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Modeling of Robots in Contact
with a Dynamic Environment

Alessandro De Luca and Costanzo Manes

Abstract—A control-oriented modeling approach for describing kine-
matics and dynamics of robots in contact with a dynamic environment is
presented. In many robetic tasks the manipulator in contact cannot be
simply modeled as a kinematically constrained system. Conversely, mod-
eling of robot-environment interactions through dynamic impedance may
not fit the task layout. A suitable model structure is proposed in this note
that handles the more general case in which purely kinematic constraints
on the robot end-effector live together with dynamic interactions. Feasible
end-effector configurations are parameterized from the environment point
of view, using a minimal set of coordinates. Accordingly, a description is
obtained also for admissible velocities and contact forces. In particular,
a force parameterization is chosen so as to separate static reaction forces
from active forces responsible for energy transfer between robot and
environment. The overall dynamics of the coupled robot-environment
system is obtained in a single framework. The introduced modeling
technique naturally leads to the design of new hybrid control laws.

I. INTRODUCTION

Most robotic tasks involve intentional contact between the manip-
ulator and the environment. In addition to a path specification for
the robot end-effector, a proper definition of forces to be exerted is
necessary to complete tasks such as polishing, deburring, or assembly
operations.

In the usual analysis, interaction between robot and environment
may or may not imply energy exchange. If the environment imposes
purely kinematic constraints on end-effector motion, only a static
batance of forces and torques occurs at the contact, when friction
effects are neglected. These modeling assumptions, which imply no
energy transfer or dissipation, underlie the constrained approach of
Yoshikawa [1] and McClamroch and Wang [2], where an algebraic
vector equation restricts the feasible end-effector poses. On the
other hand. an energy exchange between robot and environment is
commonly treated using a full-dimensional linear impedance model
for the dynamic interaction, as done by Hogan [3] and Kazerooni er al.
[4]. This approach is limited by the assumption of small deformation
of the workpiece. with no relative motion allowed in the coupling.

As opposed to “completely static” or “pure dynamic” interaction,
there are cases in which the robot, while being subject to kinematic
constraints, may exert also dynamic forces at the tip, i.e., forces not
compensated by a constraint reaction and producing active work on
the environment. A paradigmatic example is the task of a robot
turning a crank, when crank dynamics is relevant. Therefore, an
effective modeling technique should be able to handle these mixed
situations as well.

In this note, a general modeling approach is proposed that allows
to deal with all those cases in which the end-effector is dynamically
coupled and/or kinematically constrained to the external world. The
kinematic description of robot-environment interaction is revisited,
expressing the end-effector pose in terms of a proper set of parameters
and determining admissible directions of robot end-effector motion.
Using energy transfer arguments, we introduce active contact forces,
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due to the presence of environment dynamics, beside the usual
reaction forces. Both types of forces will be conveniently expressed
using another set of independent parameters. This description is
coupled with the dynamics of the robot arm to give the equations
of motion of the overall system.

Different formats can be worked out for the dynamic description,
each suitable for simulation or control design purposes. The dynamics
of constrained rigid multibody systems is extensively treated in the
literature (see e.g., [5]), not focusing on the use of models for motion
and force control design. Instead, the introduced parameterization
of forces and displacements is naturally oriented to the synthesis
of hybrid control laws for constrained robotic tasks. In particular,
inverse dynamics computations can be organized in a straightforward
way so to accomplish a desired hybrid task. Interestingly enough,
the presence of environment dynamics introduces two alternatives in
the execution of a contact task, since either forces or accelerations
can be assigned along properly defined dynamic directions. In this
respect, our modeling approach leads also to new control results. The
basic ideas of task-space and of hybrid control itself are generalized
within the present framework: in fact, the introduced parameter space
may include also dynamic variables, differently from classical hybrid
control task models [6]-[8].

Simple examples are used to illustrate the modeling technique. For
further details, the reader is referred to [9].

