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Abstract. Mimicking the case of rigid robot arms, the set-point regulation problem for manipulators with
flexible links moving under gravity can be solved by either model-based compensation or PID control. The
former cannot be applied if an unknown payload is present or when model parameters are poorly estimated,
while the latter requires fine and lengthy tuning of gains in order to achieve good performance on the whole
workspace. Moreover, no global convergence proof has been yet given for PID control of flexible robot
arms. In this paper, a simple iterative scheme is proposed for generating exact gravity compensation at the
desired set point, without the knowledge of rigid or flexible dynamic model terms. The control law starts
with a PD action on the error at the joint level, updating at discrete instants an additional feedforward
term. Global convergence of the scheme is proved under a mild condition on the proportional gain and a
structural property on the arm stiffness, which is usually satisfied in practice. Experimental results are
presented for a two-link robot with a flexible forearm moving on a tilted plane.
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1. INTRODUCTION

Regulation of multi-link flexible manipulators is
often performed using linear feedback laws that
exploit inherent physical properties of the system.
In absence of gravity, it can be shown that a sim-
ple proportional derivative (PD) feedback of the
joint position error is sufficient to asymptotically
stabilize any arm configuration (De Luca and Si-
ciliano, 1992a). This strategy is a straightforward
generalization of the known result for rigid robot
arms (Takegaki and Arimoto, 1981). In addition,
a proper feedback from the deflection variables
may improve the transient characteristics (Lee et
al., 1988).

For rigid manipulators under gravity, the most di-
rect approach to set-point regulation is to globally
cancel the gravity terms and still apply PD control
with positive definite gains (Takegaki and Ari-
moto, 1981). Under a mild condition on the pro-
portional gain, this nonlinear control law has been
simplified to constant gravity compensation, eval-
uated only at the desired configuration (Tomei,
1991a); a purely linear feedback law with a feed-
forward action is then obtained. In this case, the
proportional gain should dominate the gradient of
the gravity forces in the whole robot workspace.

When flexible components are present in the
robotic structure, a similar strategy based on PD
plus feedforward terms has been shown to asymp-

totically stabilize also robots with elastic joints
(Tomei, 1991b) and with flexible links (De Luca
and Siciliano, 1992b). For the elastic joint case,
feedback is closed around the motor variables
while for the flexible link case only the joint (rigid)
variables are used for control. This compensation
of gravity terms works under a further structural
assumption on the joint or on the arm stiffness,
respectively.

In all cases, an exact knowledge of the gravity
vector is required. This condition is difficult to be
realized, e.g. for a robot picking up multiple un-
known payloads, and would need anyway an iden-
tification procedure of the robot link parameters.
As a result of inexact compensation, a steady-
state error will be present with this type of control
even for a simple point-to-point task. For an arm
with flexible links, the nature of this error is two-
fold: first, a displacement is present at the joint
level (as in the rigid case); second, when consider-
ing the arm tip position, a further displacement is
introduced by the arm deflection. High-gain feed-
back reduces but does not eliminate these errors,
exciting on the other hand unmodeled dynamic
effects (viz. higher order deformation modes) and
leading to longer transition times because of the
low damped oscillations.

To compensate for gravity effects, another stan-
dard remedy that does not require knowledge of
the model is the addition of an integral term to the



linear control law; however, several problems arise
with the design of a PID, partly due to the non-
linear nature of the robot. Typically, saturation
will occurr during large transient phases and re-
set or anti-windup procedures have to be devised
when starting far from the final position (Åström
and Wittenmark, 1990). From a theoretical point
of view, asymptotic stability of robot PID control
has been proved only for rigid arms. Moreover, it
holds locally around the desired configuration and
requires complex inequalities among the propor-
tional, derivative, and integral gains to be satisfied
(Arimoto et al., 1984a; Khorrami and Özgüner,
1988). In practice, some of these drawbacks may
be overcome by adding the integral action only
near the final point, so that gross motion is per-
formed with PD control, while fine positioning is
achieved with PID. However, no formal proof of
convergence has been given for this method.

In this paper, we consider the set-point regulation
problem for flexible manipulators under gravity
and propose a fast iterative scheme that builds
up the required compensation at the final config-
uration, with a very limited knowledge about the
robot gravity terms. A PD-based control law is
applied iteratively at the joint level and the con-
stant gravity feedforward is learned without an
explicit introduction of the integral error term nor
the use of high-gain feedback.

