Proceedings of the 2002 IEEE/RSJ
Intl. Conference on Intelligent Robots and Systems
EPFL, Lausanne, Switzerland » October 2002

Probabilistic Motion Planning for Redundant Robots
along Given End-Effector Paths

Giuseppe Oriolo Mauro Ottavi Marilena Vendittelli

Dipartimento di Informatica e Sistemistica
Universita di Roma “La Sapienza™
Via Eudossiana 18, 00184 Roma, Italy

{oriolo,venditt}@dis.uniromal.it, mauroottavi@libero.it

Abstract

We consider the problem of planning collision-free
motions for a redundant robot whose end-effector
must travel along a given path. Although collision
avoidance is one of the main reasons for introducing
kinematic redundancy in manipulators, the planning
methods so far proposed for this particular problem
are neither efficient nor complete. In this paper, we
introduce some algorithms that may be considered as
an extension of probabilistic planning techniques to
the problem ot hand. All the algorithms are based on
the same simple mechanism for generating random
samples of the configuration space that are compatible
with the end-effector path constraint. Ezperimental
results illustrate the performance of the planners.

1 Introduction

With respect to conventional robots, redundant
robots exhibit an increased dexterity that allows to
pursue additional objectives [1], among which the
most important is obstacle avoidance. In many ap-
plications, the end-effector must trace a given path to
complete the task specified by a higher-level module
(e.g., for laser cutting, spray painting or inspection).
A lower-level planner is then in charge of generating
joint motions that realize the end-effector path while
guaranteeing that the manipulator links avoid colli-
sion with workspace obstacles or between themselves
(self-collision). We refer to this problem as Motion
Planning along End-effector Paths (MPEP).

Most researchers have attacked the MPEP prob-
lem by formulating it as a special case of redun-
dancy resolution and using either kinematic control
schemes [2] or optimal control techniques [3]. Both
these approaches work at the velocity level, first us-
ing a closed-form for the inverse differential kinemat-
ics parameterized by the available degrees of free-
dom, and then choosing the parameters in such a
way that some configuration-dependent criterion is

0-7803-7398-7/02/$17.00 ©2002 IEEE

improved (in kinematic control) or optimized (in op-
timal control). For collision avoidance, obstacle dis-
tance functions are commonly used as criteria. How-
ever, none of the above solutions to the MPEP prob-
lem can be considered to be satisfactory. In fact,
kinematic control schemes are based on local opti-
mization techniques (such as the projected gradient
method) and may fail to solve even simple problems
if local constrained minima appear; while an optimal
control formulation of MPEP leads to a nonlinear
TPBVP whose solution can only be seeked (without
guarantee of success) via numerical techniques.

On the other hand, the motion planning literature of
recent years has been dominated by probabilistic al-
gorithms, that can efficiently plan point-to-point mo-
tions in high-dimensional configuration spaces guar-
anteeing a property called probabilistic complete-
ness (i.e., the probability of finding a solution to
a solvable problem approaches one as the planning
time increases). Many techniques belonging to this
family have been proposed, ranging from multiple-
query planners which build a connectivity roadmap
of the free configuration space [4] to single-query
planners that aim at representing only the portion of
this space useful for a specific instance of the prob-
lem [5, 6]. While the basic tool of all these methods is
the random sampling of the free configuration space,
they differ in the exploration strategy as well as in
the use of various heuristics to guide the search.

The objective of this paper is to show that the same
ideas can be exploited to devise planning algorithms
for the MPEP problem. Probabilistic planners for
robots with closed kinematic chains have been pro-
posed in {7, 8]; although the problem therein consid-
ered is related to MPEP, the developed methods do
not directly apply to its solution. The pose-to-pose
planning problem (without end-effector path con-
straint) for redundant robots was considered in [9).

The paper is organized as follows. In the next sec-
tion, we give a precise formulation of the MPEP

1657

problem for redundant robots and clarify what we
consider to be a solution. Then, the proposed plan-
ners are described, isolating first the basic tools com-
mon to all of them. Experimental results for prob-
lems of increasing complexity are finally presented to
illustrate the performance of the algorithms.

