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Closed-Form Dynamic Model of Planar
Multilink Lightweight Robots

Alessandro De Luca, Member, IEEE, and Bruno Siciliano, Member, IEEE

Abstract— Closed-form equations of motion are presented for
planar lightweight robot arms with multiple flexible links. The
kinematic model is based on standard frame transformation
matrices describing both rigid rotation and flexible displacement,
under small deflection assumption. The Lagrangian approach is
used to derive the dynamic model of the structure. Links are
modeled as Euler-Bernoulli beams with proper clamped-mass
boundary conditions. The assumed modes method is adopted in
order to obtain a finite-dimensional model. Explicit equations
of motion are detailed for a two-link case assuming two modes
of vibration for each link. The associated eigenvalue problem
is discussed in relation with the problem of time-varying mass
boundary conditions for the first link. The model is cast in a
compact form that is linear with respect to a suitable set of
constant parameters. Extensive simulation results are included
that validate the theoretical derivation.

I. INTRODUCTION

IGHTWEIGHT MECHANICAL STRUCTURES are ex-

pected to improve performance of robot manipulators
with typically low payload-to-arm weight ratio. The ultimate
goal of such robotic designs is to achieve fast and dexterous
motion as opposed to slow and bulky motion of conventional
industrial robots. Although the transfer to applications of
advanced research findings in this field is still in its infancy,
we believe that the realization of effective lightweight robots
may prove very promising in a number of innovative arcas
including manipulation with very long arms, teleoperation, and
space robotics.

In order to fully exploit the potential advantages offered
by lightweight robot arms, one must explicitly consider the
effects of structural link flexibility and properly deal with
(active and/or passive) control of vibrational behavior. In this
context, it is highly desirable to have an explicit, complete,
accurate dynamic model at disposal. The model should be
explicit to provide a clear understanding of dynamic interaction
and coupling effects, to be useful for control design, and to
guide reduction and/or simplification based on terms relevance.
The model should be complete in that it is simple enough
(e-.g., finite- versus infinite-dimensional) while inheriting the
most relevant properties; viz., many of the explicit models
were developed for one-link flexible arms, not showing the
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full nonlinear aspects of the general case. The model should
be accurate as required by advanced model-based nonlinear
controllers (e.g., inversion techniques [1], output regulation
[2], adaptive control [3]) and by off-line optimal trajectory
generation [4].

The techniques employed for modeling open serial kine-
matic chains containing one or more flexible members adopt
the same formulations as in the case of rigid links, i.c.,
Newton—-Euler, Lagrange—Euler, and Kane. All of them are
based on a suitable kinematic description of both rigid and
deflected motions.

As for the inherently distributed character of the flexible
part of the system, finite-dimensional models are required in
order to approximate the “true” infinite-dimensional model
[5]. In any case, link elasticity is usually characterized as a
linear effect. The most used approximate descriptions of the
deflection are based on assumed modes [6], [7], finite elements
[8], [9], or Ritz—Kantorovich expansions [10], with different
implications on model complexity and accuracy.

On one hand, explicit models have been derived for the case
of a one-link flexible arm [6], [7], [11], {12]. In this regard, it
can be said that the one-link case is now well understood, but
its simplicity prevents from thoroughly understanding the full
nonlinear interactions between rigid and flexible components
of arm dynamics.

On the other hand, various formalisms have been proposed
for dynamic modeling of multilink flexible arms [13]-[15].
To cope with the computational burden of the general case,
symbolic manipulation languages prove helpful for automatic
model generation [16]-[18]. Besides, a number of numerical
software packages have been developed for simulation pur-
poses [19], [20]. One intrinsic limitation of resorting to general
purpose techniques and/or programs, however, is that the
resulting model is either only implicitly specified or presented
in a poorly structured form. In any case, the control engineer
is offered scarce insight into the origin of the single dynamic
terms.

The aim of this work is to derive a dynamic model of
multilink flexible robot arms, limiting ourselves to the case
of planar manipulators with no torsional effects. The main
emphasis is on obtaining a customized model that satisfies
the aforementioned requirements about explicitness, complete-
ness, and accuracy. As a result, we can arrange the equations of
motion in a computationally efficient closed form that is also
linear with respect to a suitable set of constant mechanical
parameters.

In particular, the model is derived adopting the Lagrangian
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technique in conjunction with the assumed modes method.
Links are modeled as Euler—Bernoulli beams satisfying proper
clamped-mass boundary conditions. A payload is added at the
tip of the outer link, while hub inertias are included at the
actuated joints.

As a case study, a two-link arm is considered using two
modes of bending deformation for each link. It is argued that
this case is general enough to provide a basis for analyzing
more complex structures, since most of the possible dynamic
interaction effects are present. Preliminary results can be found
in [21], [22]. In this framework are also the contributions
reported in [23]-[26]. Further, we investigate the implications
of having time-varying mass boundary conditions for the
eigenvalue problem associated with the first link. A set of
simulation results are provided to validate the overall modeling
in forward dynamics.

We would like to remark that for the case of spatial
manipulators, including torsional and coupled deformation
effects, derivation of closed-form dynamic models is much
more complex and requires use of symbolic manipulation
programs. Therefore, extensions to three-dimensional cases
are not pursued here since they are believed to go beyond
the present desire of obtaining a complete, explicit, well-
understood model.

