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Abstract—We address the time-optimal, rest-to-rest motion
problem under bounded control for a two-mass system intercon-
nected by a visco-elastic joint. A complete geometric solution has
recently been found in [1] for the purely elastic case, exploiting
symmetries that are lost with the introduction of viscous damping.
A semi-analytic solution is presented here by decoupling the
fourth-order problem into its rigid body and visco-elastic second-
order subproblems and imposing then motion coordination of
the two subsystems. The presented numerical results confirm the
optimality of the obtained bang-bang solutions, all having three
control switchings.

Index Terms—Time-optimal control, visco-elastic joint, motion
coordination, robot control

I. INTRODUCTION

The diffusion of lightweight collaborative robots with com-
pliance at the joints [2] has lead to several studies aimed at
optimizing perfomance in terms of speed and/or torque, while
preserving the original operational safety [3]. Different criteria
have been considered in an optimal control framework in case
of variable stiffness actuation, e.g., maximization of the stored
potential energy [4] or of the peak link velocity [5].

Less attention has been paid to the problem of transferring
in minimum time a robot with elastic joints between two rest
configurations under a maximum torque bound. To get a better
insight, most of the literature has considered first the single-
input, linear case. In [6], the safe brachistochrone problem was
presented in particular for a two-mass system connected by a
transmission of constant elasticity. The time-optimal problem
is solved numerically under a bound on the motor input force
and a safety-rated link velocity limit. An analytic solution
to a similar problem was found in [5], assuming however
as system input the motor velocity rather than the force.
In [1], the complete time-optimal solution under an input force
bound was determined in closed form, following a geometric
approach in a suitable phase plane and exploiting the relevant
symmetric properties of the problem. The optimal solution is
of the bang-bang type with a single switching at the midpoint,
when the task matches the natural motion of the mechanical
system, or with three switchings otherwise (two of which are
placed symmetrically w.r.t. the motion midpoint).

In this paper, the result in [1] is extended to visco-elastic
joints, namely when the two masses are connected by a spring
of constant stiffness that dissipates energy proportionally to the
speed of spring deformation, i.e., in a viscous fashion. This
damping effect destroys the symmetry of the problem.
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Fig. 1. Schematic representation of a visco-elastic joint.

A semi-analytic solution approach is presented that i) uses
a transformation to decouple the system into its rigid and
visco-elastic parts; ii) determines a parametrized class of bang-
bang solutions in closed form for the rigid part; and iii) finds
numerically the time-optimal input command by searching
within the previous class of bang-bang solutions, imposing
a coordinated motion to the visco-elastic subsystem.

II. PROBLEM STATEMENT

Consider two masses b and m, representing respectively the
motor and the link, connected by a spring with stiffness k and
viscous damping d. A bounded input command u is applied to
the mass b. The dynamic equations of this linear mechanical
system are

m q̈ + d (q̇ − θ̇) + k (q − θ) = 0

b θ̈ + d (θ̇ − q̇) + k (θ − q) = u.
(1)

The model is composed by two coupled differential equations.
However, introducing a change of coordinates from (θ, q) to
(r, φ) defined by

r =
mq + b θ

m+ b
φ = θ − q, (2)

the dynamics decouples in the following two second-order
subsystems (both driven by u):

M r̈ = u (3)
µ φ̈+ d φ̇+ k φ = ν u, (4)

where M = m+b is the total mass, µ = mb/M is the reduced
mass (since µ < min{m, b}), and ν = m/M . We refer to
eq. (3) as the Center of Mass (CoM) or rigid body subsystem.
Furthermore, equation (4) involves the joint deformation φ and
can be normalized as

φ̈+ 2ζφ̇+ ω2φ =
u

b
, (5)

where the natural frequency ω =
√
k/µ and the damping

coefficient ζ = d/2µ (with d > 0) of an asymptotically
stable second-order dynamics appear. We refer to eq. (5) as
the Reduced Mass (RM) or visco-elastic subsystem.
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Defining as state x = (r, φ, ṙ, φ̇), the state-space represen-
tation of the system (3),(5) is

ẋ = Ax+Bu, (6)
where

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 −ω2 0 −2ζ

 B =


0
0

1/M
1/b

 .

For the linear system (6), the rest-to-rest minimum-time
control problem is formulated as [7]

min
|u|≤1

∫ tf

0

dt = tf , (7)

with boundary conditions at the initial time t = 0 and at the
free final time t = tf given by

x(0) = 0 x(tf ) =
(
rf 0 0 0

)T
, (8)

where rf it the desired displacement to be realized. Note that
the input bound on u is normalized in (7). In the following,
we assume without loss of generality that rf > 0.

Being the pair (A,B) in (6) controllable and having the
matrix A all eigenvalues with non-positive real part,

σ(A) =
{

0, 0,−ζ ±
√
ζ2 − ω2

}
, (9)

the optimal control problem (7),(8) has a solution for any finite
final state (see [8], Theo. 9.12, p. 288). The optimal solution
can be obtained using Pontryagin maximum principle [7], with
the optimal control law given by

u∗(t) = −sign{λ∗T(t)B}, (10)

where λ∗(t) is the costate solution of the differential equation

λ̇ = −ATλ, (11)

for suitable boundary conditions at t = tf . While we could
try to find the unknown constants of integration in order to
determine λ∗(t), the fourth-order nature of the system makes
this approach somewhat cumbersome. On the other hand, we
have the following result on time-optimal control problems.