2 Problem Formulation

Consider a fixed-base redundant manipulator with
n joints whose end-effector task is specified by m
variables (position and possibly orientation). The
direct kinematics is expressed as

p= f (Q)’ (1)
where p € IR™ is the end-effector pose and ¢ € R"
is the joint vectorl. A desired end-effector path p(o)
is assigned, with o € [0,1] the path parameter. For
the problem to be well-posed, we assume that:

plo) e T, Voel0,1],

where 7 C IR™ is the dextrous task space, defined as
the set of end-effector poses that can be realized by
oo™ ™ joint configurations?. The dextrous workspace
W, i.e., the positional part of 7 (a subset of R? or
R? depending on whether we are considering planar
or spatial motions) is populated by obstacles.

The MPEP problem is to find a joint path g(o) sat-

isfying
p(o) = f(g(0)), Vo €[0,1],
and such that no collision occurs between the robot
linkage and the obstacles along the path.
Note the following points:

e Even if the end-effector path is by assumption
contained in 7, a solution to the MPEP problem
may exist or not depending on the particular
obstacle placement, i.e., on the connectivity of
the portion of the free configuration space that
is compatible with the path constraint.

e In view of the above formulation, and partic-
ularly of the synchronization between the end-
effector and the joint path, the robot is not al-
lowed to perform self-motions (i.e., joint mo-
tions that do not move the end-effector) along
the path, unless they are already provided for by
the end-effector path specification by setting:

p(0) = p(0n),

e Depending on the application, an initial joint
configuration ¢(0) such that p(0) = f(g(0))
may or may not be assigned. For example, the

Vo € [o1,09].

lIn general, both p and q are properly defined over mani-
folds, which are only locally diffeomorphic to euclidean spaces.
In this paper, we consider euclidean spaces for simplicity of ex~
position, but all our developments apply to the general case.

2T does not contain its boundary, which includes the un-
avoidable singularities realized by a single configuration.

first may be the case when the task trajectory
is planned on the basis of sensory information
gathered at the current robot posture. On the
other hand, the determination of ¢(0) will be
typically left to the planning algorithm when
the end-effector task is assigned off-line. The
first version of the problem is clearly more con-
strained (and thus easier to solve, provided that
a solution exists) than the second.

e The above formulation may be immediately ex-
tended to account for the existence of joint limits
and/or self-collision avoidance.

We seek a solution to the MPEP problem in the form
of a sequence of collision-free joint configurations:

{Q(UO),Q(Ul)a o 7Q(03~1)aQ(Us)}a 00 =0,0,=1,
with the ;s equally spaced and p(g;) = f(g(0;)).
The integer s is called path sampling. A continuous
joint path is derived from the sequence by generat-
ing local paths via interpolation. Here, we consider
linear interpolation between configurations. While
this may lead to violations of the end-effector path
constraint between successive configurations, the en-
tity of such violation can be reduced at will by in-
creasing the sampling s, provided that the configu-
rations are sufficiently ‘close’. In any case, interpo-
lation schemes that account for the path constraint
may be easily designed, e.g., by using pseudoinverse
control {2]. As for guaranteeing collision avoidance
along local paths, this will be delegated to the colli-
sion checking algorithm (more on this in Sect. 3.1).

3 Planning Algorithms

This section describes the various algorithms we have
developed for the solution of the MPEP problem.
Although they are conceptually different, they make
use of the same tools, i.e., two procedures which re-
spectively perform random sampling of self-motion
manifolds and collision checking. Before presenting
the planning algorithms, we shall therefore discuss
in some detail these procedures.

3.1 Basic tools

Under the assumptions of the previous section, each
end-effector pose p € 7 can be realized by oo™ ™
joint configurations, which represent the so-called
self-motion manifold3. The algorithms to be pro-
posed in the next section are all based on the same
idea, i.e., sampling the self-motion manifold of each
pose p(o;) of the sequence in a random fashion. Our
sampling mechanism is essentially the same used
in [8] for guaranteeing the closure constraint.

Reorder and partition the joint vector as g = (¢%,q"),
where ¢® € IR™ are the base joints and ¢" € R*™™

3To be precise, the inverse image of any point p € 7 is in
general a finite number of disjoint manifolds [10}.

