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Abstract—Accurate trajectory tracking in the task space is crit-
ical in many robotics applications. Model-based robot controllers
are able to ensure very good tracking but lose effectiveness in
the presence of model uncertainties. On the other hand, online
learning-based control laws can handle poor dynamic modeling,
as long as prediction errors are kept small and decrease over
time. However, in the case of redundant robots directly controlled
in the task space, this condition is not usually met. We present
an online learning-based control framework that exploits robot
redundancy so as to increase the overall performance and shorten
the learning transient. The validity of the proposed approach is
shown through a comparative study conducted in simulation on
a KUKA LWR4+ robot.

Index Terms—model learning, redundant robot, variance op-
timization

I. INTRODUCTION

Ensuring accurate trajectory tracking of robotic Cartesian
tasks is relevant in many applications. In the literature, there
exist control approaches that can guarantee very good tracking
with perfect knowledge of the system model. In real applica-
tion scenarios, however, this condition is hardly met, due to
the presence of uncertain dynamic parameters and unmodeled
dynamics.

In [1] the authors have presented an online learning scheme
that compensates for model uncertainties in fully actuated
robots, generating additional torque control actions to realize
an accurate feedback linearization in the joint space. This
approach was extended to underactuated robots in [2] by
including an offline iterative planning phase for the zero
dynamics of the system, which is updated from previous
trials. The extension of [1] to the case of robots that are
kinematically redundant with respect to the task raises some
issues. If not properly managed by the control scheme, task
redundancy usually prevents the generation of cyclic motions
in the joint space in response to cyclic tasks [3], resulting
in a continuous exploration of the input space. This behavior
increases the prediction errors and thus the number of steps
required for convergence by a learning algorithm (referred to
as Learning Transient, LT in this work), drastically reducing
control performance.

In this work, we propose to exploit robot redundancy so as
to improve the performance of the learning control law. The
main novelty consists in merging a quadratic approximation
of Gaussian Process Regressors [4] with classical redundancy
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Fig. 1. The KUKA LWR4+ robot and the task Cartesian trajectory considered
in the simulations.

resolution schemes [5]. In particular, it is possible to mitigate
the learning transient through optimal self-motions in the
joint space. A suitable quadratic optimization problem is
formulated whose efficient solution steers the redundant DoFs
towards already explored joint space regions, thus increasing
the regressor performance (similarly to [6], [7]). As a result,
accurate trajectory tracking is obtained in the task space,
as well as a more reliable motion in the joint space, with
smoother velocity and torque profiles.

The paper is organized as follows. The problem is for-
mulated in Sec. II. Section III describes the learning control
method with optimal redundancy resolution and its quadratic
approximation. The method is validated through a comparative
study in Sec. IV. Conclusions are drawn in Sec. V.

II. PROBLEM FORMULATION

Given a fully actuated robot with n DoF, the system
dynamics can be formulated as

M(q)q̈ + n(q, q̇) = τ , (1)

where q ∈ Rn is the configuration vector, M ∈ Rn×n is the
positive definite and symmetric inertia matrix, n ∈ Rn is the
sum of Coriolis and gravity vectors, and τ ∈ Rn is the joint
torque vector. In presence of model uncertainties (uncertain
parameters and/or unmodeled dynamics), we can write

M = M̂ + ∆M n = n̂+ ∆n. (2)
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in which M̂ and n̂ are the nominal terms. A preliminary
nonlinear Feedback Linearization (FL) is performed on the
nominal dynamics as follows:

τ FL = M̂u+ n̂. (3)

In the presence of unmodeled terms, from eqs. (1–3) we obtain
the perturbed closed-loop dynamics

q̈ = u+ δ(q, q̇,u), (4)

where δ represents the perturbation effects acting in the joint
space.

Since the aim of this work is to realize accurate trajectory
tracking at the task level, we characterize next the effects of
the model mismatch in the task space. Consider the second-
order kinematics

ẍ = J̇(q)q̇ + J(q)q̈, (5)

where ẍ ∈ Rm is the task acceleration and J ∈ Rm×n is
the task Jacobian, being m < n the dimension of the task.
Combining eq. (4) and eq. (5) yields the task dynamics

ẍ = J̇(q)q̇ + J(q)(u+ δ(q, q̇,u)), (6)

which can be rewritten as

ẍ = J̇(q)q̇ + J(q)u+ δc(q, q̇,u), (7)

where δc = J(q)δ(q, q̇,u) represents the perturbation acting
in the task space.

III. LEARNING-BASED CONTROL

OF REDUNDANT ROBOTS

To improve task accuracy during the LT, we introduce the
general forms of the proposed controller

u = J†(q)
(
a− J̇(q)q̇

)
+ P J(q)u0 + ugp, (8)

where u ∈ Rn is the commanded joint acceleration,J† is
the pseudoinverse of the task Jacobian, a ∈ Rm is the task
acceleration command, P J = I − J†J ∈ Rn×n is the null-
space projector of the task, u0 ∈ Rn is an arbitrary null-
space joint acceleration, and ugp ∈ Rn is the additional
joint acceleration control action that should cancel the model
mismatches by learning.

