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Abstract: We consider the problem of estimating on line the nonlinear stiffness of flexible
transmissions in robots with variable stiffness actuation in agonistic-antagonistic configuration.
Stiffness estimation is obtained using a dynamic residual that provides a filtered version of
the unmeasured flexibility torques, combining it with a recursive least squares algorithm that
fits a polynomial model to the data, and proceeding then by analytical derivation. Only
motor position/velocity and link position measurements are used, while knowledge of dynamic
parameters is required for the motors but not for the links. The estimated stiffness function,
together with its first two derivatives with respect to the deformation, is used within a feedback
linearization controller designed for simultaneous tracking of desired trajectories for the links
and the device stiffnesses. Simulation results provided for the VSA-II device demonstrate the
perfomance of the estimation process and the effectiveness of the complete control approach.

Keywords: Flexible transmissions, Variable stiffness actuation, Stiffness estimation, Recursive
least squares, Feedback linearization control, Robot motion control

1. INTRODUCTION

For a safer physical Human-Robot Interaction (pHRI),
compliant elements are introduced in robot manipulators
at different levels in the structure, including end-effector
tools, link surfaces, and robot joints, transmissions, and
actuation devices (De Santis et al. (2008)). A compliant
(non-stiff) robot allows to milden the danger of injuries to
the human user due to accidental collisions. In particular,
the use of flexible transmissions reduces the effective in-
ertia seen during a dynamic impact with the environment
thanks to the mechanical decoupling between the relatively
large motor inertias and the inertia of the (lightweight)
robot links. On the other hand, flexible transmissions
will challenge the control performance in preventing vi-
brations, accurately tracking reference trajectories, and
limiting energy consumption (De Luca and Book (2008)).

One recent trend in pHRI is to design robots using variable
stiffness actuation (VSA) devices, see Bicchi and Tonietti
(2004); Tonietti et al. (2005); Wolf and Hirzinger (2008);
Catalano et al. (2010). In this context, the mechanical
stiffness of a robot joint is defined as the relation between
the displacement at the link side of the transmission and
the flexibility torque that arises in reaction. The joints
of an industrial robot equipped with harmonic drives
display a constant stiffness, i.e., the transmissions can
be modeled by springs that work in their linear elastic
domain. In contrast, in order to obtain a (passive or active)
variation of joint stiffness during robot motion, the flexible
transmission should behave in a nonlinear way. This can
be obtained either through a spring with nonlinear (e.g.,
cubic or exponential) deformation-torque characteristic or
with an elastic spring of constant stiffness mounted in a

nonlinear kinematic arrangement. In VSA-based robots,
two independent motors are used at each joint and motion
is transmitted through nonlinear flexible transmissions
assembled in various configurations. One example, which
will be used in this paper, is given by the VSA-II device
developed at the University of Pisa by Schiavi et al. (2008),
where the two actuators work in a parallel, agonistic-
antagonistic, bi-directional, and (nominally) symmetric
mode. With two actuators, it is possible to actively control
the motion of the links/load while modifying on line
(from softer to harder and viceversa) the stiffness of the
joints. A safe and energy efficient behavior is obtained,
e.g., by imposing a small stiffness at high link velocities
and a large stiffness at low velocities, as in the safe
brachistochrone planning solution introduced by Bicchi
and Tonietti (2004).

Feedback control laws intended for regulation and/or tra-
jectory tracking in robots with flexible joints typically need
a good knowledge of the robot dynamic parameters, in-
cluding joint stiffness, see, e.g., De Luca and Book (2008);
Tonietti et al. (2005). Under the ideal assumptions that a
perfect model is available and that the full robot state is
measured, De Luca et al. (2009) have shown that a single
link moving under gravity and driven by a VSA antagonis-
tic device can be exactly linearized by means of nonlinear
feedback. This result can be easily extended to the gen-
eral multi-link case. The proposed feedback linearization
design enables simultaneous and decoupled control of link
motion and joint stiffness, achieving exponentially stable
tracking of sufficiently smooth reference profiles for these
quantities.

Unfortunately, there are no available sensors for a direct
measure of stiffness. This physical quantity is usually
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computed from position and/or joint torque sensor data,
based on a nominal model and static calibration. This
procedure is especially critical in VSA-based robots, since
the stiffness is intrinsically a nonlinear function of the
joint deformation, its model may have a quite complex
(and uncertain) expression, and the rigid body dynamics
of the driven robot links is highly nonlinear. In addition,
since the device stiffness that should be controlled is not
directly measured, an intrinsic robustness limitation arises:
at best, the nominal or estimated stiffness output (and not
the actual one) can track the desired reference.