1658

are the redundant joints. Assume that the value of
the redundant joint variables ¢f = ¢"(o;) is ran-
domly chosen (keeping into account the possible ex-
istence of joint limits). For each value of p; = p(0;),
t=0,...,s, there exist a finite number of base joint
placements g? = ¢®(0;) such that p; = f(q?,q]), com-
puted by inverting the direct kinematic map (1) of
the considered manipulator with ¢" = ¢7. For exam-
ple, if m = 2 (planar robots with end-effector posi-
tioning task), we have at most 2 possible base joint
placements (the so-called elbow up/elbow down pos-
tures) for each choice of the redundant joint values.
Clearly, depending on the chosen value for ¢f, it may
happen that no value of g exists which is compatible
with the end-effector pose p;.

According to the above strategy, the procedure
RAND_CONF that generates a random sample of
the self-motion manifold corresponding to p; is de-
scribed in pseudocode as follows.

RAND_CONF (p;, gbias)
¢; < RAND_RED(gbjas)
g? — INV KIN(p;, ¢7, gbias)
if INV_KIN_FAIL
Return RAND_CONF_FAIL
else Return ¢; — (¢7,q})

An additional optional argument gy;,5 appears in the
procedure. When gpiss is present, RAND_CONF
returns (if successful) a configuration ¢; such that
p; = f(¢;) and ||gi— guias]lco < d, where d is the maxi-
mum allowed displacement for each joint. This corre-
sponds to biasing with gpjas the uniform distribution
characterizing the randomly generated samples. In
particular, INV_KIN takes as input the pose p; and
the redundant joint variables ¢} generated through a
limited random perturbation of gf;,., and seeks an in-
verse solution g? for the base joints satisfying the dis-
placement constraint. If no such solution exists (ei-
ther because no inverse solution exists for the chosen
g; or because all solutions violate the displacement
constraint) the boolean variable INV_KIN_FAIL be-
comes true. If gpias is not present, the generated
sample of the self-motion manifold is not biased by
any configuration. Finally, when RAND_CONF is
invoked with no arguments, a completely random
configuration (in general, not belonging to any self-
motion manifold) is generated.

The reason for biasing the random generation of g;
with a given configuration gyas is that all the algo-
rithms to be presented work in an incremental fash-
ion, trying to build a connectivity roadmap from the
initial end-effector pose. When a sample configura-
tions ¢; on the self-motion manifold corresponding to
p; has been randomly generated, it is used as gp;as for
the next self-motion manifold in order to guarantee
that g;+; will be sufficiently close to ¢;. As discussed

at the end of Sect. 2, this will imply that the end-
effector constraint violation between ¢; and ¢;11 due
to the use of linear local paths is reduced.

The second procedure used by all algorithms is
NO_COLL. When invoked with a single argument
gi, it performs a collision check (possibly including
self-collisions) and returns true if g; is safe. When in-
voked with two arguments (g;, g;), it performs a col-
lision check on both configurations as well as on the
linear path joining them. In particular, our function
makes use of an incremental collision checker, i.e., an
algorithm that, if ¢; is found to be safe, computes an
€ such that any configuration on the line connecting
g; to ¢; and within euclidean distance € from g; is
certainly safe. Hence, the fact that successive con-
figurations built by RAND_CONF are never further
than dy/n implies that the linear path from g; to g;
is certainly safe whenever dv/n < ¢, thus optimizing
the performance of the collision checker.

3.2 Greedy Planner

The core of the first algorithm is the STEP function
which, given two generic poses p;,px (0 <i <k < s)
belonging to the end-effector sequence and a con-
figuration ¢; on the self-motion corresponding to
pi, tries to build a (sub)sequence of configurations
{@i,...,qx} connecting p; to px and such that colli-
sions are avoided along the path. If successful, STEP
returns the sequence in the variable PATH.
forj=itok—1do
l « 0; Succ « 0;
while | < MAX_SHOTS and !Succ do
gj+1 — RAND_CONF(p;1,95);
if IRAND_CONF_FAIL and NO_COLL(g;,gj+1)
Succ « 1; ADD_TO_PATH(g;+1);
le—1+4+1;
if I = MAX_SHOTS
Return STEP_FAIL
else
Jje—i+h
Return PATH
MAX_SHOTS represents the upper bound to the
number of calls to RAND_CONF(p;41,q;) for each
end-effector pose p;. If RAND_CONF succeeds in
finding a configuration g;; realizing p;;; and suffi-
ciently close to g;, the linear path between ¢; and
gj+1 is verified to be collision-free; in this case,
gj+1 is added to the current sequence through the
ADD_TO_PATH function. If the maximum number
of trials of RAND_CONTF is exceeded, the procedure
returns STEP _FAIL.
A direct approach to the solution of the MPEP prob-
lem is to devise a greedy algorithm based on iterated
calls to the STEP function with pg, ps as subsequence
extrema and randomly generated gp.