Since the model mismatch is unknown, it is approximated
with ugp using a vector of Gaussian Process (GP) regressors.
To possibly obtain an asymptotically stable closed-loop error
dynamics along the desired task trajectory xd ∈ Rm, we set
a = aff + apd where aff = ẍd is the task feedforward
component and apd defines the feedback action

apd = KP (xd − x) +KD(ẋd − ẋ), (9)

being KD and KP ∈ Rm×m positive definite (diagonal) gain
matrices. Finally, redundancy is exploited by optimizing the
term u0 in eq. (8), in order to mitigate the effect of the LT
and improve the tracking performance. Accordingly, eq. (8)
can be rewritten as

u = −J†(q)J̇(q)q̇ + upd + uff + P Ju0 + ugp (10)

where

uff = J†(q)aff , upd = J†(q)apd.

A scheme of the proposed controller is shown in Fig. 2.

A. Model Learning for Control
Consider a dataset of input-output noisy observations D =
{(Xi, Yi = φ (Xi) + ωi) |1 ≤ i ≤ nd}, with ω ∼ N (0, Σω)
and where φ is an unknown scalar function to be reconstructed.
Given a kernel function k(·, ·), for a generic query point X̂ it
is possible to compute the GP regressor predictive distribution

ε(X̂|D) ∼ N
(
µ(X̂,D), σ2(X̂,D)

)
(11)

where µ and σ are respectively the regressor prediction and the
epistemic error associated with each input [8]. In this work,
we use a set of n GPs to approximate the vector perturbation
δ. The data collection procedure, necessary for gathering the
dataset to approximate the unknown function, is based on
the difference between the commanded and the actual joint
acceleration for each DoF. From eq. (4) we have for the k-th
control step

δk = q̈k − uk. (12)

A new data point is generated as

Xk = (qk, q̇k,uk), Y k = q̈k − uk
with the acceleration q̈k being reconstructed numerically. It is
important to note that, through eq. (4), the actual acceleration
of the system depends on the state (qk, q̇k) and on the
commanded acceleration uk, i.e., on the input Xk of the
regression scheme. Dealing with a persistent LT, we define
the joint space prediction error as

ε(X̂) = µ(X̂)− δ(X̂) (13)

which represents the vector of the GPs prediction errors.

B. Nonlinear Redundancy Resolution
In order to keep the system state evolution in regions

that have already been explored, we formulate a nonlinear
optimization problem to exploit the robot redundancy. This
is very important in the context of Cartesian tasks for a
redundant robot since, in general, redundancy introduces a
drift in the joint motion at the acceleration level. Thus, the
learning algorithm will continuously visit new regions of the
input state, extending the LT and slowing the convergence. On
the other hand, suitable joint space self-motions may reduce
the prediction error and lead thus to higher tracking accuracy.
Moreover, we would like to reduce the control effort and
the joint velocities, obtaining overall smoother motions. To
this end, we can choose the null-space component u0 of
the commanded joint acceleration by minimizing a weighted
combination of the actual and the one-step-ahead vector of
the predictive variance of the GPs. In this way, a constrained
nonlinear optimization problem is formulated, having a cost
function equal to the sum of the norm of the vectors of
predictive variances at the control steps k and k + 1,

u0 = min
unull

α‖σ(xk)‖2 + β‖σ(xk+1)‖2, (14)
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Fig. 2. Block scheme of the proposed framework

for suitable non-negative weights α and β, where unull repre-
sents the null-space reference acceleration. The cost function
is subject to state and input constraints and to the first-order
hold discretization of the nominal feedback linearized state
model.

C. Fast GPs and Approximate Redundancy Resolution

The use of exact Gaussian Process Regression for both
the FL correction and the variance optimization may be
impractical for real-time applications. In fact, GPs prediction
computation time scales as O(N3), where N is the number
of points in the dataset. Moreover, the prediction variance
to be optimized is in general a very complex nonlinear and
non-convex function. Nonetheless, through Fast GPs approx-
imation [4] it is possible to formulate a simpler framework
for both prediction and redundancy resolution, at the cost
of an approximation error which is negligible under certain
conditions.

Consider the unknown (latent) function φ to be recon-
structed, which has been assumed to be differentiable and
depends on the input X . The linearization of this latent
function is

φ(x+ ∆x) ' φ̃x(∆x) = φ(x) + ∆xT ∇xφ(x). (15)

Defining g(x) = ∇xφ(x), x̂ =

(
1

∆x

)
and φ̂(x) =

(
φ(x)
g(x)

)
,

we obtain φ̃x(∆x) = x̂T φ̂(x). Since differentiation and
the scalar product are linear operators, the result φ̃x(∆x)
is still a multivariate Gaussian Process. Hence, the posterior
distribution of the approximated latent function will be a
Gaussian distribution with mean and variance

µφ = m̂T x̂(x), σ2
φ = x̂T V̂ x̂.

