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SUMMARY 
The regulation of motor variable positions in robots with elastic elements has been solved using PD linear 
controllers in the absence of gravity and with the addition of a model-based feedforward term when 
gravity is present. When the mass of the links is not known, an iterative learning scheme can be derived to 
obtain the same result for both joint elasticity and link flexibility. An extension to end-effector regulation 
with a similar two-stage and hence time-consuming scheme has been proposed. In this paper we show the 
feasibility of a new iterative one-stage scheme able to directly regulate the end-effector position in robots 
with joint elasticity and in robots whose distributed flexibility is limited for each link to the plane 
orthogonal to the associated motor axis. Experimental results are included to show the improved rate of 
convergence of the proposed scheme applied to a two-link flexible robot available in our laboratory. 
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1. INTRODUCTION 

We consider the end-point regulation problem under gravity for general flexible manipulators, 
i.e. with link flexibility or with joint elasticity. 

For rigid manipulators under gravity the most direct approach to set-point regulation is to 
globally cancel the gravity terms and apply a simple proportional-derivative (PD) feedback at 
the joint (motor) error level with positive definite gains. This leads to a non-linear feedback 
control law yielding at least asymptotic stability. ' Under a mild condition on the proportional 
gain this scheme can be simplified to a constant gravity compensation as evaluated at the desired 
configuration.* A purely linear feedback law with a feedforward action is then obtained 
(denoted PD+), but in this case the proportional gain should be chosen so as to dominate the 
Jacobian of the gravity force over the whole robot workspace. 

When flexible components are present in the robotic structure, a similar strategy based on PD 
plus a constant gravity feedforward has been shown to asymptotically stabilize also robots with 
elastic joints3 and with flexible links.4 For the elastic joint case feedback is closed only around 
the motor variables, while for the flexible link case only the joint (rigid) variables are used for 
control. This control strategy works under a further structural assumption on the joint or on the 
link stiffness respectively. 

Moreover, in both the rigid and the flexible case an exact knowledge of the gravity vector is 
assumed, which may be difficult to achieve, e.g. for a robot picking up multiple unknown 
payloads. Furthermore, for robots with flexible components it is well known that controlling the 
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end-effector is quite a different problem from controlling the motion of the arm joints. In this 
case the source of steady state end-effector error under pure joint PD control is twofold: first, a 
displacement is present at the motor level just as in the fully rigid case; second, a further 
displacement is introduced by the arm (joint and/or link) deflection. 

On the other hand, to compensate for gravity effects, a standard model-independent remedy is 
the addition of an integral term to the linear PD law. However, several problems arise with the 
design of an efficient PID control, partly owing to the non-linear nature of the robot dynamics. 
The presence of flexible dynamics introduces even more complications in the tuning process. 

A different approach to the set-point regulation of both rigid and flexible arms has been 
proposed in Reference 5 based on an iterative learning scheme. The required compensation at 
the final configuration can be built up from a very limited knowledge of the robot gravity terms. 
A PD-based control law is applied iteratively at the motor level, while a constant gravity 
feedforward is learned at discrete instants, without the explicit introduction of an integral error 
term nor the use of high-gain feedback. Sufficient conditions are derived guaranteeing the 
global asymptotic convergence of the scheme to zero steady state error under the mild 
assumption that arm stiffness dominates gravity effects. 

In the case of flexible arms the scheme was intended to achieve a desired arm configuration 
without directly facing the problem of end-effector regulation. An extension of the same 
approach was then presented in Reference 6, where a two-stage iterative scheme was asked to 
first regulate the flexible arm to a given configuration and then update this reference arm 
configuration so that the end-effector iteratively approaches the desired goal. The drawback of 
this method is clearly in its slower convergence. 

In this paper we further exploit the same lines of thought to derive a one-stage iterative 
scheme that directly regulates the end-effector position of a flexible arm. The two cases of joint 
elasticity and link flexibility are handled in a unique framework. The sufficient conditions for 
convergence in our main result are very easy to satisfy in practice. 