The above considerations motivated the need for on-
line methods of stiffness estimation in VSA-based robots.
While some authors have dealt with stiffness estimation in
the contact between the end-effector of a rigid robot and
the environment/human (see, e.g., Diolaiti et al. (2005);
Verscheure et al. (2009); Ludvig and Kearney (2009);
Coutinho and Cortesao (2010)), work on estimation of
variable, nonlinear stiffness of single- or double-actuated
flexible joints is still at the beginning. Grioli and Bicchi
(2010) have introduced a stiffness estimator based on the
knowledge of the flexibility torque, which is in turn explic-
itly measured by a sensor. Their estimator processes the
time derivative of the measured flexibility torque, which
may give problems due to noise. A batch (almost on-line)
estimation method that does not use joint torque sensing
nor acceleration estimation has been recently proposed
by Flacco and De Luca (2011).

In this paper, we present a new method for on-line stiffness
estimation for VSA-based robots and its use within a feed-
back linearization control scheme. The developments are
made for a single-dof agonistic-antagonistic system under
gravity, but can be easily extended to multi-dof robots.
For stiffness estimation, we will only use the knowledge
of dynamic parameters (inertia and viscous friction coeffi-
cient) of the two motors and measures of the motor posi-
tion and velocity and of the link position. Our estimation
approach uses two basic tools: i) a residual-based method,
as inherited from FDI techniques (see, e.g., De Luca and
Mattone (2003); Haddadin et al. (2008)), which provides
a filtered version of the (unmeasured) flexibility torques
at the joint, and ii) a standard Recursive Least Squares
(RLS) algorithm that fits the residual data to a general
parametrized model, which is chosen as a polynomial in
the transmission deformation. From this estimated model,
we can compute analytically the stiffness and its first
two derivatives with respect to the joint deformation, as
needed by the feedback linearization controller of De Luca
et al. (2009). Based on the certainty equivalence principle,
the resulting on-line estimates are fed into the nonlinear
controller. The proposed estimation/control approach is
summarized in the scheme of Fig. 1.

The paper is organized as follows. In Sect. 2 we present the
dynamic modeling framework. The residual design for on-
line estimation of the flexibility torque is given in Sect. 3.
The model-based estimation of transmission stiffness using
a RLS algorithm is discussed in Sect. 4, together with
an error recovery scheme to compensate for the filtering
action of the residual (Sect. 4.1). In Sect. 5, numerical
results on stiffness estimation are reported for the VSA-II
device moving a link under gravity. Finally, Section 6
revisits the feedback linearization control law introduced
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Fig. 1. Scheme of stiffness estimation and its use in
feedback linearization control

by De Luca et al. (2009) when on-line estimates of all
quantities related to stiffness are used, and illustrates the
obtained closed-loop performance by simulations.

2. DYNAMIC MODELING

Consider a flexible transmission that connects a driving
motor to the driven link. The deformation φ = q − θ of
the transmission is the difference between the motor angle
θ and the link angle q. A potential function Ue(φ) ≥ 0
is associated to the deformation φ, with Ue(φ) = 0 iff
φ = 0. The flexibility torque across the transmission is
τe(φ) = ∂Ue(φ)/∂φ, and based on physical arguments and
current implementations it can be assumed that

τe(0) = 0, τe(−φ) = −τe(φ), ∀φ. (1)
The stiffness of the transmission is defined as the variation
of the flexibility torque w.r.t. link displacements

σ(φ) =
∂τe(φ)
∂q

=
∂τe(φ)
∂φ

> 0. (2)

For a single motor driving a rigid link subject to gravity
through a (nonlinear) flexible transmission, the dynamic
model takes the form

Mq̈ +Dq q̇ + τe(φ) + g(q) = 0 (3)

Bθ̈ +Dθ θ̇ − τe(φ) = τ, (4)
where M > 0 and B > 0 are the link and motor inertias,
Dq ≥ 0 and Dθ ≥ 0 are the viscous friction coefficients at
the two sides of the transmission, τ is the torque provided
by the motor (after gear reduction), and g(q) is the gravity
torque acting on the link.