1659

GREEDY algorithm

Je0;

while j < MAX_ITER and STEP_FAIL do
go — RAND_CONF(po);
STEP(pro; qo, S);
Je=Ji+1

if ISTEP_FAIL
Return PATH

else
Return FAILURE

Given the initial pose py on the end-effector path,
RAND_CONF(po) generates an initial configuration
go as described in the previous section (if failure is
returned, RAND_CONF(py) is called again until a
configuration is generated). The function STEP is
then invoked to search for a sequence of joint config-
urations guaranteeing collision-free motion while the
end-effector moves from pg to ps. In case of success-
ful search, the path found by STEP is returned as a
solution. If STEP fails, a new initial configuration
qo is generated and STEP starts a new search from
go, provided that the maximum number of iterations
MAXITER has not been exceeded.

GREEDY implements a depth-first search, as for any
initial configuration gy a sequence of random con-
figurations (one for each self-motion manifold, and
each biased by the previous one) is generated that is
discarded if STEP does not succeed in reaching the
next self-motion manifold. Experiments have shown
that this planner is very effective in dealing with easy
problems (see Sect. 4), essentially due to the end-
effector path constraint, which greatly reduces the
admissible internal motions of the robot once a g
has been chosen. Still, the only possible way to back-
track for this planner is to generate a new qg, and this
may prove inefficient in more complex problems.

3.3 RRT-Like planner

To overcome the limitations of the depth-first strat-
egy used by GREEDY, one may try to generate
more than one random sample for each self-motion
manifold and to connect configurations on successive
manifolds by local paths. This exploratory behavior
can be achieved by adapting the notion of Rapidly-
exploring Random Tree (RRT) to the problem at
hand, as shown below. The reader is referred to [5)
for a detailed description of the original concepts.
Our algorithm tries to expand a tree 7 rooted at qo,
a random sample of the pg self-motion manifold, un-
til the self-motion manifold of p; is reached. If the
expansion fails a certain number of times, a differ-
ent go is generated and another tree is built, until
the maximum number of iterations is exceeded. If a
tree connecting pg to p, is found, a solution path is
extracted by graph search techniques.

RRT_LIKE algorithm
Jj+0;
while ppew! = ps and j < MAXITER do
go — RAND_CONF(po);
CREATE(r, q0);
i — 0
repeat
Pnew — EXTEND_LIKE(T);
1—1t+1;
until ppew = p, or i = MAX_EXT
Je—it+tl
if prew = ps
Return 7
else

Return FAILURE
The procedure EXTEND_LIKE is defined as follows.

EXTEND_LIKE(T)
Grand — RAND_CONF;
(gnear, k) — NEAR NODE(q;and, T);
qr’;ew — NEW-CONF(qgear’Qra.nd);
qgew A INV—KIN(pk+11 q;ewa Qnear)§
Gnew (q,',ew, qgew);
if 'INV_KIN_FAIL and NO_COLL(¢near; gnew)
ADD_NODE(T, gnew);
ADD _EDGE(T, gnear; qnew);
Return pr41
else
Return NULL

First, RAND_CONTF is called with no arguments to
find a random configuration grand = (@804 @ana)s
and NEAR_NODE identifies gne.r among the nodes
in 7 as the one closest to gang With respect to
the redundant joint variables only, returning also
the index k of the end-effector pose p; to which
Gnear Was associated. Then, NEW_CONF computes
¢hew by displacing g7, of a stepsize dy/n along
the line connecting ¢f.,. to ¢7,.4 (see Fig. 1), and
INV KIN is invoked in order to generate a g%, such
that pry1 = F(@8ew, @hew) 2nd the displacement con-
straint between gnear and gnew is satisfied. At this
point, the linear path joining gnear t0 gnew can be
checked for collision; if the result is negative, 7 is
expanded and p;4; is returned.