The paper is organized as follows: Section II gives the
kinematic description in a recursive form for planar multilink
flexible arms. The typical steps involved in the Lagrangian
method are presented in Section IIL, i.e., derivation of kinetic
and potential energy. Section IV is devoted to the modeling
of link deflection by means of assumed mode shapes with
proper boundary conditions. The closed-form equations of
motion are assembled in Section V. The explicit dynamic
model for the two-link flexible arm is given in Section VI, with
the expressions of model coefficients detailed in Appendix.
Section VII reports simulation results for the system, both in
free and forced evolution. Conclusions are drawn in the final
section.

II. KINEMATIC MODELING

Consider a planar n-link flexible arm with rotary joints
subject only to bending deformations in the plane of motion
(torsional effects are neglected); Fig. 1 shows a two-link
example. According to [13], the following coordinate frames
are established: the inertial frame (Xo,Yp), the rigid body
moving frame associated to link ¢ (X;,Y;), and the flexible
body moving frame associated to link 4 ()?“f/z) The rigid
motion is described by the joint angles §;, while y;(x;) denotes
the transversal deflection of link 7 at abscissa z;, 0 < x; < 45,
being ¢; the link length.

Let ip;(z;) = (z; y:(2:))" be the position of a point along
the deflected link i with respect to frame (X;,Y;) and p; be
the absolute position of the same point in frame ()?0,}70).
Also, ‘ri;1 = ‘p;(£;) indicates the position of the origin of
frame (X;,1,Y; 1) with respect to frame (X;,Y;), and r; its
absolute position in frame ()?Q,f/g).

Fig. 1.

A planar two-link flexible arm.

The joint (rigid) rotation matrix A; and the rotation matrix
E; of the (flexible) link at the end-point are, respectively,

e 1 _yée
g=l) o

where y, = (8y:/0zi)|s,¢,, and the linear approximation
arctan v, ~ y/,, valid for small deflections, has been made.
This also implies that all second-order terms involving prod-
ucts of deformations are neglected. Therefore, the previous
absolute position vectors can be expressed as

A= ]:cos 9;

sin 8;

—sinel}

cos b;

pi=ri+Wip, rp =i+ Wit (2)
where W is the global transformation matrix from ()/(:0, ?0)
to (X;,Y:), which obeys to the recursive equation
W,=W._E_ A =W_1A, Wo=I1 (3

On the basis of the previous relations, the kinematics of any
point along the arm is fully characterized.

For later use in the arm’s Kinetic energy, also the differen-
tial kinematics is needed. In particular, the (scalar) absolute
angular velocity of frame (X;,Y;) is

7 i—1
Q=D 0+ ik
=1 k=1

where the upper dot denotes time derivative. Moreover, the
absolute linear velocity of an arm point is

)

P =1+ Wip, + Wi'p, Q)

and *7;11 = *p,(£;). Since the links are assumed unextensible

(& = 0), then “p;(z;) = (0 y;(z;))T. The computation of (5)
takes advantage of the recursions

W, =W,_1A+W,_1 A, W, =W.E+W.E.. (6)
Also, note that

A; = SA;0;, E, =8y,
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III. LAGRANGIAN MODELING

The dynamic equations of motion of a planar n-link flex-
ible arm can be derived following the standard Lagrangian
approach, i.e., by computing the kinetic energy T and the
potential energy U of the system and then forming the La-
grangian L = T - U.

The total kinetic energy is given by the sum of the following
contributions:

n n
T=> T+ Tu+T, 8)
i=1 i=1
The kinetic energy of the rigid body located at hub ¢ of mass
mp; and moment of inertia Jp; is
Thi = %mhi'i?h + %Jhidf ©)
with ¢; as in (4), the kinetic energy pertaining to link i of
linear density p; is

1
T ==

: (10)

£
/ pi(e)p] (x)p;(zi)dz:,
0
and the kinetic energy associated to a payload of mass m,, and
moment of inertia J, located at the end of link n is
1 7 . 1. . .

T, = §mp"'rl;+1rn+l + §Jp(an + yw’w)2' (11)
Remarkably, the evaluation of the expressions in (9)—(11)
exploits the following identities:

ATA, =ETE; =8"S=1, (12a)

ATA; = Sb;,  ETE; = (Iy;. + S)¥e. (12b)

In absence of gravity (horizontal plane motion), the potential
energy is given by
SR P Pyi(zi)]”
U=) U=) = E@i(z:) | —55—| das,
> >3 ) (Pt | ] e 03

where U; is the elastic energy stored in link ¢, being (ET);
its flexural rigidity.

Notice that no discretization of structural link flexibility
has been made so far. As a result of the aforementioned
expressions, the overall Lagrangian will be a functional, due
to the inherent distributed nature of the dynamical system.
This “exact” Lagrangian can be shown to generate an infinite-
dimensional model, which is of limited use for simulation
and/or control purposes. Therefore, a finite-dimensional repre-
sentation of link deflection is introduced next.

IV. ASSUMED MODE SHAPES

Links are modeled as Euler-Bernoulli beams of uniform
density p; and constant flexural rigidity (EI);, with deforma-
tion y;(z;,t) satisfying the partial differential equation

Otyi(zi,t) | Oyi(wit) _

(B =5 ot

0, r=1,...