An easy to check sufficient condition is given for
the convergence of the scheme to zero steady-state
error, taking into account in the analysis robot
nonlinearities as well as arm deflections. In anal-
ogy with (De Luca and et al., 1990), the arm stiff-
ness should dominate the gravity effects, an as-
sumption which is usually satisfied in real flexible
arms.

Experimental results are reported for a two-link
lightweight manipulator, with a flexible forearm,
available at the Robotics Laboratory of our De-
partment (De Luca et al., 1990). The arm has
been tilted from the horizontal plane so to include
gravity effects. We mention that a similar itera-
tive learning scheme was already shown to be con-
vergent in the case of multi-link rigid robots and
tested by simulation in (De Luca and Panzieri,
1992c).

2. PRELIMINARIES

For a robot arm composed of a serial chain of
links, some of which are flexible, the Lagrangian
technique can be used to derive the dynamic equa-
tions of motion (Book, 1984), modeling the slen-
der links as Euler-Bernoulli beams with proper
boundary conditions. A linear model is in general
sufficient to capture the dynamics of each flexible
link, but the interplay of rigid body motion and
flexible deflections in the multi-link case gives rise
to a full nonlinear dynamic model.

A set of basis space functions is used for describ-
ing link deformation shapes, with associated gen-
eralized coordinates. Denoting by θ the n-vector
of joint coordinates and by δ the m-vector of
link deformation coordinates, the (n + m)-vector
q = (θ, δ) characterizes the arm configuration.

We suppose to include only bending deformations
limited, for each link, to the plane of rigid mo-
tion. The closed-form dynamic equations of the
arm can be written as n+m second-order nonlin-
ear differential equations in the general form

B(q)q̈+h(q, q̇)+g(q)+

[
0

Kδ + Dδ̇

]
=

[
u

0

]
. (1)

In (1), the (n + m) × (n + m) positive definite
symmetric inertia matrix B depends in general on
both joint (rigid) and link (flexible) coordinates,
while the (n + m)-vector h contains Coriolis and
centrifugal forces, and the positive definite (diag-
onal) matrix D describes modal damping of the
links. Note that deformations are described in
frames which are clamped at the joint actuator
sides, implying that the control does not enter di-
rectly in the equations of motion of the flexible
part (De Luca and Siciliano, 1991).

The two positional terms in (1) come from the
gravitational potential energy Ug and from the
elastic one Uδ. In view of the small deformation
hypothesis, we have in terms of energy that

Uδ =
1

2
δTKδ ≤ Uδ,max <∞, (2)

where K is the positive definite symmetric (diag-
onal) stiffness matrix associated with link elastic-
ity. A direct consequence of (2) is a bound on the
deformation vector

‖δ‖ ≤
√

2Uδ,max
λmax(K)

, (3)

in terms of the maximum eigenvalue of K. On the
other hand, the (n + m)-vector of gravity forces
g = (∂Ug/∂q)

T can be partitioned as

g(q) =

(
gθ(θ, δ)
gδ(θ)

)
, (4)

where the dependence of the lower term is justified
by the assumed small deformations. Further, the
vector g satisfies the inequality∥∥∥∥∂g∂q

∥∥∥∥ ≤ α0 + α1‖δ‖ ≤ α0 + α1

√
2Uδ,max
λmax(K)

=: α,

(5)
where α0, α1, α > 0. Similarly, for the compo-
nents of (∂g/∂q) we have∥∥∥∥∂gθ∂q

∥∥∥∥ ≤ αθ,

∥∥∥∥∂gδ∂θ

∥∥∥∥ ≤ αδ, (6)



with αθ, αδ > 0. These bounds can be easily
proven by observing that the gravity terms con-
tain only trigonometric functions of θ and lin-
ear/trigonometric functions of δ. As a direct con-
sequence of (5) or (6), we have e.g.

‖g(q1)− g(q2)‖ ≤ α‖q1 − q2‖, ∀q1, q2 ∈ IRn+m.
(7)

We remark that the above arguments and what
follows can be easily modified to include also an
explicit dependence of gδ in (4) from δ.