The vector m̂ and the positive definite matrix V̂ are defined
as

m̂ =

(
κ(x,X)

K(1,0)(x,X)

)(
K(X,X) + σ2

nI
)−1

Y (16)

V̂ =

(
κ(x, x) K(0,1)(x, x)

K(1,0)(x, x) K(1,1)(x, x)

)
−(

κ(x,X)

K(1,0)(x,X)

)(
κ(X,X) + σ2

nI
)−1(

κ(X,x) K(0,1)(X,x)
)
,

(17)
where κ represents the kernel function associated to the
covariance matrix K, namely Ki,j(X,X) = κ(xi, xj) with

K(1,0) = ∇xκ(x, x′), K(0,1) = ∇x′κ(x, x′),

K
(1,1)
i,j (x, x′) =

∂2κ(x, x′)

∂xi∂x′j
.

As a result, the original nonlinear and non-convex optimization
problem can be rewritten as a quadratic problem, whose
solution is much easier and faster:

u0 = min
unull

α x̂Tk V̂ x̂k + β x̂Tk+1V̂ x̂k+1. (18)

IV. SIMULATION RESULTS

The positional task has dimension m = 3 and thus the
redundancy degree is n −m = 4. In particular, the nominal
model presents a 30% mismatch in the mass and inertia of each
link and it does not take into account the joint friction, which
thus represents an unmodeled phenomenon. The proposed
approach has been validated through numerical simulations
on a KUKA LWR4+, a robot with n = 7 revolute joints.
We addressed the problem of tracking a Cartesian horizontal
circular trajectory at constant height (see Fig. 1) of radius
R = 15 cm in T = 2 s, with uncertainty in the dynamic robot
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Fig. 3. Results for each of the considered controllers. From top to bottom:
the norm of the cumulative Cartesian error, norm of the cumulative torque
control effort, and norm of the cumulative joint velocity.

model. Also, the proportional and derivative gains have been
set to KP = diag{100, 100, 100} and KD = diag{20, 20, 20}
respectively. To analyze the performance of the learning frame-
work, we conducted a comparative study between different
versions of the proposed controller.

The first controller considered in the study is

u = −J†(q)J̇(q)q̇ + upd + uff . (19)

Due to the presence of model uncertainties, the tracking
performance is drastically reduced, as shown in Fig. 3 (red
line). On the other hand, the control effort and the joint
velocities of the system are increased, since the controller
tries to recover the cumulative tracking error by increasing the
magnitude of the commanded torques. In the second controller,
we added the learning correction ugp, with the aim of realizing
the reference joint accelerations,

u = −J†(q)J̇(q)q̇ + ugp + upd + uff . (20)

Due to the presence of the learning transient in such a fast
motion, the tracking performance w.r.t. the Cartesian PD
controller is improved mainly toward the end of the trajectory
execution (Fig. 3, blue line). Similarly, the control effort is
reduced when the learning algorithm starts to converge.

The third controller includes the null-space contribution
uuo:

u = −J†(q)J̇(q)q̇ + ugp + upd + uff + u0. (21)

This addition remarkably improves the tracking performance
of the system (Fig. 3, green line). Finally, we tested the
proposed framework by introducing, next to the optimization
term u0 = uopt, also a damping term in the null space,

u0 = uopt −Kvq̇. (22)

This is known to be a convenient addition in any second-order
redundancy resolution scheme, in order to ensure a stable joint
motion [5]).

The best performance is achieved in this last case, obtaining
very low Cartesian errors w.r.t. all the previous controllers
and a significant reduction of control effort and joint velocity
(Fig. 3, dashed black line). This is due to the fact that damping
naturally limits the input space exploration, similarly to what
self-motion optimization also does, though in a more limited
way (its effect is just to reduce the joint velocity). As a result,
the combination of both actions drastically reduces the LT
duration while improving the learning process.

V. CONCLUSIONS AND FUTURE WORK

We have proposed an online learning-based controller to
realize accurate Cartesian trajectory tracking for redundant
robots in presence of model uncertainties, guaranteeing high
performance also during the learning transient through a self-
motion optimization. We tested the approach by simulation
on a KUKA LWR4+ robot through a comparative study that
showed how the proposed control framework achieves the
best behavior in terms of tracking error reduction, motion
smoothness, and reduced control effort. We will test the
approach through experiments on the same robot, and we
plan to introduce a redundancy resolution strategy for active
learning so as to reduce even further the Learning Transient.
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