M.

(14)
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In order to solve this equation, proper boundary conditions
have to be imposed at the base and at the end of each link.

It is reasonable to suppose that the inertia of a lightweight
link is small compared to the hub inertia, and then constrained
mode shapes can be used [11]. In particular, we assume each
slewing link to be clamped at the base

(15)

Furthermore, experiments [7] and recent analytical studies [27]
have shown that the clamped assumption is even enforced
when closing a feedback control loop around the joint.

Concerning the remaining boundary conditions, it is usually
assumed that the link end is free of dynamic constraints, due
to the difficulty of accounting for time-varying or unknown
masses and inertias. We argue, however, that it is more correct
to consider mass boundary conditions representing balance of
moment and shearing force, i.e.,

Bzyi(x,-, t)
8.’1,‘1'2

yi(O,t) =0, y/(O,t) :0, 1= 1,....,77,.

(ET);

z,=¥;
Li dt2 8171' z,=L;
d?
- (MD)iW(yi(xi,t)leli)
633/1'(1‘,‘, t)
81‘1‘3

(ED);

z;=¢;

izt _,.)
d_2 ayi (zia t)
dt2 8.’1)1

i=1,...,n,

d2
= Mp;—
Lige

+ (MD);

T =E,)

where Mj; and Jp; are the actual mass and moment of
inertia at the end of link i. Moreover, (MD); accounts for
the contributions of masses of distal links, i.e., noncollocated
at the end of link ¢, weighted by the relative distance from
axis Y; (shearing axis at the end of link ). Incidentally, these
contributions are often not included in mode shape analyses.

A finite-dimensional model (of order m;) of link flexibility
can be obtained by the assumed modes technique [5]. Exploit-
ing separability in time and space of solutions to (14), the link
deflection can be expressed as

(16)

vi(zi, t) = Z bij(@i)6i;(t) an
j=1

where 6;;(t) are the time-varying variables associated with the
assumed spatial mode shapes ¢;;(x;) of link 7. Therefore, each
term in the general solution to (14) is the product of a time
harmonic function of the form

6i(t) = exp(jwi;t) (18)
and of a space eigenfunction of the form

¢ij(xi) =C1ijsin(Bijzi) + Caij cos(Bijxi) + Cs,j sinh(Bi;z:)
+ 04’1']' COSh(ﬁij(L‘i). (19)
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In (18), wi; is the jth natural angular frequency of the
cigenvalue problem for link 4, and in (19), 8% = w?pi/(ET);.

Application of the aformentioned boundary conditions al-
lows the determination of the constant coefficients in (19).
The clamped conditions at the link base yield

Csi; = —Ch,ij, Cuij = —Cayj (20
while the mass conditions at the link end lead to a homoge-

neous system of the form

] -

The so-called frequency equation is obtained by setting to zero
the determinant of the (2 x 2) matrix F(f;;) that depends
explicitly on the values M, Jri, and (MD); [25]. The first
m; roots of this equation give the positive values 3;; (and thus
w;;) to be plugged in (19). Using these values, the coefficients
Ci; and Cy; are determined up to a scale factor that is
chosen via a suitable normalization. Further, the resulting
eigenfunctions ¢;; satisfy a modified orthogonality condition
that includes the actual My;, Ji;, and (MD);.

Notice that, if the arm has only one link, My, and Jp;
are directly the payload mass and inertia, while the additional
terms on the right-hand side of (16) vanish (MD), = 0)
only when the payload is balanced at the tip. For the generic
intermediate 4th link in an open kinematic chain arrangement,
instead, M is the constant sum of all masses beyond link i,
but Jr; and (MD); depend on the position of successive links.
Thus, for exact mode shapes computation, these quantities
should be updated as functions of the arm configuration; this
may considerably increase the complexity of model derivation,
beside overloading the computational burden of on-line execu-
tion [16]. Therefore, some practical approximation leading to
constant—although nonzero—boundary conditions at the link
end might be in order.

For instance, a convenient position is to set (MD); = 0
and compute Jy; for a fixed arm configuration. In this case, it
can be shown that det(F) = 0 results into the transcendental
equation [1]:

(eay)

(1 + cos(B;;4:) cosh(ﬁijéi)>
_ MpiBi;
Pi
JLiﬂijs . .
— p_ (Sln(ﬁijé,‘) COSh(ﬂijgi) + COS(ﬁijZi) Slnh(ﬁzjfi)>
MpiJriBij*
+ L plé ﬁ]

1

(Sin(ﬁuei) COSh(ﬂij€i> - COS(ﬁljfi) Slnh(ﬁl]&))

(1 - COS(,@ijZi)COSh(,BijZi)) =0. (22)

The two-link case study worked out in Section VI will provide
further insight into the problem of nonconstant boundary
conditions.

V. CLOSED-FORM EQUATIONS OF MOTION

On the basis of the discretization introduced in the previous
section, the Lagrangian L becomes a function of a set of N

generalized coordinates {g;(t)}, and the dynamic model is
obtained by satisfying the Lagrange-Euler equations
7N7

i=1,... (23)

where {f;} are the generalized forces performing work on
{a:}.