The experimental results reported for the two-link lightweight manipulator with a flexible 
forearm available in the Robotics Laboratory of our Department7 show the obtained faster 
convergence of the proposed scheme. 

2. MODEL PROPERTIES 

In this section the most relevant model properties of robots with flexible links or elastic joints 
will be reviewed, with particular emphasis on those concerning our control approach. 

For a robot with n flexible links a Lagrangian approach can be used to derive the dynamic 
equations of motion, describing with a finite set of space functions the deformation shape of 
each link, possibly modelled as Euler-Bernoulli beams.* Let 0 be the n-dimensional vector of 
joint motor coordinates and 6 the m-dimensional vector of all generalized deformation modes. 
The following model can then be written:' 

The link deformation is expressed here in a frame clamped at the joint side so that the control 
input does not enter directly in the equations of the flexible part. B is the (n + m )  x ( 1 1  + m) 
positive definite inertia matrix, h is the (n + m)-dimensional vector of Coriolis and centrifugal 
forces and D describes the modal damping of the links. K is the positive definite symmetric 
(and diagonal) stiffness matrix associated with the link elasticity. In particular, the matrix K is 
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derived from the potential energy associated with the elastic deformation of links under the 
hypothesis of small deformations. The gravity vector, defined by 

g ( e ,  6) = au,/aq (2)  
where U ,  is the gravitational potential energy of the system, has been partitioned into two terms 
and contains only trigonometric functions of 8 and linear/trigonometric functions of 6, where 
q = (8, 6) is the n + m configuration vector. It has been shown6 that the inequalities 

are satisfied with a ,  ag, a,> 0. The spectral norm of a matrix, defined as 11 A 11 = d(Amax(A’’A)), 
is used here. As a consequence of (3), 

V 4 i , q 2 E R n C r n  (4) 

Since our goal is to regulate the end-effector of the flexible arm to a desired position, we need 
to define a direct kinematic function relating the robot configuration variables q to the pose of 
its end-effector (tip). In order to keep this description at a simple but still significant level, we 
assume that each arm deflects only in the plane of its rigid motion, i.e. the hth arm is 
constrained in the plane orthogonal to the hth joint axis. In this case the direct kinematics of the 
flexible arm has the same structure as the one of the equivalent rigid arm, where, however, the 
angles pointing from the motors to the end of each link replace the rigid joint angles. 

To write the angular position yh of the end-point of the hth link with respect to the previous 
one, observe that this is given by the sum of the joint angle variable 8, and of a linear 
combination of the local deformation modes. In vector form we can set 

y =  e +  $6 (5 )  
where 

with 1, the length of link h, @*,the Ith mode shape of link h,* mh the number of modes of link 
h and Z:_, mh = m. As a result, the specification of a desired value yd uniquely defines the end- 
effector pose via the usual direct kinematics. The end-effector regulation task can then be defined 
in terms of (5). 

When considering robots with n elastic joints but rigid links, we need a set of n motor variables 
B and a set of n link position variables 8, to describe the state of the manipulator, as described in 
Reference 3. To keep a similar notation to the one adopted in the case of flexible robots, deflection 
variables 6 = 8, - 8 are introduced. The resulting dynamic model can be written 

Note that the 2n x 2n positive definite inertia matrix B and the gravity vector g actually depend 
only on the link variables, while h, K and D are defined as in model (1). Similarly to (3), one has 
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with a, a, >O.’ In this case the angular positions of the end-points of each link coincide with Or 
and we can write, in conformity with (3, 

y =  e l =  e +  6 (9) 
In the following, owing to the similarity of the two models, we will refer only to the flexible 

link case (I) ,  observing that conclusions can be derived also for elastic joint robots by simply 
replacing 

3. SET-POINT REGULATION WITH PD+ CONTROL 

For a desired constant motor position e d  under perfect knowledge of the gravity term the input 
torque u can be chosen as a linear PD+ control, i.e. 

u=Kp(6d- e ) -Kdd+ g,(8d, a d ) ,  K,>O, Kd>o (1 1) 
where from (1) the associated dd is implicitly defined as the solution of 