II. KINEMATIC AND STATIC MODELING

Consider a robot with n degrees of freedom, constituted by an
open kinematic chain of rigid bodies. The robot arm configuration
is identified by the joint variables vector q € R™ (the robot
parameterization). Let r be the position vector of the arm tip, while
a minimal representation is used for its orientation, e.g., Euler angles
o = (. 9,%). Position and orientation can be organized in a single
6-dimensional pose p = (r.0). As a consequence, end-effector direct
and differential kinematics are defined from the robot side by

. ok , .
) p= %q=-ﬂ-(q)q- (0
q

The generalized end-effector velocity v = (r.w) is composed of
linear velocity © and angular velocity w. Its expression is related to
P by means of a matrix G depending on the set of orientation angles

Iixs O
O G(g. )|

p =k(q

v=G(p)p with G(p)= [ 2
where G is the 3 x 3 matrix mapping the time derivatives of the
chosen representation of orientation into the angular velocity (see
e.g., [10, Appendix B]). As a result, one has

v=Jaq with J(q)=G(k(q)JI(q). (3

where J(q) is the basic robot Jacobian.

We assume that the environment is a mechanical system with
d < 6 degrees of freedom, so that it can be described by a second-
order dynamic model in terms of a set of environment configuration
variables sp € R®. If the robot end-effector exerts a power grasp
on the environment,then the set of end-effector poses is restricted
to a d-dimensional manifold. However, weaker types of contacts are
allowed in general (point, edge, surface, etc.) and an additional set
of purely kinematic variables sx € R* may be required to specify
uniquely the end-effector pose p, as seen from the environment side.
This aspect is not considered in the common literature (see e.g., [11],
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[12]). The two vectors are then merged to form the environment
parameterization s = (sx,sp) € R*, with e = k + d < 6. Thus,

Il (s)
Js

where we assume that T' is a smooth and full rank mapping. This
description implies that kinematic constraints on the end-effector,
when present, are holonomic {10].

Remark 1: Equations (1) and (4) are used to couple robot and
environment kinematics. If ¢ = 6, this does not impose any kinematic
constraint on the robot end-effector motion, resulting just in a
mapping between robot coordinates and environment parameters.
Moreover, if £ = 0 and d = 6 the case of a generalized (nonlinear)
contact impedance is recovered. Vice versa, if ¢ < 6 and # = ¢ (and
so d = 0) there are effectively 6 — A& kinematic constraints imposed
on the end-effector.

We note that, as with all modeling processes, there are many
possible choices for the parameterization s, leading to different but
equivalent descriptions of the same physical system.

Using (2) and (4), one has

p = [(s).

P= §. ()

AT(s)
s
where matrix T is assumed full rank in the operating region. It is pos-

sible to group columns of T and separate velocity contributions due
to kinematic and to dynamic degrees of freedom of the environment as

v = T(s)s, with T(s)= G(I‘(s))

&)

v =Txr(s)§x + Tpn(s)sp. 6)

The generalized reaction forces F r are defined as those which do
not deliver power on admissible velocities at the contact, i.e., such
that

viFg=[iT ﬂ‘][f” } =0, )
mpg

where fr are reaction forces and mp are reaction torques acting at
the robot tip on the environment. Dual to the parameterization of
velocity, a full column rank matrix Y can be determined so that
reaction forces are expressed as

Fr =Ynr(s)Ar. (8)

Since all reaction forces should belong to span [Y r], the number of
columns defining this matrix is maximal, and from the reciprocity’
condition (7) it follows that

TT(8)Y r(8) = O (6—e)- 9)

Thus, vector Agp € R will parameterize reaction forces in the
same way as § parameterizes admissible velocities.

Remark 2: The definition of Y is not unique, although span
[Yx] is uniquely identified from (9) as the kernel of T’ and
interpreted as all those directions yielding zero energy transter
between the robot and the environment. The arbitrariness resides in
the choice of a basis for span [Y »]. Each feasible choice will lead
to a different physical interpretation for the directions associated to
the columns of the matrix Y .

Remark 3: The columns of T and Y specify 6-dimensional
directions respectively for velocities and forces, intended in a gen-
eralized sense. Therefore, a column of T may represent an angular
velocity together with a related linear one. Similarly, a column of
Y 1 may represent a combination of a force and of a momentum.

! Force and velocity belong to dual spaces and the term reciprocity should
be preferred to orthogonality, defined only among vectors of the same linear
space.