For an agonistic-antagonistic variable stiffness actuation
device, e.g., those in Bicchi and Tonietti (2004); Schiavi
et al. (2008), two motors are connected in parallel to the
link through two (possibly, different) nonlinear flexible
transmissions (see Fig. 2). With obvious notation, the
model becomes

Mq̈ +Dq q̇ + τe,t(φ) + g(q) = 0 (5)

Biθ̈i +Dθ,iθ̇i − τe,i(φi) = τi, i = 1, 2. (6)

Accordingly, the stiffnesses of the two transmissions are

σi(φi) =
∂τe,i(φi)

∂q
=
∂τe,i(φi)
∂φi

> 0, i = 1, 2. (7)

The total flexibility torque τe,t in the link dynamics (5) is a
separable function of vector φ = (φ1 φ2)T of transmission
deformations φi = q − θi, i = 1, 2, namely
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Fig. 2. Definition of variables in a VSA with agonistic-
antagonistic configuration, with two motors used to
drive a single link and modify the device stiffness

τe,t(φ) = τe,1(φ1) + τe,2(φ2). (8)
The total device stiffness is thus

σt(φ) =
∂τe,t(φ)
∂q

= σ1(φ1) + σ2(φ2) > 0. (9)

If the device is symmetric, one has the same functional
form τe,1 = τe,2 (and thus, σ1 = σ2), although these
functions are still evaluated with dynamically different
arguments (namely, φ1(t) 6≡ φ2(t)).

3. RESIDUAL APPROACH FOR FLEXIBILITY
TORQUE ESTIMATION

Our goal is to estimate the stiffness σi of each transmis-
sion, and thus the total stiffness σt of the VSA device
through (9). This can be accomplished without the need
of additional sensors other than the encoders available at
the motor and link sides for measuring position. While
motor velocities will be obtained by numerical differen-
tiation/filtering of position measures, we will not resort
to acceleration measurements (or to further derivation of
data) nor to torque sensing.

As a preliminary step 1 , the estimation of the flexibility
torque τe associated to a transmission or to the full device
is considered. We follow a residual-based design, which
allows in general to generate filtered versions of unknown
or uncertain dynamic terms. This tool, in conjunction
with the concept of generalized momentum, has been used
already for detecting and isolating actuator faults in multi-
dof robot arms (De Luca and Mattone (2003)).

For the problem at hand, we use the generalized mo-
mentum of the motor pθ = Bθ̇ and define the following
residual:

rτe
= Kτe

(
pθ +Dθθ −

∫ t

0

(τ + rτe
) dt1

)
, (10)

where Kτe
> 0 is a design parameter and rτe

(0) = 0 for
a system initially at rest. The evaluation of rτe

involves
only the motor variables θ and θ̇, as well as the applied
input torque τ . Note that no assumption is made on the
structure of τ , which can be either an open-loop command
or the torque provided by a linear or nonlinear feedback
law (in particular, one that uses the estimate itself).

1 For notational simplicity, in the following we will often omit the
subscripts i or t being these clear from the context.

With reference to eq. (6), it is easy to check that the
residual rτe

satisfies
ṙτe

= Kτe
(τe − rτe

) , (11)
resulting in a stable, first-order filter of the unknown
flexibility torque τe (i.e., of τe,i for the ith transmission).
In view of the following developments, a discrete-time
implementation of the residual (10) with Tustin rule will
be used. At time tk = kT , with T being the sampling time,
the residual rτe

(k) = rτe
(tk) is computed as:

Iτ (k) = Iτ (k − 1) +
τ(k) + τ(k − 1)

2
T

r(k) = Kτe

(
Bθ̇(k) +Dθθ(k)− Iτ (k)

)
rτe(k) =

2− TKτe

2 + TKτe

rτe(k − 1) +
2 (r(k)− r(k − 1))

2 + TKτe

.

(12)

For a VSA device having two flexible transmissions, we can
design an independent residual (10) for each transmission
from the motor side, and then use eq. (8) to obtain the
total flexibility torque. The same scheme applies in a
decentralized way for a robot with multiple joints driven
by VSA devices.