Under the assumption of constant mode shapes, it can be
shown that the spatial dependence present in the link kinetic
energy term (10) can be resolved by the introduction of a
number of constant parameters, characterizing the mechanical
properties of the (uniform density) links [17], [28]:

£;
m; =/ pidz; = pils, (24a)
0
ev
i 1
ti= o [ oo = 5t (240)
miJo 2
& 1
Joi = / pizitdz; = gmﬂfiQ, (240)
0
2
Uij:/ pidiz(xi)dz;, (2440)
0
£;
wijz/ pithij(xi)zides, (24¢)
0
2
Zijk =/ pidi; (@i )pin(ws)dzs, (241)
0
¢;
kijk :/ (ED)i¢ij(zi)pir(zi)dz;. (24g)
0

Therefore, m; is the mass of link %, d; is the distance of center
of mass of link ¢ from joint ¢ axis, J,; is the inertia of link
i about joint ¢ axis, v;; and w;; are deformation moments of
order zero and one of mode j of link 4, and z;;x is the cross
moment of modes j and k of link i. Also, k;jx is the cross
elasticity coefficient of modes j and k of link 4. The actual
numerical values of the previous parameters can be computed
off-line. Existing CAD packages, which are available for solid
modeling, conveniently serve this purpose for more complex
link shapes.

As a result of this procedure, the equations of motion for
a planar n-link flexible arm can be written in the familiar
closed form

B(q)i + h(g.q) + Kg=Qu (25)
where ¢ = (61...0,011...61,my -+ Bn1- o bpm, )T s the
N-vector of generalized coordinates (N = n + 3, m;), and
w is the n-vector of joint (actuator) torques. B is the positive-
definite symmetric inertia matrix, h is the vector of Coriolis
and centrifugal forces, K is the stiffness matrix, and @ is the
input weighting matrix that is of the form rnxn Onx( N_n)]T
due to the clamped link assumption. If desired, joint viscous
friction and link structural damping can be added as D, where
D is a diagonal matrix.

It should be remarked that orthonormalization of mode
shapes implies convenient simplifications in the diagonal
blocks of the inertia matrix relative to the deflections of each
link, due to the particular values attained by 2;; in (24f). Also,
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Fig. 2. (a) Mode shapes for link 1 (no payload). (b) Mode shapes
for link 2 (no payload)

the stiffness matrix becomes diagonal (K; = ... = K, =
0; Kpi1y. .-, Kn > 0) being k;jx = 0 for j # k in (24g).

Regarding the components of h, these can be evaluated
through the Christoffel symbols, i.e.,

18Bjk).'.

hi = - G54k (26)

N N 9B
2 Og;

TS\ n

VI. ExpLICIT DYNAMIC MODEL OF A
Two-LINK FLEXIBLE ARM

We present now the explicit finite-dimensional dynamic
model of a two-link flexible arm (n = 2) with two assumed
mode shapes for each link (m; = mg = 2). Thus, the vector of
Lagrangian coordinates reduces to ¢ = (0192611612621522)T,
ie., N = 6. This reduced order model is sufficient to
encompass the relevant flexibility issues occurring in practical
experimental control of lightweight manipulators, with limited
bandwidth actuators.
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Fig. 3. (a) Mode shapes for link 1 (nominal payload). (b) Mode shapes for
link 2 (nominal payload).

As pointed out in the previous sections, the process of
mode shapes orthonormalization is of great importance for
model simplification. In this case, it can be shown that the
contributions to kinetic energy due to deflection variables are

{factor of 62} = zi11, (27a)
{factor of 25,‘151‘2} = [¢i1,e ¢§1,e}
[ M 3(MD); Gie b
%(MD)l JLi 226 112
@27b)
{factor of 6%)} = ziz2, (27¢)
where ¢;; e = ¢ij(Ti)|a,=¢, and ¢}; . = ¢} (@i)|ai=ei> 1,7 =

1,2. Equations (27a)—(27c) are obtained expanding terms (10)
and (11) by using (4) and (5). Accounting for separability
(17) then leads to expressions for the factors of the quadratic
deflection rate terms, in which the parameters defined in (24f)
and the mass coefficients on the right-hand side of (16) can
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(a) Mode shapes for link 1 (double payload). (b) Mode shapes for
link 2 (double payload).

Fig. 4.

be identified. It is found that for link 1:

Mp1 = ma +mps + my
Jir = Joo + Jna + Jp + myls,
(28)
(MD); =(mads + mpls) cos by — [(va1 + Mpa1 e )21
+ (v22 + Mpag )22 Sin bs.

Notice that in the considered case of only two links, Jz; is a
constant. For more than two links, Jz; will become a function
of the generalized coordinates of link 3 and following ones.
On the other hand, for link 2:
ML2 = Myp, JL2 = Jp, (MD)2 =0. (29)
A convenient normalization of mode shapes is accomplished
by setting:
(30

Zijj = My, Zv] = 112

This also implies that the nonzero coefficients in the stiffness
matrix K take on the values wfj m;. We stress that, if the exact
values for the boundary conditions in (16) (i.e., the expressions
provided by (28) and (29)) were used, the natural orthogonality
of the computed mode shapes would imply that {factor of
26;16i2} is zero for both links.