Remark 4: The constrained kinematic approach of [1], [2] can be
recovered within the present formalism, considering as a special case
an environment with no dynamics (d = 0 and s = sy).

TII. DYNAMIC MODELING

A robot interacts with a dynamic environment not only through
the balance of reaction forces associated with purely kinematic con-
straints. Instead, an energy exchange between robot and environment
is allowed when active contact forces come into play, defined along
dynamic directions that are not reciprocal to those of admissible
motions. These forces will appear as input to the dynamic model
both of the environment and of the robot. A Lagrangian approach
will be followed for deriving the equations of motion, using the set
of generalized coordinates s, for the environment in the same way
as q are used for the manipulator.

Let the kinetic energy, potential energy, and Lagrangian of the
robot be

1

L = ;qTB(q)q, P = P(q), L=K-P  (10a)
while the corresponding quantities for the environment are
. 1.7 .
Kg = §SnBE(Sn)Sn. Pr = Pi(sp).
Lp = Kr ~ Pg. (10b)

so that the total Lagrangian of the interacting system is L7 = L+Ly.
A symmetric form is taken for the positive definite inertia matrices
B and Bg. Non-conservative forces performing work on q are the
torques u supplied by the motors, and the viscous friction modeled
by a dissipative term —Dq (with D > 0). Similarly, the only non-
conservative force performing work on sy is —D 8y (with Dy >
0) since the environment is assumed without external actuation. The
dynamic variables q and s> are related by (1) and (4):

p=k(q)=T(s) = T(s)—ki(q)=0. (1)

Note that also the kinematic variables s, appear in this coupling
equation. In the presence of (11), the composite Lagrangian becomes

Le =L+ [D(s) — k(q)]. (12)
where € R® is a multiplier vector.
The Buler-Lagrange equations of motion [10} are derived as
daL” oLm  okT
— = - == el — - q. 3;
dt3q " 9q Taq 1T Pa (13a)
doLg” 9Lp" or’
vy - AT = —Dysp. 13b
dt Osp asp dsp " LSo ( )
ar T
“Psn n=0. (13¢)
AL
< =T(s)—k(q) =0. (13d)
an

Using virtual work arguments, the multiplier 7 can be interpreted as
the generalized force performing work on p, i.e., delivering power
on p. Thus, the force F = G~y delivers power on v.

Developing computations and defining n = ¢ + (8P/9q)" +Dg
and n; = cE+(0P57/051))'1‘+D1,,-é1). where ¢ and ¢y are Coriolis
and centrifugal contributions, the final dynamic model consists of
n + d second-order differential equations

B(@)d+n(q.q) =u—-J" (qF. robot (14a)

Br(sp)sp + nu(sp.én) = T} (s)F. environment

(14b)
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together with

T (s)F =0 (14c)

and coupled with the algebraic relation (13d) or, in its differential
form,

v =Tgk(s)sx + Tp(s)ép = J(q)q, (15)

where all terms have been multiplied by the transformation matrix
G. It follows from (15) that the end-effector is restricted to have zero
cartesian velocity if and only if span [J(q)] N span [T(s)] = {0}.
Condition (14c¢) states that admissible contact forces do not perform
work along kinematic directions. Moreover, equation (14b) shows that
only contact forces F not reciprocal to the columns of T'p will affect
environment dynamics. Since T'p is part of T, from (9) these active
forces will not belong to span [Y r]. Therefore, they can be generated
as combinations of the columns of another matrix Y 4 such that span
[Yr] N span [Y 4] = {0}. Any contact force, being composed of

reaction and active terms, will be parameterized as
F=Fr+Fa=Yr(s)Ar+Ya(s)da =Y(s)), (16)

where Yz and Ar are the same as in (8). We will refer to A as the
force parameterization. The actual dimension of A4 is obtained by
expressing the power transfer from robot to environment:

VIF = (Tr(s)sr +Tn(s)$p) (Yr(s)Ar + Ya(s)Aa). (17)

By definition of reaction forces (see also (9))

[Tx Top]'Yr =0, (18)
and from (14c¢) and (16),
Th[Yr Ya]=0, 19)

stating that kinematic displacements are orthogonal to all forces
because there cannot be work performed on a kinematic variable.
Being T (and thus T) full column rank by assumption, Y and
Y have 6 — k and 6 — e columns, so that Y 4 has d independent
columns and A4 € R?. Accordingly, the power transfer at the contact
simplifies to

v F =85 TH(s)Ya(s)Aa. (20)

which is not definite in sign. The matrix THY 4 is always nonsin-
gular, since for any A4 # O there exists a $p such that viF # 05 if
not, Y 4 A4 would be a reaction force, contrary to its definition.