This includes the case of elastic joints’ with positions (10). 
For the dynamic model (1) it has been shown4 that under the assumption 

the state q = qd = (8,s dd), 4 = 0 is the unique equilibrium of the closed loop system (l), (1 l),  
i.e. the unique solution to 

Condition (13) can always be satisfied provided that an assumption on the structural flexibility 
holds: 

A,,,(K) = min ( k i ]  > a 
i -  1. ..., n 

with K diagonal. This is not restrictive in general and depends on the relative magnitude of link 
and/or joint stiffness versus gravity. As a result, by choosing the proportional control gain so 
that nmin(K,)> a, the equilibrium state q = q d ,  4=0 of system (1) under control (11) is 
asymptotically stable. 

We finally remark that the same condition (13) guarantees a unique equilibrium point also 
when an approximate constant gravity compensation is used in (1 1) in place of go( 8 d ,  dd). In 
this case the equilibrium point will indeed be a 4 = (8, 8) # qd. 

4. ITERATIVE CONTROL SCHEME 

The iterative scheme introduced here is able to achieve set-point regulation of the robot end- 
effector. It is based on the idea of using a simple proportional-derivative control loop at the 
motor level and an update law for learning the correct gravity and deflection compensation at 
the set-point. 
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On one hand, the control effort applied at the end of each iteration is used to update the 
compensation term required at the final point, as in the scheme proposed in Reference 5.  On the 
other hand, the correct set-point value for motor variables, required to keep the tip in the desired 
position, is iteratively obtained from the reading of link deflections (or link positions in the case 
of elastic joint robots). The updates are performed at the same time, resulting in a one-stage 
iterative scheme. 

Let go = (O,, So) be the configuration at the initial point with yo = Bo + $do ($= I for elastic 
joints). The control law during iteration i, with i = 1,2, . . . , is defined as 

with positive definite gain matrices K,, and Kd as in Section 3 and a constant feedforward uj - , .  
The set-point value 0 d . j -  I is the current estimate of the a priori unknown desired motor position. 
The value uo can be chosen simply as zero or as the best available estimate for the gravity vector 
uo= go(&). Any value can be chosen for 6)d,0, but the most correct one is 6 d  = Y d ,  namely the 
desired tip position if the arm were fully rigid. 

At the end of the ith iteration, system (1) (or system (7)) under control (16) reaches the unique 
equilibrium point q = qj = ( O j ,  S J ,  4 = 0, with end-point position at y j  = 8;  + 6dj, satisfying 

go(ej, 6;) = - ~ d ~  ( 17b) 

It is worth noting that the control effort read at the controller output at the ith steady state is 
equal to the unknown gravity term go(qi). 

We now use the gravity term learned in the configuration qi as a better approximation of the one 
required at the final point and simultaneously use the link deflection (or the link position minus the 
motor position for elastic joints) measured at qj as an estimate of the natural arm deflection when 
the tip is at the desired point. For the next iteration define the feedforward update as 

where yfT is the measured end-effector position at the end of iteration i. In the case of flexible 
link robots equation (19) can be rewritten as 

obtained from (5) by substituting yf! = O j  + $6;. For elastic joint robots, using (9), equation 
(19) becomes 

Od.i = Y d  - dl (21) 
This scheme is shown in Figure 1, where the memory blocks are buffers activated at specified 

Define now the current error at the motor level as 
instants. 
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Figure 1. Iterative learning scheme 

and the motor reference variation as 

" d . i =  8 d , i -  6 d , i - l  

If the algorithm converges in the sense that 

11 eill+O and IIAOd,,II-+O as i-+- (24) 

g,(6,, 6,) = -K6, (25) 

(26) 

then from the equations (17b) and (20) the limit values 6,=limi+, 8, and d,=lim,, Bi  
satisfy 

8, = Yd - 66- 
Following the development of Section 3, equations (25) and (26) have the unique solution 

In the next section we will prove the convergence of the proposed algorithm for the two 
considered classes of flexible robots. 