Regarding link 2, use of (29) automatically ensures the
“correct” orthogonality of mode shapes. On the other hand, the
issue is more critical for link 1 because of the off-diagonal term
(MD),, which varies with the arm configuration. This implies
that the mode shapes—which are spatial quantities—would
become implicit functions of time, thus conflicting with the
original separability assumption (!). In particular, it can be
seen that when the second link is stretched out (§2 = 0),
(MD); reduces to mody + myfo. When the second link is
at a right angle with the first (/2 = £7/2), (MD); becomes
Fl(va1 +mpdai,e)b21 + (Vaz + mpdaz ¢ )822], so that the actual
mode shapes of the first link become themselves functions
of the time-varying variables describing the deflection of the
second link.

A common approximation in computing the elements of
the inertia matrix for flexible structures is to evaluate kinetic
energy in correspondence to the undeformed configuration.
In our case, this is equivalent to neglecting the second term
of (MD); in (28), which is an order of magnitude smaller
than the first term. Accordingly, (MD); can be rendered
constant for a fixed arm configuration. In particular, taking
6 = £7/2 leads to (MD); = 0, and thus eigenfrequencies
can be computed through (22). This is equivalent to having
zeroed only that portion of {factor of 26,,6:2} generated by
the constant diagonal terms, i.e.,

[f11,02Bl1.c] [MD“ JH {"5,“‘6

12,e

+212=0.  (31)

This will be seen to produce nonzero off-diagonal terms in the
relative block of the inertia matrix.

The resulting model is cast in a computationally advanta-
geous form, where a set of constant coefficients appear that
depend on the mechanical parameters of the arm.

The inertia matrix turns out of the form

Bi1 = biy1 + birzes + (bisty + biiata)se (32a)
Biy = biay + bi2aco + (b1asts + biat2)s2

Bis = bia1 + biszca + (biasta + b13ab12)s2

Big = bya1 + brgaca + (brasta + braadin)se

Bis = bisy + bisaco + bisstise

Big = big1 + bieocz + biestis2

Bag = by (32b)
Bas = bog1 + bazace + (baasta + basats)sa

Bay = baa1 + bagzca + (baaste + basats)so

Bas = bas1

Bag = bag1

B3z = b331 + bazaca + b3zztase (32¢)
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Fig. 5. (a) Deflections of link 1 (82(0) = 0, 621(0) = 0.1, 622(0) = 0.002) (b) Deflections of link 2 (62(0) =0, 621(0) =
622(0) = 0.002) (c) Joint evolution (62(0) = 0, 621(0) = 0.1, §22(0) = 0.002) (d) Tip evolution (62(0) = 0, 821(0) = 0.1,

622 (0) = 0.002)

Bss = b3a1 + bzgzce + baaztase
Bss = basy + basaca + basstssa

Bsg = bse1 + bagacz + bsestase

Buys = baa1 + baazca + bayztas:
Bys = bss1 + basaca + basatzse

Byg = bse1 + baszc2 + basstss2

Bss = bss1
Bsg = bse:
Bes = bes1

(32d)

(32¢)

(326)

0.0

o - deltazz [m]
o - deltazt [m]

prmmm—
0.0
time (]

®)

E +0
i

e - py [m]
o = px [m]

r T

1.0

“ime 191
(Y]
0.1,

where sy = sinfs, co = cosfs, and

t1 = t11611 + t12012
to = ta1621 + t22022

ts = t31611 + t32012 (33)

with the coefficients having the expressions reported in Appen-
dix. Note that the contributions of deflections to system inertia,
i.e., terms containing t; and §;;, always appear multiplied by
so; this derives from the initial assumption on deformation
being purely transversal to link axis.

Having obtained the expression of the inertia matrix, the
components of h can be evaluated using (26):

hy = [(h10192 + h1gab11 + h1osbiz + h1oada1 + hagsbez )b
+ (h106f2 + h107611 + h1osd12 + hiooba1 + hi10622)02
+ (111621 + h112622)811 + (h113021 + P114b22)é12] 52
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o
time [s]

+ [(husél + h11602 + hi17d21 + hiisdas )ta
+ (h11961 + h12092 + h121511 + h122512)t2
+ h123612011 + h124611612) O2c2

(342)  link

hs =

. 2 2 2 2
K = diag{0, 0, wi;m1, wiymi, ws; M2, wieMa}.

w he = (heo161 + heo2b11 + heo3b12)0152
| with
pendix.
WA Fi

833

+ (harrbar + hai2622)811 + (harsbar + haradaz)b12] 52
+ [(hs1581 + ha1eB2 + ha17011 + haigdia)ts
+ (ha1962 + hazod21 + haz1622)ts

+ hazabr261]f2cs (340)

hg = [(hao161 + haoab2 + haosbiy + haosdar + haosb22)61

(haosbz + haorbu1 + haosbia + haogbar + hatobaz)f
(ha11821 + ha12622)811 + (ha13bar + ha1aba2)diz] sz
[(ha1s6:1 + ha16b2 + ha17611 + harsdiz)te

+ (ha192 + hazob21 + haz1622)ts

+
+
+

+ ha2261161)62¢2 (34d)
(hso101 + hsozdi1 + hsosbi2)f1s2 (34¢)

+ [Rsoat161 + (hsosb11 + hsosd12)ts] faca
(341)

+ [heost11 + (heosdi1 + heosdiz)ts] faco
the coefficients having the expressions reported in Ap-

nally, the stiffness matrix K is of the form

(35)

VII. SIMULATION RESULTS

order to test the dynamic model equations, a two-link

flexible arm with the following physical parameters has been

idered:
p1 = p2 = 0.2 kg/m (uniform density),
ll = ez =0.5 m, dg =0.25 m,
my = mg = my = 0.1 kg, mpy = 1 kg,
Jol = J02 = 0.0083 kg m2,
Jhl = th =0.1 kg mz,
J, = 0.0005 kg m?, and
(E[)l = (EI)z =1 Nm2.