When the input torque u is chosen as a PD control
on the joint error

u = KP (θd − θ)−KD θ̇, KP > 0, KD > 0, (8)

for a desired constant joint position θd, then the
robot arm will be driven to a steady-state condi-
tion q = q̄ = (θ̄, δ̄), q̇ = 0, which from (1) satisfies
the following equations

gθ(θ̄, δ̄) = KP (θd − θ̄) (9)

gδ(θ̄) = −Kδ̄, (10)

implicitly defining the residual joint error θd − θ̄
and the arm deformation δ̄.

Consider instead the joint PD+ control law, i.e.

u = KP (θd − θ)−KD θ̇ + gθ(θd, δd) (11)

with KP > 0 and KD > 0, being the associated
δd defined by

δd = −K−1gδ(θd). (12)

It has been shown in (De Luca and Siciliano,
1992b) that, under the assumption

λmin

(
KP O
O K

)
> α, (13)

q = qd = (θd, δd), q̇ = 0 is the unique equilibrium
state of the closed-loop system, i.e. satisfying

gθ(θ, δ) = KP (θd − θ) + gθ(θd, δd), (14)

gδ(θ) = −Kδ. (15)

Condition (13) can always be satisfied, provided
that an assumption on the structural link flexibil-
ity holds:

λmin(K) = min
i=1,...,n

{ki} > α, (16)

being K diagonal. In general this lower bound is
not restrictive and depends on the relative mag-
nitude of stiffness vs. gravity. As a result, by
choosing the proportional control gain so that
λmin(KP ) > α, the equilibrium state q = qd,
q̇ = 0 of system (1) under control (11) is asymp-
totically stable.

Similar considerations hold for an inexact con-
stant gravity compensation (ĝθ in place of gθ(qd)).
Inequality (13) still guarantees a unique equilib-
rium configuration q̂, different from qd.

3. CONTROL SCHEME

An iterative compensation scheme that achieves
set-point regulation in a flexible robot, without
knowledge of gravity, is introduced as follows. In
particular, our objective is here to bring the vector
of robot joint variables θ at a specified value θd.
Modifications for obtaining regulation of the arm
tip position are straightforward.

Let q0 = (θ0, δ0) be the initial arm configuration.
The control law during iteration i is defined as

u =
1

β
KP (θd − θ)−KD θ̇ + ui−1, β > 0,

(17)
for i = 1, 2, . . ., where the term ui−1 is a constant
feedforward. If u0 = 0, which is a common initial-
ization, the first iteration is performed with a sim-
ple joint PD control. Indeed, one may collect the
best available information on the required grav-
ity term by setting u0 = ĝθ(qd), where the ‘hat’
denotes the estimate.

System (1) under control (17) reaches at the end
of the ith iteration the equilibrium state q = qi =
(θi, δi), q̇ = 0, such that

gθ(θi, δi) =
1

β
KP (θd − θi) + ui−1, (18)

gδ(θi) = −Kδi. (19)

Note that the unknown gravity term gθ(qi) is de-
termined through the reading of the control effort
at steady state. For the next iteration, the feed-
forward is istantaneously updated as

ui =
1

β
KP (θd − θi) + ui−1, (20)

and control (17) is applied again starting from the
current configuration qi.

Our main result is the following:

Theorem. The sequence {θ0, θ1, . . .} converges
to θd, starting from any initial q0, provided that:

(a) λmin(K) > α;

(b) λmin(KP ) > α;

(c) 0 < β ≤ 1
2

α

αθ(1 +
αδ
α

)
.

Proof. Let ei = θd − θi. At the end of the ith
iteration, eqs. (18) and (20) imply that ui = gθ(qi)
at the steady state qi, and so

‖ui − ui−1‖ = ‖gθ(qi)− gθ(qi−1)‖
≤ αθ‖qi − qi−1‖
≤ αθ(‖θi − θi−1‖+ ‖δi − δi−1‖)

(21)



where the first inequality (6) was used. From
eq. (19), using the second inequality in (6) and
hypothesis (a), we have

‖δi − δi−1‖ ≤ ‖K−1‖ · ‖gδ(θi)− gδ(θi−1)‖

<
1

α
αδ‖θi − θi−1‖.

