n = 2 passive joints.
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