Different payload conditions have been selected for modal
analysis, namely zero, nominal and double payload. Figs. 2—4
show the resulting mode shapes, with the y-axis scaled by the

length. It can be recognized that a variation in the tip

payload, though changing the boundary values M, and Jz;

. . L (see
ha = (hao181 + hoo2011 + hao3b12)0152

+ {[(h20491 + haosbar + h206522)t1

+ (haor61 + haosbi1 + @2094_512)%

+ h210812611 + ha11611812] 61

+ [(ho12011 + ha13812)t2 + (ha1abor + horsdaz)ts] b11
+ [hotedizta + (hatrda1 + haisbaa)ts) 512}C2 (34b)

parti
free

In
are

hs = [(hao181 + h3o282 + haosbiz + haoabar + haosbaz)6:
+ (haoeB2 + haord11 + haosbia + haoobdar + ha1ob2)82

(28)), does not substantially modify the shapes of link 1

(Figs. 2(a), 3(a), 4(a)). Conversely, the effect of payload on
mode shapes of link 2 is evident (Figs. 2(b), 3(b), 4(b)). In

cular, the usual node at zo > 0 in ¢2o of the clamped-
case [5] moves rightwards with increasing payloads, up

to disappearing for a sufficiently heavy one.

the following, we pursue only the nominal payload

condition. In this case, the natural frequencies f;; = w;;/27

f11 =048 HZ, f12
f21 =2.18 HZ, f22

1.80 Hz;
15.91 Hz.

Further, the remaining parameters appearing in the model
coefficients are computed:
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Fig. 7. (a) Deflections of link 1 with damping (62(0) = 0, 621(0) = 0.1, 622(0) = 0.002). (b) Deflections of link 2 with damping

(62(0) = 0, 621(0) = 0.1, 622(0) = 0.002). (c) Joint evolution with damping (62(0) = 0, 621(0)

= 0.1, 622(0) = 0.002).

(d) Tip evolution with damping (62(0) = 0, 821(0) = 0.1, 622(0) = 0.002)

$11,e = 0.186, 12, = 0.215,
11 = 0.657, ¢35, = —0.560;

$21,e = 0.883, ¢hoz . = —0.069,

Py o = 2.641, ¢hy . = —10.853;

Vi1 = 0.007, V12 = 0.013;

V91 = 0.033, Vo2 = 0.054;

w11 = 0.002, w1 = 0.004;

w1 = 0.012, Wo2 = 0.016.
A set of numerical simulations have been performed to validate
the theoretical model, both in free and in forced evolution.
The nonlinear equations of motions have been integrated via
a fourth order Runge-Kutta method, and simulations run for 2
sec at 1 msec integration step.

Figs. 5-8 show the dependence of the internal vibrations of
the arm on the joint configuration when an initial deformation
is given to the system. In the first case, the arm is fully
extended (A2(0) = 0) and a deformation is imposed to link

2 (621(0) = 0.1, 622(0) = 0.002); Figs. 5(a) and (b) indicate
the presence of a strong vibration coupling between the two
links. The associated joint and tip motions are reported in Figs.
5(c) and (d), where a slow relative drifting phenomenon can
be observed. In the second case, link 2 is posed at right angle
with link 1 (#2(0) = 7/2), and the deformation is on link
1 (611(0) = 0.1, &;2(0) = 0.002); the transfer of vibrational
energy from upper arm to forearm is limited, as revealed by
Figs. 6(a) and (b) (note the two orders of magnitude difference

on b2;).
The addition of passive structural damping (D; = 0.1V Kj,
i =3,...,6)provides uniform improvement in the arm motion

for both the previous initial configurations, as evidenced in
Figs. 7 and 8; this time, the initial displacement results into a
net bias in the final arm position.

Next, a symmetric bang-bang input torque of 0.2 N'm has
been applied at both joints starting from 61(0) = 62(0) = 0.
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611(0) = 0.1, 612(0) = 0.002)

As one could expect, this induces large and coupled vibrations
on both links (Figs. 9(a) and (b)), which are reflected in the
oscillations at both the joint (Fig. 9(c)) and the tip (Fig. 9(d))
level. This behavior is smoothed down with the introduction
of damping (Fig. 10).