(22)

Combining (21) and (22),

‖ui − ui−1‖ < αθ(1 +
αδ
α

)‖θi − θi−1‖

≤ αθ(1 +
αδ
α

)(‖ei‖+ ‖ei−1‖).
(23)

On the other hand, from eq. (20)

‖ui − ui−1‖ =
1

β
‖KP ei‖. (24)

From eqs.(23) and (24), using hypothesis (b), it
follows

1

β
α‖ei‖ <

1

β
λmin(KP )‖ei‖ ≤

1

β
‖KP ei‖

< αθ(1 +
αδ
α

)(‖ei‖+ ‖ei−1‖).
(25)

Reorganizing terms, since hypothesis (c) implies
α− βαθ(1 + αδ

α ) > 0, we obtain

‖ei‖ <
βαθ(1 + αδ

α )

α− βαθ(1 + αδ
α )
‖ei−1‖. (26)

Therefore, the error norm in (26) satifies a con-
traction mapping condition if

βαθ(1 + αδ
α )

α− βαθ(1 + αδ
α )
≤ 1, (27)

which is again guaranteed by hypothesis (c). As a
result, limi→∞ ‖ei‖ = 0, and asymptotic conver-
gence of {θi} to θd is proved for any initial arm
configuration q0.

Q.E.D.

Hypotheses (a) and (b) are the same given in (De
Luca and Siciliano, 1992b) for showing that the
joint PD control law with constant known grav-
ity compensation is globally asymptotically sta-
ble. In the present case, they are needed to as-
sure that the robot arm under control (17) has
a unique steady-state solution at every iteration.
The new hypothesis (c) guarantees the conver-
gence of the iterative scheme (20), and in particu-
lar that limi→∞ ui = gθ(qd), with a priori knowl-
edge limited to the bounds (5) and (6) on the
gravity terms.

A series of remarks are now in order:

• The same proof can be followed in the case
of rigid robot arms. In that case, αδ = 0,
αθ = α, and it follows that β ≤ 1

2 (De Luca

and Panzieri, 1992c). Merging conditions (b)
and (c) into (17), the overall proportional gain
matrix K̂P = KP /β has to be chosen so to sat-
isfy

λmin(K̂P ) > 2α. (28)

• The iterative scheme (17) and (20) is rem-
iniscent of learning control algorithms that
achieve reproduction of repetitive trajectories
for rigid (Arimoto et al., 1984a; De Luca et
al., 1992d) or flexible robot arms (Poloni and
Ulivi, 1991). However, no repositioning of the
arm into the initial configuration is performed
(nor required) here, at any iteration.

• The overall scheme can be interpreted as a
discrete-time PID, in which the integral term
is updated only at fixed instants. Moreover,
this approach combines in an automatic way the
benefits of a PD control far from the destina-
tion and of an integral action close to the goal,
avoiding wind-up effects. As a further merit of
the scheme, one should consider that gains with
guaranteed convergence properties are easily se-
lected.

• The bounds (5) and (6) on the gravity terms
may be evaluated taking into account the max-
imum admissible payload, so to ensure ex-
act set-point regulation in all operating condi-
tions. Moreover, they can be directly obtained
through experimental trials.

• As a drawback, since each update of the feedfor-
ward term should be performed at steady-state,
the control scheme converges to the desired po-
sition in double infinite time. However, ulti-
mate boundedness of the error in finite time is
obtained by updating the feedforward term as
soon as joint variations definitely drop below a
given threshold, even before a complete stop.

• An interesting aspect is to estimate the distance
from necessity of the sufficient conditions (a–c).
This point can be investigated through simula-
tions and experiments. In our experience, the
above criteria are rather stringent.

4. DESIGN FOR A TWO-LINK

FLEXIBLE ROBOT

The design of gains in the iterative control al-
gorithm will be carried out for the two-link
lightweight manipulator, with a flexible forearm,
available at the Robotics Laboratory of our De-
partment.