4. RECURSIVE LEAST SQUARES FOR STIFFNESS
ESTIMATION

In principle, the transmission stiffness could be obtained
from the time derivative of the measured flexibility torque

τ̇e(φ) =
∂τe
∂φ

φ̇ = σ(φ)φ̇, (13)

and by processing (13) so as to extrapolate the stiffness,
as proposed by Grioli and Bicchi (2010). Similarly, in the
absence of a torque sensor, one could use the residual rτe

in (10) as an estimate replacing the flexibility torque τe
in (13). However, this approach appears inadequate due to
measurement errors and noise introduced by the numerical
differentiation.

We propose instead to approximate the flexibility torque
with a nonlinear function of the transmission deformation
φ, parametrized by a n-vector of constant and still un-
known parameters α = (α1 . . . αn)T , i.e.,

τe(φ) ' f (φ,α) . (14)
If the vector α were known, the stiffness could be analyt-
ically computed from (2) and (14) as

σ(φ) =
∂f (φ,α)

∂φ
. (15)

The functional estimation of the transmission stiffness
is then converted into a parametric estimation of vector
α. Similarly, one can obtain analytically also successive
derivatives of the stiffness σ w.r.t. φ, which may be needed
for control purposes (see Sect. 6).

For the structure of f in eq. (14), we use a linear parame-
terization in α, i.e.,

f (φ,α) =
n∑
h=1

fh(φ)αh = F T(φ)α, (16)

where the row vector F T(φ) = ∂f/∂α is the associated
Jacobian. The set of basis functions fh, h = 1, . . . , n, and
its number n have to be chosen appropriately: polynomials
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of increasing order are a general and convenient choice. In
particular, taking into account the physical property (1) of
the flexibility torque, we select only the first n odd powers
of φ up to the order 2n− 1:

fh(φ) = φ2h−1, h = 1, . . . , n. (17)

To obtain an estimate α̂ of the parameter vector α, we
adopt a least squares method in discrete time. At time
tk = kT , the deformation φ(k) = φ(tk) and the resid-
ual rτe

(k) = rτe
(tk) are collected as data points. The

parameters estimate α̂ is chosen so as to minimize the
cost function E given by the sum of the squared differ-
ences between the observed residuals and the estimated
transmission flexibility torque, i.e.,

E =
1
2

p∑
k=1

(
rτe(k)− f (φ(k), α̂)

)2
, (18)

where p > n is a sufficient number of collected data points.
The solution of the estimation problem in batch form is

α̂ =

(
p∑
k=1

F (k)F T(k)

)−1( p∑
k=1

F (k) rτe
(k)

)
, (19)

where the Jacobian F T(k) is

F T(k) =
(
φ(k) φ3(k) . . . φ2n−1(k)

)
. (20)

Since on-line parameter estimation is more suitable for
control purposes, the estimate (19) should be updated
recursively at each sampling time. The standard Recursive
Least Squares (RLS) algorithm is

α̂(k) = α̂(k − 1) + ∆α̂(k), (21)
with

∆α̂(k) = L(k)
(
rτe(k)− F T(k)α̂(k − 1)

)
(22)

where

L(k) =
P (k − 1)F (k)

1 + F T(k)P (k − 1)F (k)
(23)

and
P (k) =

(
I −L(k)F T(k)

)
P (k − 1), (24)

being P (k) the n×n covariance matrix and I the identity
matrix. As opposed to (19), the recursive algorithm suffers
less from possible ill-conditioning of F . The algorithm is
initialized with an a priori estimate α̂(0) and a positive
definite (usually, diagonal) choice P (0) for the covariance
matrix. This matrix is typically initialized with large
values, considering no a priori knowledge about the true
parameter vector α. For a convergence analysis of the RLS
algorithm, see, e.g., Johnson (1988).

The degree n of the polynomial f (φ(k),α) in (16) should
be large enough to capture the nonlinearities of the trans-
mission flexibility torque, especially if large deformations
occur. Otherwise, even when the estimate converges and
the covariance matrix P becomes small, the RLS estimate
will no longer track efficiently the residual data (see also
the example in Sect. 5). The appropriate degree of the
polynomial approximation can be tested using a number
of indicators, the simplest of which is E itself in (18).

Summarizing, for any parametrized model (16) used to
approximate the flexibility torque, the current estimate
α̂(k) obtained with the RLS algorithm provides a stiffness
estimate given by

σ̂(k) =
∂f (φ, α̂(k))

∂φ
=

n∑
h=1

∂fh(φ)
∂φ

α̂h(k). (25)

Indeed, this stiffness estimation procedure can be applied
(simultaneously) to both transmissions of the VSA system,
yielding σ̂1(k) and σ̂2(k) and thus σ̂t(k) = σ̂1(k) + σ̂2(k)
for the total device stiffness, according to (9).