5 .  CONVERGENCE CONDITIONS 

Our main result is stated in the following. 

Theorem 1 

Under control (16), with updates (18) and (19), the sequence of end-effector positions 
{yo, y , ,  . .. 1, with y, = 8;  + 66; and 6; and 6, defined by (17). converges to Y d ,  starting from any 
initial robot configuration qo, provided that 

(a) Amin (K) > YU 
(b) Arnin(Kp) >-Q 
(c) Y > 1 + l I @ I I  
( 4  O<P<(Y - 1-11 611>/2Y 
Proof. At the end of iteration i equations (17a) and (1 8) imply that u, = g Jqi)  and so 

II ui - ui-i II = II ga(qi) - g S ( q i - 1 )  II a II 4; - q j - 1  I1 a( II 6; - 0;-i II + II Si  - di-1 II ) (29) 
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where the second inequality in (3) has been used. From (17b), using the third inequality in (3) 
and hypothesis (a), we get 

from which 

Combining (29) and (31). simple manipulations yield 

Using (32) with hypothesis (b), it follows that 

1 1 1 Y 
-alle,-II < -A,,inWp)lle;ll -IIKpe;II < a-(lIe;II + IIei-lIl+ llA6d.i-iIl) (34) 
B B B Y-1 

Since hypotheses (c) and (d) guarantee that y - 1 - y/? > 0 and B( y - 1) > 0, reorganizing terms, 
we have 

II ei II < 
" (11 e;- I 11 + llA6d.i- I 11) 

Y - l - Y B  

On the other hand, from (20), using inequality (31), it follows that 

Substituting (35) in (36), we have finally 

(35) 
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- - 
YB YB 

Y-'-YB Y - I - Y B  

- Y - l - Y B  Y - l - Y B -  

[ 11 kd!! [I] = 11 6 11 11 6 11 
IIei-111 [ 11 Aed,i-  1 I / ]  

For a matrix of the form 

the eigenvalues are 

which in our case become 
A , = O ,  L 2 = x + y  (40) 

YB + II ill 
Y -  1 -YB 

1, = 0, 1 2  = (41) 

The convergence condition is then satisfied thanks to hypothesis (d). 17 

We note explicitly that in the case of robots with elastic joints the convergence hypotheses 
(c) and (d) become 

(c') Y > 2  
(d') OcB< ( y - 2 ) / 2 y < i .  

Incidentally, for rigid robots the joint stiffness K goes to and so y can be chosen arbitrarily 
large without violating (a). Condition (c') is always satisfied, while (d') becomes B < as in 
Reference 5. 

6. EXPERIMENTS WITH A TWO-LINK FLEXIBLE ROBOT 

The robot used in the experiments is a direct drive planar arm with two revolute joints and two 
links, the second of which-the forearm-is very fle~ible. '~'~ A sketch of the arm is shown in 
Figure 2. To introduce gravity effects, the arm has been tilted by approximately 8". 

The first link (the rigid one) is 300 mm long. The second one has been designed to be very 
flexible in a plane orthogonal to the two motors axes (the motion plane) and stiff in the other 
directions and torsionally. It is composed, as depicted in Figure 3, of two parallel sheets of 
harmonic steel coupled by nine equispaced aluminium frames which prevent torsional 
deformations. Its length is 700 mm. 

The total mass of the flexible link is 1.8 kg. The inertias of the first and second links are 
J ,  = 0.447 kg m2 and J2  = 0,303 kg m2 respectively. The first two natural frequencies of vibration 
are f,  = 4-7 Hz and ft = 14.4 Hz, leading to stiffness coefficients k, = 872 N and k2 = 8186 N 
respectively. 