70

700

700

1 - First motor
2 - Joint
3 - Shaft
4 - Ball bearings
5 - First link (rigid)
6 - Second motor
7 - Second link hub
8 - Second link (flexible)

5

6

1

8

3
4

2

300

= 100Ø7

700

Fig. 1 — The two-link flexible robot arm at DIS

The robot arm is a planar mechanism constituted
by two links, respectively 0.3 m and 0.7 m long,
connected by revolute joints, and mounted on a
fixed basement as shown in Fig. 1. The upper link
is rigid while the second link, weighting 1.8 kg,
is very flexible in the plane of motion but rela-
tively stiff with respect to bending in the orthog-
onal plane and torsion. Two d.c. motors are lo-
cated at the joints in a direct-drive arrangement
and deliver an actual peak torque of 7.2 Nm and
3.8 Nm, respectively. Incremental encoders with
20000 pulses/turn and d.c. tachometers with 12-
bit D/A conversion are available for joint position
and velocity feedback. To improve damping prop-
erties of arm dynamics, an analog velocity loop is
directly closed at the power amplifier level around
both joints. The forearm deformation is measured
at three different points along the link, by means
of an on-board optical transducer with 0.09◦ of an-
gular accuracy (Lucibello and Ulivi, 1989). The
manipulator is interfaced with a 386 PC control
computer, allowing to execute simple control laws
with sampling times of 5 msec.

A Lagrangian dynamic model of this flexible robot
arm was derived in (De Luca et al., 1990). A
modal analysis shows that two assumed modes
are sufficient to capture the relevant flexibility of
the second link, whose bending deflection w is ex-
pressed as

w(x, t) =
2∑
i=1

φi(x)δi(t) i = 1, 2. (29)

The following data characterize the arm:

�1 = 0.3 m

�2 = 0.7 m

J1Tot = 0.447 kg m2

J2Tot = 0.303 kg m2

Jh2 = 6.35 · 10−4 kg m2

mh2 = 3.1 kg

mp = Jp = 0

φ1(�2) = −1.446 m

φ2(�2) = 1.369 m

(30)
where the subscript ‘h2’ denotes the motor at the
second hub. The first two natural frequencies of
vibration are computed as:

f1 = 4.716 Hz, f2 = 14.395 Hz. (31)

The stiffness coefficients of the diagonal matrix K
are

k1 = 878.02 N, k2 = 8180.56 N, (32)

while the diagonal damping matrix D has ele-
ments:

d1 = 4.14 N·sec, d2 = 5.42 N·sec. (33)

Finally, the two following coefficients related to
the mode shapes appear in the model:

v1 = 0.48 kg·m, v2 = 0.18 kg·m, (34)

where

vi =

∫ �2

0

ρφi(x)dx, i = 1, 2. (35)

In order to include gravity effects in our exper-
iments, the manipulator base has been tilted by
γ � 6◦ from the horizontal plane. The associ-
ated model term g(q) is reported below (standard
abbreviations are used for sine and cosine):

gθ =

[
g1

g2

]
, gδ =

[
g3

g4

]
, (36)

with

g1 = A1s1 + A2s12 + (A3δ1 + A4δ2)c12

g2 = A2s12 + (A3δ1 + A4δ2)c12

g3 = A3s12

g4 = A4s12.

(37)

The constant coefficients are:

A1 = g0(m1�c1 + (m2 + mh2 + mp)�1)

A2 = g0(m2�c2 + mp�2)

A3 = g0(mpφ1(�2) + v1)

A4 = g0(mpφ2(�2) + v2),

(38)

being g0 = 9.8 sin γ the actual gravity acceler-
ation and �ci the distance from joint i to the
center of mass of link i. With this convention,
q = (θ1, θ2, δ1, δ2) = (0, 0, 0, 0) corresponds to the
straight downward position (of minimum poten-
tial energy). Note that gδ is only a function of θ,
as anticipated.

For evaluating α, the matrix (∂g/∂q) can be read-
ily computed. With the given data, a value
α � 2.85 results, attained for q = 0. The same
value is used as an upper bound for αθ and αδ.

5. EXPERIMENTAL RESULTS

In the first experiment, a motion from q = 0 (un-
deformed arm) to the straight position of maxi-
mum gravity force (π/2 of first joint clockwise ro-
tation) is commanded, using as proportional and
derivative gains

K̂P = diag {10.7, 11.6},
KD = diag {1.6, 0.85}.