Theorem 1. For a linear, controllable and single-input system,
if all the eigenvalues of A have non-positive real parts, then
there exists always a unique time-optimal solution that is
nonsingular and the optimal control is of the bang-bang type.
Moreover, if all the eigenvalues ofA are real and non-positive,
then there are at most n−1 switchings, being n the dimension
of the system state.

Proof. See [8], Coroll. 9.13 and Theo. 9.14, pp. 288-289.

Thus, based on Theorem 1, one can seek the optimal control
law in the form of a piecewise constant function over n
intervals, having n − 1 switchings. For rf > 0 and with a
normalized input, this law has the general structure

u∗(t) =

{
+1 [0, t1] ∪ . . . ∪ (ti−2, ti−1] . . .

−1 (t1, t2] ∪ . . . ∪ (ti−1, ti] . . .

}
∪ (tn−1, tf ].

(12)

In the present case, the eigenvalues of A are listed in (9).
Depending on the mass, stiffness and damping data, one
may have ζ ≥ ω, with all eigenvalues being real and non-
positive (two always coincident at the origin, and the other
two coincident only for ζ = ω), or ζ < ω, with a pair
of complex conjugate eigenvalues with strictly negative real
part. In the first case, we are guaranteed to have at most
n− 1 = 3 switchings, while for the complex case we cannot
infer anything a priori on the number of switchings.

Our solution approach will consider all cases with up to
three switchings, computing the corresponding distinct switch-
ing instants ti and the final time tf for the CoM subsystem (3)
in a parametrized form, and imposing then a coordinated
motion, by verifying the effect of these solutions on the visco-
elastic RM subsystem (5).

III. SWITCHING STRATEGY FOR THE RIGID BODY

The CoM subsystem (3) is a scaled double integrator and
its time-optimal rest-to-rest motion requires just one switching
at t1 = tf/2 [7]. Integrating (3) from r(0) = ṙ(0) = 0 yields
for the position

r(t) =


1

2M
t2 0 ≤ t ≤ t1

− 1

2M

(
t2 − 4t1t+ 2t21

)
t1 ≤ t ≤ tf .

(13)

Setting r(tf ) = rf gives the optimal time tf = 2
√
Mrf .

Relaxing the time-optimality for the CoM subsystem, one
can still reach the final goal rf with zero velocity by con-
sidering multiple switchings in a bang-bang input profile. To
generalize (13), we consider a generic number k of switchings
at the time instants t1 < t2 < . . . < ti < . . . < tk. The
expression of the CoM position during the last time interval
[tk, tf ] will be given by

r(t) =
(−1)k

2M

(
t2 + (−1)k−1

k∑
i=1

(−1)itit+ (−1)k
k∑

i=1

(−1)it2i

)
.

(14)
When increasing the number of switchings, one also obtains a
longer motion time tf . Thus, we should proceed incrementally
in order to keep this time as short as possible. Further, all
extra switchings other than the first one are redundant for the
time-optimality of the CoM motion, but possibly needed for
the coordinated motion of the visco-elastic subsystem. Note
that for each extra switching we introduce a parameter that
becomes a degree of freedom for the following coordination
problem. It turns out that these parameters will be the key
to solve our problem. Consider now more explicitly the two
cases of k = 2 and k = n− 1 = 3 switchings.

A. Two Switchings
We introduce a positive parameter α and define the instant

of the first switching as a fraction of the final time tf . Using
geometric reasoning on the piecewise linear time profiles of
ṙ(t), the second switching is also identified as a function of
the parameter α. One obtains:

t1 =
1

α
tf t2 =

α+ 2

2α
tf , (15)
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with t2 > t1 for any α > 0. The corresponding final time is

tf = 2α

√
1

4α− α2

√
Mrf . (16)

In order to have a real tf and t2 < tf , the parameter should
be limited as α ∈ (2, 4). Then, tf in (16) will always be larger
than the final time with one switching only, as expected.

B. Three Switchings

With three switches, we introduce two positive parameters
α and β that characterize the first two switchings:

t1 =
1

α
tf t2 =

1

β
tf , (17)

with α > β. As before, with straightforward but tedious
computations one obtains for the third switching

t3 =
2α+ αβ − 2β

2αβ
tf , (18)

and for the final time

tf = 2α

√
β

αβ(α+ 4) + 4α(2− α)− 8β

√
Mrf . (19)

Also in this case, there will be limitations on the admissible
values of α and β, as derived from the defining inequalities
0 < t1 < t2 < t3 < tf . More on this later.