4.1 Residual Error Recovery (RER)

A simple improvement of the residual-based RLS estima-
tion of the flexibility torque, and thus of the transmission
stiffness, can be obtained as follows. From eq. (11), the
residual error can be expressed as

εr = τe(φ)− rτe
=

ṙτe

Kτe

. (26)

Therefore, a first possibility is to approximate the residual
error εr with backward differences in discrete time, namely
using

εr(k) =
rτe

(k)− rτe
(k − 1)

TKτe

. (27)

A second possibility is based on the approximate relation
ṙτe ≈ τ̇e(φ). (28)

Using (13), with the current estimate σ̂(k) given by (25)
and a measure of φ̇(k) = q̇(k) − θ̇(k), an estimate of the
residual error εr in (26) is provided at each step k by

εr(k) =
σ̂(k)φ̇(k)
Kτe

. (29)

The choice between (27) and (29) depends on the kind of
sensors used and on the measurement noise. In any event,
we can use εr(k) to compensate for the time lag introduced
by the residual, replacing (22) with

∆α̂(k) = L(k)
(
rτe

(k) + εr(k)− F T (k)α̂(k − 1)
)
. (30)

5. ESTIMATION RESULTS

We illustrate the performance of the proposed residual-
based RLS estimation of stiffness on the VSA-II device
developed by Schiavi et al. (2008). In this antagonistic
VSA device, the nonlinear characteristics of each of the
two flexible transmissions is obtained thanks to a pair of
4-bar linkages with linear springs. The flexibility torque of
each transmission can be modeled as

τe,i(φi) = 2 ki β(φi)
∂β(φi)
∂φi

, i = 1, 2, (31)

where ki > 0 is the constant stiffness of the spring in the
i-th transmission, and

β(φi) = arcsin
(
Ci sin

(
φi
2

))
− φi

2
, i = 1, 2, (32)

being Ci > 1 a geometric non-dimensional parameter of
the linkage. The total flexibility torque τe,t acting on the
link dynamics (5) is given by eq. (8). Note that in the
model of τe,i the two uncertain parameters ki and Ci
appear, respectively, in a linear and nonlinear way.

The nominal dynamic parameters for the simulations of
this robotic system are those reported by Schiavi et al.
(2008). In particular, the four parameters that charac-
terize the flexible transmissions are Ci = 1.75 and ki =
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Fig. 4. Comparison of residual rτe in (12) and nominal
flexibility torque τe for the first (a) and second (b)
transmission

500 [N·mm/rad], for i = 1, 2. Applying for 10 sec the open-
loop torques
τ1 = 10 · sin 0.1π τ2 = 10 · sin 0.2π [N·mm], (33)

starting from an undeformed equilibrium configuration
with the link pointing downward (under gravity), we
obtained the transmission deformations φ1 and φ2 shown
in Fig. 3. Figure 4 compares the associated residuals
computed by (12), using Kτe = 300 and a sampling time
T = 0.1 msec, with the evolution of the nominal flexibility
torques of the two transmissions. No differences can be
appreciated in practice.

For stiffness estimation, the residual-based RLS algo-
rithm (21–24) has been applied with n = 4 polynomial
terms in (16–17), an initial parameter estimate α̂(0) = 0
and an initial 4 × 4 covariance matrix P (0) = 106I. For
each of the two VSA-II transmissions, Figures 5 and 6 show
the time evolution of the estimated stiffness in comparison
with the nominal one and a few snapshots (at t = 0.5, 1,
and 10 sec) of how the approximating function progresses
toward the nominal stiffness characteristic. Convergence
to the actual current value of stiffness occurs within one
third of the total motion time. On the other hand, the
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Fig. 5. Comparison of estimated and nominal stiffness (a)
and the approximating stiffness function at selected
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Fig. 6. Same plots as in Fig. 5 for the second transmission

curve fitting of the complete characteristics is poor for
deformations that are larger in module than 0.6 rad. This
should not be unexpected since such large deformations
(see Fig. 3) do not occur during the specific motion ob-
tained under the torque commands (33).