3.4 Variations on RRT_LIKE

The expansion of the tree 7 toward randomly se-
lected directions confers to the RRT_LIKE planner a
definite exploratory attitude which, for the MPEP
problem, could prove to be inefficient due to the
strong constraint represented by the assigned end-
effector path. The performance of RRT-based plan-
ners can be considerably improved if the tree ex-
pansion is guided by a greedy heuristic, as shown
in [6]. Unfortunately, the approach presented therein
does not apply directly to our problem because a

1660

Figure 1: The NEW_CONF procedure taking place
in R*™™, the redundant joint space. The integer
k associated to each node identifies the end-effector
pose py, of which the node is a preimage.

goal self-motion manifold is given here rather than
a goal configuration. However, it is still possi-
ble to modify the RRT_LIKE planner by alternat-
ing depth-first searches with expansion steps. This
can be done by invoking the STEP function right
after the EXTEND_LIKE operation has been ex-
ecuted. Depending on the arguments passed to
STEP, two different algorithms are obtained, called
RRT.CONNECT_LIKE and RRT_GREEDY .LIKE.

In the RRT_.CONNECT_LIKE planner, STEP is in-
voked with ppeyw,ps as subsequence extrema. In
other words, when a new configuration gy, is added
to 7, the algorithm tries to reach the p; self-motion
manifold starting from the self-motion manifold cor-
responding to gpeyw. This can also be considered as a
variation of the GREEDY algorithm, the difference
being that in the case of STEP_FAIL the search is
not resumed from a new gg on the self-motion mani-
fold corresponding to pg, but instead from the newly
added configuration gpe,. This choice gives to the
planner a sort of backtracking property.

In the RRT_GREEDY LIKE planner, the poses
passed to STEP are p;,p;+1, where p; is the clos-
est pose to p,; reached so far by the algorithm. The
algorithms tries therefore at the same time to explore
the portion of configuration space consistent with the
end-effector path constraint and to approach the goal
self-motion manifold through a greedy search.

Indeed, it is possible to conceive another variation
of RRT_LIKE in which STEP is invoked twice after
EXTEND_LIKE, first as in RRT_.CONNECT_LIKE
and then as in RRT_.GREEDY _LIKE. We call this
last planner RRT_.GREEDY+CONNECT.

4 Experiments

In this section, we report some planning experi-
ments for a planar robot with six revolute joints,
whose task is to move the end-effector along a given
positional path (m 2, n = 6). All the plan-
ners use the same partition of the joint vector, i.e.,
¢ = (q1,...,q4) and ¢* = (gs,gs). The algorithms

1661

have been implemented in C on a 900Mhz PC and
integrated in the Move3D software development kit
(http://www.kineocam.com), where collision detec-
tion is realized using the V-Collide library.
Experiments have shown that the GREEDY plan-
ner is always more effective than the others for rel-
atively simple queries. A typical example is shown
in Fig. 2, where the end-effector must follow an arc
of circle. The planners’ performance (averaged on 10
realizations of the planning process) is summarized in
Tab. 1, including the number of collision checks dur-
ing the search. Note that GREEDY requires more
checks than RRT-based planners, whose performance
is however hindered by the NEAR_NODE operation
within EXTEND LIKE.

The second experiment of Fig. 3 is more difficult
than the first, as the robot has little space to ma-
neuver while moving the end-effector along a circle.
As shown by Tab. 2, GREEDY behaves again satis-
factorily, but RRT_GREEDY achieves a better per-
formance. The results of the pure RRT planner are
quite poor, essentially because the tree expansion to-
wards unexplored regions of the configuration space
proves to be useless in view of the limited variation
range for the redundant joint variables.

Finally, the results obtained for a difficult query
are illustrated in Fig. 4 and Tab. 3. Here, the
robot must move the end-effector inside a nar-
row opening between two obstacles. The perfor-
mance of the GREEDY planner is in this case much
worse, due to the depth-first strategy. The best re-
sults are obtained by RRT_CONNECT+GREEDY,
which combines the breadth search typical of
RRT_.CONNECT_LIKE with a greedy heuristic.