The motors driving the two links can provide maximum torques of 3.5 and 1.8 Nm 
respectively and are supplied by two 20 kHz PWM amplifiers. Each motor is equipped with a 
20 000 pulses/turn encoder and a DC tachometer. 
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1 - First motor 
2 - Joint 
3 - Shaft 
4 - Ball bearings 
5 - First link (rigid) 

7 -Second link hub 
8 - Second link (flexible) 

6 - S m d  motor 

700 T 
1 

I \ r  

'////////////7// 

Figure 2. The two-link flexible arm 

Figure 3. The flexible link 

The second-link deformation is measured by an optical sensor with a precision of about O - l O . '  
The light of a lamp positioned at the end of the link is reflected by a rotating mirror on a 
detector. When this is illuminated, the position of the mirror is measured by an encoder. In this 
way it is possible to know the lamp displacement during the experiments and to reconstruct the 
link deflection to good approximation. 

To validate the theory of the previous section, some experiments have been carried out to 
regulate the arm tip in different positions. We show here four of them in which, starting every 
time from the lower extended position ( O , ,  8 , , y )  = (O,O,O), we try to reach various 
configurations with and without deflection of the second link. We remark that the tip and 
second-joint positions are expressed with respect to the first-link position. The gains that have 
been used for the four experiments are 

In the first experiment (Figures 4(a) and 5-7) we desire to put the first link to 90" and align the 
tip with it. Every 4 s we update the control and it is possible to see how, even if this update is done 
while the robot is still moving, within three steps we are able to reach with zero error the position 
(W,e^,,O). The hat indicates that the position of the second joint is unknown or, better, is not 
interesting owing to the fact that we are regulating the tip. We can deduce it from the measure of 
the link deflection reported in Figure 7. In this configuration, fully extended, we have the 
maximum of control effort for both motors and the maximum of deflection for the second link. 
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Figure 4. The four experiments 
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Figure 5. Experiment 1: position of first link 
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Figure 6. Experiment 1: tip position w.r.t. first link 



REGULATION OF ROBOTS WITH ELASTIC ELEMENTS 389 

2 4 6 B I0 I2 -10: 

sec 

Figure 7. Experiment 1:  deflection of second link 

In the second experiment (Figures 4(b) and 8-10) the desired position is (135, 62, -45). Also 
here, three steps of 4 s are sufficient to achieve the regulation. 

In the third experiment (Figures 4(c) and 11-13) the goal is (135,6,, 45), but this time we 
need six iterations to converge. The learned control effort oscillates around the desired one for 
both motors and the final deflection is zero owing to the vertical final position of the second 
link. Also, the final control torque applied at the second joint is obviously zero, which shows the 
ability of the algorithm to converge to zero control effort even when intermediate values are 
different from zero. 

Finally, in the fourth experiment (Figures 4(d) and 14-16) we try to position the robot in the 
vertical extended pose (180,8,,0). In this case, owing to the fact that the gravity compensation 
must be zero as well as the final deflection and that in the starting position we have the same 
conditions, theoretically we should reach this goal in one step. Owing to some dry friction, this 
is not true and a residual error of a few degrees is obtained. This error is then compensated by 
the algorithm in the next step starting at 10 s. 

wf 

Figure 8. Experiment 2: position of first link 
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Figure 10. Experiment 2: deflection of second link 
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Figure 1 1 .  Experiment 3: position of first link 
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Figure 13. Experiment 3: deflection of second link 
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Figure 14. Experiment 4 position of first link 
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Figure 15. Experiment 4: tip position w.r.t. first link 
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Figure 16. Experiment 4: deflection of second link 

7. CONCLUSIONS 
A new iterative one-stage scheme able to directly regulate under gravity the end-effector position 
in robots with joint elasticity or link flexibility has been presented and its convergence properties 
have been shown. 

The algorithm introduced is a one-stage learning process able to build up first the desired 
gravity compensation and second the required set-point correction due to elasticity for motor 
variable regulation. 

The convergence conditions applied to the case of robots with elastic joints are less restrictive 
than those for flexible link robots. 
In the performed experiments it was found that it is not necessary to wait for the reading of 

the intermediate steady state configurations for updating the control command. Moving to the 
next iteration while the variation in the arm configuration drops below a fixed tolerance avoids 
the drawback of theoretically infinite time needed for exact convergence. 
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