Next, we have evaluated the effects of the residual error
recovery scheme of Sect. 4.1 in the RLS stiffness estimator.
Figures 7 and 8 show the benefit obtained when using (30).
The time needed to converge to the the nominal stiffness
is largely reduced, while spurious transient phenomena
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on the approximating function are eliminated —compare,
e.g., the situation at t = 1 sec in Figs. 5(b) and 7(b).

Finally, to illustrate the problems of an under-parametrized
model, we report in Fig. 9 the results on stiffness estima-
tion when the number of terms in the polynomial (16–17)
approximating the flexibility torque is reduced to n = 2.
A permanent and recurrent error is clearly left.

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Time (s)

S
ti
ff

n
e

s
s
 (

N
m

m
/r

a
d

)

 

 

Estimated

Actual

(a)

0 1 2 3 4 5 6 7 8 9 10
0

50

100

150

200

250

300

350

Time (s)

S
ti
ff

n
e

s
s
 (

N
m

m
/r

a
d

)

 

 

Estimated

Actual

(b)

Fig. 9. Stiffness estimation for the VSA-II device when
using n = 2 terms in the polynomial approximation
(16–17); first (a) and second (b) transmission

6. FEEDBACK LINEARIZATION CONTROL

In this section, we combine the proposed on-line stiffness
estimator with the feedback linearization (FBL) controller
for the VSA-II robotic system introduced by De Luca
et al. (2009). For the details on the feedback linearization
design, the reader is referred to the original publication.
The linearizing coordinates for system (5–6) are the link
position q together with its first three time derivatives,
and the device stiffness σt with its first derivative. The
state x = (q, q̇, θ1, θ̇1, θ2, θ̇2) is thus diffeomorphic to the
transformed state z = (q, q̇, q̈, q[3], σt, σ̇t). Therefore, the
dynamics of the VSA-II system can be rewritten as(

q[4]

σ̈t

)
= A(x)

(
τ1
τ2

)
+ b(x), (34)

where A(x) is the so called decoupling matrix

A(x) = Γ

 σ1 σ2

∂σ1

∂φ1

∂σ2

∂φ2

 , (35)

being Γ a constant, diagonal, and invertible matrix, and
b(x) a computable function of x. The complete expressions
of Γ and b(x) are given in Appendix A. It can be shown
that the decoupling matrix is always invertible provided
that φ1 6= φ2, a condition that can be safely avoided by a
suitable pre-charging of the system.

The dynamic equations (34) can be exactly linearized
(and input-output decoupled) using the nonlinear state
feedback law(

τ1
τ2

)
= A−1(x)

((
v1
v2

)
− b(x)

)
, (36)

where v1 and v2 are the new control inputs. These can
be designed for stable trajectory tracking purposes on
the linear and decoupled side of the problem. In fact,
the closed-loop system given by (34) and (36) is made
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by two independent chains of input-output integrators
(four integrators between v1 and the link position q and
two between v2 and the device stiffness σt). The tracking
errors with respect to smooth reference trajectories qd(t)
for the link position and σt,d(t) for the device stiffness is
exponentially stabilized by a PD3 error feedback law for
v1 (with suitable positive gains characterizing a Hurwitz
polynomial) and a PD error feedback law for v2 (with
positive gains), plus the feedforward terms, respectively
q
[4]
d (t) and σ̈t,d(t).

Assume now that all dynamic parameters in eqs. (5–6) are
known, except for those related to the transmission flexi-
bility. The unknown components required for implement-
ing the feedback linearization law (36) are the flexibility
torques τe1 and τe2 and the transmission stiffnesses σ1 and
σ2, together with their first and second derivatives w.r.t.
the deformations φ1 and φ2. More explicitly, we need ∂σ1

∂φ1
,

∂σ2
∂φ2

, ∂2σ1
∂φ2

1
, and ∂2σ2

∂φ2
2

. The last two quantities are used in
the evaluation of b(x), see again Appendix A.