(39)



The update (20) for ui is made at fixed intervals of
5 seconds. Figures 2–5 show the joint errors and
the applied torques over 14 seconds. In this case,
two updates are sufficient for regulating the error
to zero within 11 seconds. Note that both posi-
tion gains in (39) satisfy the combined sufficient
condition (b) and (c). The evolution of the tip de-
flection angle, as seen from the second link base,
is given in Fig. 6, indicating that a maximum de-
flection of ≈ 0.7 · 9 · (π/180) = 10 cm is attained
during motion while the residual tip deformation
is ≈ 2 cm.
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Fig. 2 — Position error for joint 1 (θd=(−π/2,0))
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Fig. 3 — Position error for joint 2 (θd=(−π/2,0))
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Fig. 4 — Applied torque for joint 1 (θd=(−π/2,0))
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Fig. 5 — Applied torque for joint 2 (θd=(−π/2,0))
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Fig. 6 — Tip deflection angle (θd=(−π/2,0))

In the second experiment, θd = (−3π/4, 0) is the
desired joint position to be reached from the same
initial configuration, using as gains

K̂P = diag {5.7, 6.2},
KD = diag {2.5, 1.34}.

(40)

Joint errors, input torques, and tip deflection an-
gle over 25 seconds are displayed in Figs. 7–11.
Four updates are now necessary for obtaining con-
vergence. No special care was taken for minimiz-
ing the duration of the motion: a faster global
transient could have been obtained by updating
sooner the feedforward u2, then u3, and finally u4.
This example shows the capability of learning the
exact gravity compensation also when the ‘wall’ of
maximum gravity force has to be overcome. No-
tice that intermediate steady-state torques lie now
on both sides of the final required values, indicat-
ing that the learning scheme is also able to reduce
feedforward terms when needed. In fact, the con-
trol scheme was found to converge without prob-
lems also when resetting the desired set point back
to the initial position θ = 0, where the required
compensation is zero (an equilibrium point).
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Fig. 7 — Position error for joint 1 (θd=(−3π/4,0))
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Fig. 8 — Position error for joint 2 (θd=(−3π/4,0))
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Fig. 9 — Applied torque for joint 1 (θd=(−3π/4,0))
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Fig. 10 — Applied torque for joint 2 (θd=(−3π/4,0))
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Fig. 11 — Tip deflection angle (θd=(−3π/4,0))

As a third example, the second motion was per-
formed halving the positional gains in (40). In
particular, K̂P = diag {2.85, 3.1} was used, which
satisfies the hypothesis (b) of (De Luca and Sicil-
iano, 1992b), but not the additional condition (c).
Figures 12–15 show 50 seconds of motion. A
persistent oscillatory behavior results as a conse-
quence of the poor learning capabilities: the robot
arm switches alternatively from a roughly hori-
zontal configuration, where the maximum torque
effort is stored, almost to the upward straight con-
figuration, where the error feedback torque coun-
terbalances the learned feedforward term so to
give a rather small net torque. Note also that, be-
ing λmin(KP ) > α, there is still a unique equilib-
rium configuration for each applied feedforward.
As a result, this choice of reduced gains gives a
quantitative information on how much the suffi-
cient conditions of our theorem could be relaxed
in general.
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Fig. 12 — Position error for joint 1

with reduced gains (θd=(−3π/4,0))
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Fig. 13 — Position error for joint 2

with reduced gains (θd=(−3π/4,0))
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Fig. 14 — Applied torque for joint 1

with reduced gains (θd=(−3π/4,0))
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Fig. 15 — Applied torque for joint 2

with reduced gains (θd=(−3π/4,0))

6. CONCLUSIONS

A simple iterative control scheme has been pre-
sented for set-point regulation of robots with flex-
ible links under gravity, without knowledge of the
robot dynamic model. The scheme generates ex-
act gravity compensation at the desired set point,
starting initially with a joint PD control law and
updating at discrete instants an additional feed-
forward term. A lower bound condition on the
magnitude of the proportional gain in the PD



control part is sufficient to prove global conver-
gence of the scheme. Experimental results have
shown the effectiveness of the approach, pointing
out that the convergence condition is also close to
be necessary.

The approach was implemented for the regulation
of a desired joint configuration of the arm; in this
respect, link deformation variables are not needed
neither for feedback nor for the feedforward up-
date. If the tip location is of interest, a similar
learning scheme can be set up, still closing the
feedback loop at the joint level but taking into
account the value of link deformation at interme-
diate steady states for the update of the feedfor-
ward term.
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