VIII. CONCLUSION

A closed-form finite-dimensional dynamic model for planar
multilink lightweight robots has been derived using the La-
grangian approach combined with the assumed modes method.
The emphasis has been set on obtaining accurate and complete
equations of motion that display the most relevant aspects of
the coupling between rigid and flexible dynamics. In particular,
the implications of a detailed mode shape analysis on model
simplification have been exploited. The crucial problem of
time-varying mass boundary conditions has been discussed
with reference to a two-link arm, considering two modes of

vibration for each link. An explicit nonlinear model has been
presented that is cast in an attractive compact form that is
linear with respect to a suitable set of constant parameters.
Incidentally, this linearity property mimicks the rigid link case
and can easily be generalized to any number of modes. The
theoretical model has been tested in simulation study, under
free and forced time evolution. Besides, the benefits achievable
by the addition of passive damping in the structure have been
shown clearly.

Our future research efforts will be devoted to developing
model-based nonlinear controllers for this class of flexible
arms, especially using inversion techniques aimed at achieving
end-effector trajectory tracking. Nonetheless, we believe that
the availability of the presented model is of great help for de-
signing other types of controllers as well as for evaluating the
performance of different lightweight mechanical constructions
by means of a reliable simulation testbed.

APPENDIX
The expressions of the constant coefficients appearing in
matrix B of the two-link flexible arm model (32) are

by1r = Ju1 + Jor + Jn2 + 2

+ Jop + Mol + Ty + (65 + £3)
bi12 = 2(mada + mpla)ly
5113 = 2(m2d2 + mpﬂz)
bia = =24
bio1 = Jna + Jo2 + Jp + mpls
bias = (mads + mpla)ly
bigz = mads +mylz
bioa = =41
b1z = wi1 + (Jh2 + Joz + Jp + mpl%)‘,f’/ll,e

+ (mne + mo + my)lidie
biaz = (mady + mpl2)(P11,e + 1611 )
b1z = —(d11,e + L1611.e)
brag = —(mady + mpba)($11,eP10.c — P12.P11.¢)
bray = wiz + (Jn2 + Joz + Jp + mpl3) s

+ (mh2 + ma +mp)lidize
braa = (mady + mpla) (P12, + L1¢a.c)
braz = —(d12,e + L1915,
brag = —(mady + mpla)(P12,e811,c — b11,eP12.¢)
bist = wa1 + Jpy . + mpladare
bisa = (vo1 + Mpda1.e)a
biss = V21 + MpPai,e
bier = waz + JpPoa o + Mpladan,e
biea = (vaz + Mpdha2 e )1
bies = vo2 + MpPaze

baor = Jha + Joz + Jp + mpts
baz1 = (Jho + Jo2 + Jp + mplg)qb’u,e
bazy = (mads + mple)d11,e
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Fig. 9. (a) Deflections of link 1 under bang-bang input (61(0) = 62(0) = 0) (b) Deflections of link 2 under bang-bang input
(61(0) = 62(0) = 0) (c) Joint motion under bang-bang input (6:(0) = 62(0) = 0) (d) Tip motion under bang-bang input

6:(0) = 6:(0) = 0)
bazz = —d11.e baaz = — (P11l + P12.6011,c)
bazs = —(mady + myla)din e bsst = (wa1 + Jpdy o + Mpladpar )iy e
boar = (Jh2 + Joa + Jp + mpl3) el basa = (vo1 + Mpda1,e) P11,
boaz = (mads + mpla)diz.e bass = —(va1 + Mpa1,e)P11,e
bagz = — 12 bssr = (w22 + Jpha. + Mplatz )iy e
boas = —(mady + Mmpla)Pr2,e basz = (v2z2 + Mpda2,e)bi1e
bas1 = war + Jpdo1 o + Mplagan,e bses = —(va2 + MpP22,e)P11.e
bosr = wag + JpBag . + mplaghar,e

bya1 = M

b3z = My baaz = 2(mads + mpla)d12,ePla
bssz = 2(mads + mpla)d11,eh11 . bass = —2¢12,P12,
bszs = —2611,eh11 ¢ basy = (wa1 + Jpdhy o + Mplagar o)bla,e
b3a1 =0 bysa = (va1 + MpPa1e)Pi2,e

bsz = (mada + mpla)(11,eP12,c + P12,6011.c) bysa = —(va1 + Mpdon,e)Prz,e
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Fig. 10. (a) Deflections of link 1 under bang-bang input with damping (61 (0) = 62(0) = 0) (b) Deflections of link 2 under
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bag1 = (w22 + JP¢’22,5 + mP‘€2¢22,€)¢,12,e
baga = (V22 + MpP22.e)P12,c

bags = —(va2 + MpPa2.e) P12,
bss1 = ma

bser = 0

bes1 = my.

The terms in the diagonal blocks of B have been simplified
by virtue of the orthonormalization procedure described in

Section VI. In particular, we have: bss1 = bgg1 = m2 and
bse1 = 0, for the diagonal block relative to link 2 deflections;
bzs; = bgar = mq and bsy; = 0, for the diagonal block
relative to link 1 deflections. Due to the choice of constant
mass boundary conditions for link 1, in the corresponding

diagonal block of B nonzero time-varying terms are left that
are weighted by coefficients bssz, bsas, basa, b343, bas, and
baas.