Using the proposed estimator, for each transmission of the
VSA-II we can evaluate (dropping the index i = 1, 2)

τ̂e(φ) = f (φ, α̂) =
n∑
h=1

φ2h−1 α̂h (37)

σ̂(φ) =
n∑
h=1

(2h− 1)φ2h−2 α̂h (38)

∂σ̂(φ)
∂φ

=
n∑
h=2

(4h2 − 6h+ 2)φ2h−3 α̂h (39)

∂2σ̂(φ)
∂φ2

=
n∑
h=2

(8h3 − 24h2 + 22h− 6)φ2h−4 α̂h, (40)

and insert these in place of the unknown terms. The
integration of the proposed estimator within the FBL
controller leads to the scheme shown in Fig. 1.
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Fig. 10. Reference and actual link position with FBL con-
trol using stiffness estimation (a) and link trajectory
tracking error (b)
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Fig. 11. Reference, estimated, and actual stiffness trajec-
tory obtained with FBL control using stiffness estima-
tion (a), reference−estimated stiffness control error
(b), and stiffness estimation error (c)

In the performed simulations, we have used the same
reference trajectories, linear control gains, and initial er-
ror conditions used by De Luca et al. (2009). For pre-
charging the system, in order to avoid a singularity of the
decoupling matrix, the commands τ1 = 1.2 [N·mm] and
τ2 = −1.2 [N·mm] have been applied for 0.1 sec, before
turning the FBL controller on. Figure 10 shows the point-
to-point motion of the link and its reference trajectory,
as well as the small obtained position error. The reference
stiffness trajectory, the controlled evolution of the stiffness
based on its estimation, and the actual (nominal) stiffness
evolution are given in Fig. 11, together with the errors
between the reference and estimated stiffness output and
between the actual and estimated stiffness. When the
FBL control is activated, the error between the reference
and the estimated stiffness output is extremely small and
remains practically negligible thanks to the control action
(less than 0.01% in Fig. 11(b)). Also the stiffness estima-
tion error (actual vs. estimated) is relatively small, with a
maximum of about 2% (Fig. 11(c)).

We conclude this section with a remark on the closed-
loop stability of the complete estimation-control scheme.
While a formal proof cannot be provided at this stage,
the exponential stability of the flexibility torque estimator,
the fast convergence of the RLS stiffness estimator with a
sufficiently rich parameterization and under persistency of
excitation, as well as the exponential tracking properties
of the feedback linearization control in nominal conditions,
are fundamental features that allow to predict that prac-
tical stability is guaranteed.
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7. CONCLUSIONS

A novel on-line stiffness estimation method for robots
with variable stiffness actuation in agonistic-antagonistic
configuration has been proposed, and its output has been
combined with an advanced motion/stiffness controller
based on feedback linearization and input-output decou-
pling. Since the stiffness of each transmission is estimated
independently and locally at each motor side, the esti-
mator requires no information on the link dynamics and
limited sensing, in particular no joint torque sensor. The
integration of the stiffness estimator with the feedback
linearizing controller has been presented for a single-link
device (also with non-symmetric dynamic and flexibility
properties), but can be extended to the case of multi-link
robots using VSA in a straightforward way.

After the satisfactory results obtained in simulations, we
are planning an experimental verification on the VSA-II
system, in collaboration with the University of Pisa. More-
over, we are currently extending the estimation approach
also to other VSA configurations, e.g., using harmonic
drives with variable stiffness (Wolf and Hirzinger (2008);
Catalano et al. (2010)). In Flacco et al. (2011), we present
preliminary experiments on the stiffness estimation for the
IIT AwAS, a VSA device in serial configuration where a
primary motor controls link motion and a secondary motor
is used to adjust stiffness.
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Appendix A. FEEDBACK LINEARIZATION TERMS

The remaining terms of the feedback linearization law (36)
of the VSA-II system are given. We have

Γ =

 1
BM

0

0 − 1
B

 , (A.1)

while, for b(x) = ( bq(x) bσ(x) )T ,

bq(x) = − 1
M

(
σ1

B

(
Dθ θ̇1 − τe1

)
+
σ2

B

(
Dθ θ̇2 − τe2

)
+ (σ1 + σ2 +Dq) q̈ +

∂σ1

∂φ1
φ̇2

1 +
∂σ2

∂φ2
φ̇2

2 + g̈(q)
)

(A.2)
and

bσ(x) = − 1
B

(
∂σ1

∂φ1

(
τe1 −Dθ θ̇1

)
+
∂σ2

∂φ2

(
τe2 −Dθ θ̇2

))
+
(
∂σ1

∂φ1
+
∂σ2

∂φ2

)
q̈ +

∂2σ1

∂φ2
1

φ̇2
1 +

∂2σ2

∂φ2
2

φ̇2
2.

(A.3)

The link acceleration q̈, which appears explicitly in (A.2)
and (A.3) and through g̈(q) in (A.2), is evaluated from
eq. (5) and will thus depend also on τe,t(φ).
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