Remark 5: As for Y g, the definition of a matrix Y 4 is not unique
although span [Y] is uniquely identified as the kernel of T% and
contains span (Y g]. Any completion of a basis in span [Y], given
the columns of Yr as a sub-basis, will be feasible. In any case, a
convenient selection of Y 4 is possible such that each component of
X4 will have the physical dimension of a force or of a torque.

Remark 6: One possible choice for Y 4 is given by the weighted
pseudoinverse of T4

Y= (Th)g = WTo(THWTp) ', @1

where the positive definite matrix W can always be chosen so to
retain consistency of physical dimensions of the columns of the
resulting Y 4 [13].

Having obtained the dynamic model of the robot plus environment,
and with the given force parameterization at hand, we are ready to
rewrite the equations of motion of the overall system eliminating the
explicit appearance of the contact force F from (14). For, differentiate
(15) to obtain

Ty (s)ix + Tr(s.8)8x + Tn(s)ip + Tp(s.8)sp

=J(@)dq+J(a. 4. Q2)

Solving equations (14a, b) in terms of the accelerations q and 8p,
and substituting into (22) gives

Tréx + Tréx + TpB;' TLF — TpBz'ng + Tpsp

=JB'u—JB ' J'F -JB 'n+Jq (23)

Introducing the force parameterization (16) into (23), using TEY RrR=
0 and defining

m = *TKéK - T[_)é[) +jq+ T[)BElnE - JB_ln,

(24a)
Q= [(TDB;T{, +IB~1NyY, IB 7Y, T,\-],
(24b)
provides finally
Aa
Q(a.s) [Ar | =m(q.4.5.8) + I (@B ' (qQu. (25
SK

This is the main equation that is needed for the synthesis of simul-
taneous motion and force control in the presence of environment
dynamics. It relates robot actuator inputs u to contact forces and
contact kinematics, expressed in terms of the introduced parameteri-
zation. Its use for control is detailed in the next section.

Remark 7: Given an input torque u*, a contact force F* =
Y 4 X5 +YRrAR, and a kinematic acceleration 87, satisfying (25), the
same equation will be satisfied also by the triple (0, F* + Fn, §%),
with Fy € span [Yg] N ker [J7). The presence of a multiplicity
of solutions may result in the physical jamming of the robot with the
constraining environment. The solution will be unique if and only if
span [Yg] N ker [J7] = {0}. This is equivalent to have a full rank
matrix J7 Y . Moreover, this condition is necessary and sufficient
for the nonsingularity of the 6 x 6 matrix Q(q, s) in (25) (see [9]). O

In the following, we show how (25) can be used to obtain dynamic
equations for the overall system in a format useful for simulation and
further analysis. Once the invertibility of Q is assured, one has

Aa
A | =Q 'm+Q 'IB 'u.
Sk

(26)

By deﬁ@g the blocks of the inverse of Q, vector m(q, 4. s, $), and
matrix N(q,s) as

Py —
-1 m = (YRPR+Y.4Pz1)m-
Q= gﬁ © N=(YRPr+Y.P4)JB, @n

the contact force can be rewritten as a rather complex but explicit
function of the robot-environment state (q, q,s,s) and of the torque
input w:

F = m(q,q,s.8) + N(q,s)u. (28)

Remark 8: 1t should be stressed that this physical force depends
only on the system state and input, not on the internal representation
used, viz. on the force parameterization A and, in particular, on the
chosen Y 4. Given any two different choices Y., and Y 4 2 both
satisfying (19), it can be shown that the contact force F resulting
from (28) is the same. A formal proof of this can be found in [9].