The remaining coefficients to be specified in (33) are
tin = d11e — L1
tia = d12,e — L1d]n e
to1 = va1 + MpP21,e
too = Vag + MpPaze
t31 = ¢/11,e
tas = Plae-

The expressions of the constant coefficients appearing in
vector h of the two-link flexible arm model (34) are

hio1 = —2(mads + mpla)ly
hioe = 2(mady + mple) (11, — b1y )

I
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hios = 2(mads + mpla)(B12,e — Lidha.e) haoe = —(mada + mpla) i1 e

hioa = —2(v21 + mpda1.e )y haor = —2(mady + mpla)d11 P11

hios = —2(vag + mypaa,e )y hios = —2(mads + mpla) P11l

hios = —(mads + mpla)é; haog = —2(va1 + Mpd21,.e)P11.e

hior = —(mads + mpla)16i, ) ha1o = —2(v22 + Mpaz.e)Pi1.e

hios = —2(mady + mpla)l1dio ) hai1 = —2(va1 + Mpd21 e)P11,eb]1 e

hiog = —2(va1 + mpdo1 )1 hate = —2(va2 + Mpdao e )P11,eP]1 e

hi1o = —2(vaz + mpaz ) ha1z = —2(va1 + Mypda1,e)P11,e P12,

hi1r = —2(va1 + mp¢21,e)31¢l11,e hsis = —2(vee + mp¢22‘e)¢ll,e¢ll2,e

Ri12 = —2(vos + mpdaz e )16 o hais = —(d11,e + L1001.¢)

hiiz = —2(va1 + mpPo1.e )12, haie = —d11.e

hiis = —2(vaz + MpP22.e)l1d2 ha17 = —211,e9]1 ¢

hi1s = 2(mady + myts) hais = —($11.ePh0e + Pr2.eP11,e)

hite = mada + mpls ha1g = —(mady + mpl2)Pi1,e

hi17 = —(vo1 + mpda1c) haso = —(va1 + Mpda1 e )P11 e

h11g = —(va2 + mpdaae) hao1 = — (Va2 + Mpdase)Pi1e

hi1g = =24, hase = —(mady + mpla)(d11,eP12,. — P12,eP11,e)

hioo = —£1

hior = —(¢11.e + L1911, haor = —(mady + mplo) (12, — 12 )

hiaz = —(12.e + L1d12.c) haoz = —2(madz + mpl)d12.e

hias = —(mads + mpla) (11,6819 . — P12.611.¢) haos = 2(mada + mpla)(P11,eP19, — P12,6¢11.c)

hi2s = —(mady + myla) (12,6411 e — P11,ePla.e) hsos = —2(va1 + Mpdo1,e)P12.6
haos = —2(vag + Mp@22,e) P12,

hao1 = (mada + mpta)y hags = —(mada + mpla)Pr2.e

hooz = 2(mady + mpla)dr11e haor = —2(mads + mpla)d12,411 .

haos = 2(mads + mpla) 12 haog = —2(mads + mpla)d12,eh)2 ¢

haos = —(mads + mpls) haoo = —2(v21 + Mpd21,e)P12,e

hoos = —(va1 + mpdoie) hato = —2(vaz + Mpd22,e)P12,e

hags = —(v22 + Mpdaze) hair = —2(vo1 + Mpda1,e)P12,6011

hoor =41 hato = —2(vag + Mpda2.e)P12,e P10 0

hoos = d11.e + 1031 ¢ haiz = —2(v21 + Mpda1,e)D12,e911 ¢

hooy = ¢12,e + (1819, hara = —2(vaz + Mpd22.0)B12,6P12,c

hato = (mady + mpla)($11,6012,c — P12.eP11,e) hais = — (P12, + L1d12.c)

hor1 = (mady + mpla) (12,6011, — $11,eP12.c) hiie = —¢12.e

ho12 = ¢11,e011.e harr = —(h11,e12,c + P12,eP11.c)

hots = 11,eP12.c + P12,60711¢) hais = —2¢12,.eP10 .

hora = (V21 + MypP21.e)P11,e ha1g = —(mads + mpl2)d1z,e

ho1s = (va2 + Mpda2.e)P11,e haso = —(va1 + MpP21.e) P12,

hate = $12,eP12. haor = —(v22 + Mpdo2.e)P12,e

ho17 = (Vo1 + mpdo1,e)P12.e hagy = —(mada + mpla)(B12,.e811 . — P11,P12.¢)

haig = (Va2 + mpdaz.e) P12,

haor = —(mads + mpla)(P11,e — L1811 ) hsor = (va1 + mpda1,e)l1

haoz = —2(mady + mpla) i1 e hsoz = 2(va1 + MpPa1.e)P11,e

haos = 2(madp + mpla) (12,6011, — P11,eP12.) hsos = 2(va1 + Mpd1,e) P12,

haos = —2(va1 + MpPa1,e)P11,e hsos = v21 + Mpdo1.e

haos = —2(vaa + MpP22,e)P11,e hsos = —(vo1 + MpPo1e)Pi1e
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hsos = —(vo1 + MpPa1.e) P12,
heor = (vag + mpeaz e )a

heo2 = 2(vo2 + Mpd22 e )P11.e
heos = 2(vaz + Mpgaz.e)d12,e

heos = voo + Mpao,e
heos = —(vaz + Mpdaz.e)P11,e
heos = —(va2 + Mpda2.c) P12,

Although some of the aforementioned coefficients are
equal—or related by simple factors—there is no need for
reducing the total number of them, since their values are
computed off-line once for all.
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