IV. COORDINATION OF THE VISCO-ELASTIC DYNAMICS

Also for the RM subsystem, we can express the solution for
the deformation φ(t) as a piecewise function over successive
intervals during which the constant input command is u = ±1.
In particular, for the case of two real and distinct negative
eigenvalues η1 and η2 of the visco-elastic dynamics (5), i.e.,
when ζ > ω, we obtain in the first time interval [0, t1] (for
u = +1)

φ1(t) =
η2ū

η1 − η2
eη1t − η1ū

η1 − η2
eη2t + ū, (20)

where ū = u/(bω2). Similarly, in the generic k-th time interval
(k > 1) one can show that the solution is

φk(t) = (−1)k−1
2ū

η1 − η2

(
η1e

η2(t−tk) − η2eη1(t−tk)
)

+ (−1)k2ū+ φk−1(t).
(21)

This recursive structure holds also for the case of real coin-
cident or complex conjugate eigenvalues of (5). For details,
see [9].

It can be shown that the phase diagram (φ(t), φ̇(t)) for the
visco-elastic system is made by spirals, due to the presence
of exponential terms in (20),(21) and in their time derivatives.
As a consequence, following a geometric approach to find
the switching instants can be extremely challenging. On the
other hand, the switching instants must be the same for both
the CoM and the RM subsystems. Therefore, we can use the
parametrized switching instants found in Sect. III and plug
them in the above equations, verifying under which conditions

the final state, undeformed and at rest, can be reached in the
last interval:

φn(tf ) = 0 φ̇n(tf ) = 0. (22)

It can be verified analytically that the boundary conditions (22)
are never satisfied neither using one switching nor using two
switchings. In the first case, this is rather intuitive as the
two-interval CoM solution is symmetric in that case, whereas
the presence of damping suggests a larger control effort in
the first acceleration phase and a reduced one in the second.
Therefore, we turn to the three switching case, inserting the
expressions (17) to (19) in (22) with n = 3. This yields
a system of two (strongly) nonlinear equations in the two
unknown parameters α and β.

A closed-form solution of (22) for the optimal parameters
α and β is not at all immediate, and we have to resort to a
numerical method. Sufficient conditions for the existence of a
solution are provided in [10]. Thus, the problem is transformed
into a constrained optimization in which we minimize the loss
function

f(α, β) = |φ3(tf )|+ |φ̇3(tf )|. (23)

subject to the constraints on the admissibility of the parameters

α− 2 > 0 (24)
β − 1 > 0 (25)

αβ − 2(α− β) > 0 (26)
αβ(α+ 4) + 4α(2− α)− 8β > 0. (27)

Once the solution (α∗, β∗) has been found, substituting the
two optimal values in eqs. (17) to (19) yields the optimal
switching times and the final time, with t∗1 < t∗2 < t∗3 < t∗f .
The optimal control law is the associated bang-bang sequence
u∗(t) = {+1,−1,+1,−1} (for rf > 0).

V. NUMERICAL RESULTS

Using the data m = b = 0.5 [kg], d = 1 [N· s/m], and
rf = 10 [m], we have considered three cases:
A) k = 0.5 [N/m] (real distinct eigenvalues): t∗f = 9.2474 [s],

obtained for α∗ = 2.7705 and β∗ = 1.1913;
B) k = 1 [N/m] (coincident eigenvalues): t∗f = 7.8747 [s],

obtained for α∗ = 2.4626 and β∗ = 1.1383;
C) k = 2 [N/m] (complex eigenvalues): t∗f = 7.1407 [s],

obtained for α∗ = 2.2591 and β∗ = 1.0959.
For solving (23)–(27), we have used the fmincon routine of
MATLAB. In all cases, convergence was achieved within 20
iterations. The results in Figs. 2–4 show the phase plane
diagrams of both the CoM and the RM subsystems, as well as
the optimal control u∗(t) plotted against the switching function
λ∗

T
(t)B. The phase plots of the rigid body start at (0, 0)

and arrive at (rf , 0) as desired, whereas the phase plots of
the visco-elastic dynamics start and return at (0, 0), achieving
thus coordination. The boundary conditions for determining
the evolution of the four components of the costate λ∗(t) were
found imposing four linear equations based on the obtained
switching times: λ∗T (t∗i )B = 0, for i = 1, 2, 3, together with
the condition on the Hamiltonian H∗(t∗f ) = 0 (see [7]).
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Fig. 2. Case A (real distinct eigenvalues): phase diagrams for CoM [left] and RM [center]; time-optimal control (blue) and switching function (red) [right].
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Fig. 3. Case B (coincident eigenvalues): phase diagrams for CoM [left] and RM [center]; time-optimal control (blue) and switching function (red) [right].
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Fig. 4. Case C (complex eigenvalues): phase diagrams for CoM [left] and RM [center]; time-optimal control (blue) and switching function (red) [right].

VI. CONCLUSIONS

We have provided a semi-analytic solution to the time-
optimal rest-to-rest motion of a two-mass system intercon-
nected by a visco-elastic joint. The optimal control law is
always bang-bang with three switchings, as determined by
decoupling the problem in a rigid and a visco-elastic dynamics,
solving the first in a parametrized way and substituting the
results in the second so as to achieve coordination.
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