5 Conclusions

With reference to the problem of planning collision-
free motions for a redundant robot moving along
a given end-effector path, we have presented some
single-query probabilistic planners based on current
ideas in the motion planning literature. Exper-
imental results have shown that simple instances
of the problem can be solved more efficiently if a
greedy heuristic is used, whereas breadth-first search
is needed to deal with more complex problems.

Among the aspects that could not be discussed here,
we mention the problem of selecting the base vari-
ables for the random sampling strategy and the
probabilistic completeness of the algorithm, which
however can be established along the same lines of
[4, 5, 8] provided that finite iteration bounds such
as MAX_ITER are not enforced. Also, although our
discussion was focused on fixed-base robots, it would
be interesting to apply these techniques to kinemati-
cally redundant mobile robots such as nonholonomic
mobile manipulators.

Figure 2: First experiment

| Planner I Time(s) | # of CC
GREEDY 0.13 96.8
RRT_LIKE 0.58 52
RRT.CONNECT_LIKE 0.4 107
RRT.GREEDY_LIKE 0.53 90
RRT_GREEDY+CONNECT 0.54 110

Table 1: First experiment: Planner performance

Figure 3: Second experiment

I Planner Tl Time(s) [# of CC |
GREEDY 11.2 13477
RRT.LIKE 75.8 53813
RRT.CONNECT_LIKE 16.6 13689
RRT_GREEDY_LIKE 10.0 10264
RRT_.GREEDY+CONNECT 15.5 13426

Table 2: Second experiment: Planner performance

References

[1} Y. Nakamura, Advanced Robotics: Redundancy and

Optimization, Addison-Wesley, 1991.

[2] B. Siciliano, “Kinematic control of redundant robot
manipulators: A tutorial”, J. of Intelligent and

Robotic Systems, vol. 3, pp. 201-212, 1990.

Figure 4: Third experiment

Planner]I Time(s) | # of CC
GREEDY 107.0 296836
RRT.LIKE 45.9 101620

RRT.CONNECT_LIKE 33.5 58200
RRT_GREEDY.LIKE 22.9 55828
RRT_GREEDY+CONNECT 16.5 36058

Table 3: Third experiment: Planner performance

[3] D.P. Martin, J. Baillieul, and J.M. Hollerbach (1989),

[4]

(6]

8]

(9]

(10}

1662

5

“Resolution of kinematic redundancy using optimiza-
tion techniques,” IEEE Trans. on Robotics and Au-
tomation, vol. 5, pp. 529-533, 1989.

L. Kavraki, P. Svestka, J. C. Latombe, and
M. H. Overmars, “Probabilistic roadmaps for path
planning in high-dimensional configuration spaces,”
IEEE Trans. on Robotics and Automation, vol. 12,
no. 4, pp. 566-580, 1996.

S. M. LaValle, “Rapidly-exploring Random Trees: A
new tool for path planning,” Tech. Rep., Computer
Science Dept., Iowa State University, 1998.

J. J. Kuffner and S. M. LaValle, “RRT-Connect: An
efficient approach to single query path planning,”
2000 IEEE Int. Conf. on Robotics and Automation,
pp- 995-1001, 2000.

J. H. Yakey, S. M. LaValle, and E. L. Kavraki, “Ran-
domized path planning for linkages with closed kine-
matic chains,” 1999 IEEFE Int. Conf. on Robotics and
Automation, pp. 1671-1677, 1999.

L. Han and N. Amato, “A Kinematic-Based Prob-
abilistic Roadmap Method for Closed Chain Sys-
tems,” fth Int. Work. on Algorithmic Foundations of
Robotics, pp. 233-246, 2000.

J. M. Ahuactzin and K. K. Gupta, “The kinematic
roadmaps: A motion planning based global approach
for inverse kinematics of redundant robots,” IEFE
Trans. on Robotics and Automation, vol. 15, no. 4,
pp. 653-669, 1999.

J. Burdick, “On the inverse kinematics of redundant
manipulators: Characterization of the self motion
manifolds,” 1989 IEEE Int. Conf. on Robotics and
Automation, pp. 264-270, 1989.

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:
	Intentional blank: This page is intentionally blank