Replacing (28) into (14) yields finally

B(q)d + n(q.q) + 3 (@)m(q. 4.5, 8)

=[I-J"(a)N(q,s)]u, (292)
Br(sp)ép + ne(sp,$p) — Th(s)m(q.q.s. §)
= ThH(s)N(q,s)u, (29b)
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which should be completed with the third block equation in (26)

8 = Pr(q.s)m(q,q,s.8) + Pr(q,s)J(q)B™ ' (q)u. (29
System (29) is in a convenient format for the simulation of the
robot-environment system as well as for numerical analysis (e.g.,
linearization). The kinematic quantities q,q,s.$ computed by in-
tegrating (29) automatically satisfy the coupling relations (11) and
(15), and hence possible kinematic constraints for the robot. However,
a numerically robust integration should be performed to avoid that
accumulation of round-off errors may result in constraint violation.

We conclude this section by addressing how to reduce the number
of dynamic equations, proceeding similarly to [2], [14]. The system
(29) of n+e second-order differential equations is indeed a redundant
one, due to the presence of a kinematic coupling. Supposing non-
degeneracy of the orientation representation, and letting

_ Bk(ql T (s)
h = rank [—aq s

] =rank [J(q) T(s)], (30)

it is possible to locally express /1 of the n+e¢ variables (q, s) in terms
of the remaining ones. The number »n + ¢ — I of obtained independent
second-order dynamic equations coincides with the dimension of the
space of admissible end-effector velocities when the robot Jacobian
is full rank. Being T of full column rank ¢, then A > e from
(30). As a result, elimination can be performed so that afl the
components of s are expressed in terms of the robot variables q,
thus canceling completely the environment equations. With a slight
abuse of notation, the dynamics of the robot in contact with the
environment is then described by

B(a)q+n(q.q) + 3 (@@ (a.q) = [I- I (q)N(q)u, 31

obtained by formally replacing s = s(q) and § = $(q, q) in (29a).
Equation (31) shows how the behavior of the robot is modified by the
contact with the environment, both in the dynamic and non-dynamic
case.

IV. INVERSE DYNAMICS FOR HYBRID CONTROL

The dynamic equation (25) can be used to compute nominal input
torques which realize a specified hybrid task. However, as a result of
the presence of environment dynamics, it is now possible to impose
different modes of operation.

At every state (q.q.s.s) of the robot-environment system, the
columns of Ty give directions along which only accelerations can
be imposed at will, while in the reciprocal directions characterized
by the columns of Yy only generalized forces can be exerted.
This is not different from what occurs in the conventional hybrid
control approach originated from the work of Mason [6] and refined
in [1], [8,] [15]. A more subtle situation occurs in the directions
characterized by Tp and Y 4. In fact, one can either apply forces in
the directions spanned by Y 4, resulting in a unique acceleration along
Tp, or impose desired accelerations along T p, causing a unique
active force in Y 4.

To formalize these statements, one should look at acontact task as
a succession of modifications of the environment to be performed by
the robot. The desired motion involved in these modifications can be
directly specified by the environment parameterization sq..(?), while
the needed contact forces are obtained in a similar way from Age.(t).
Thus, the environment and force parameterizations naturally define a
task-space, where the formulation of the task is easily performed. This
is well illustrated with a series of examples in [6], but no dynamic
issues are considered there and the task parameterization is given
directly in terms of cartesian coordinates associated with a particular

reference frame attached to the task. Instead, following our approach
leads to the more general expressions

Pdes(t) = T'(sqes(t)),

Faes(t) = Y (Sdes(t)) Ages (1)- (32)

When the environment is purely kinematic, the compatibility of
these hybrid control specifications with the kinematic model of the
contact is automatically verified. In the presence of environment
dynamics, the simultaneous specification of a// parameters s and A
is not free, but must satisfy the environment dynamic description if
compatible end-effector poses and contact forces are to be obtained.
However, desired time evolutions can be freely specified either
for the subset of parameters(Aa.Agr,srk ), or for (sp.Ar,sx ), in
alternative. As a consequence, two types of hybrid control laws can
be pursued, depending on whether forces or accelerations are imposed
along dynamic directions. The computation of nominal input torques
realizing the desired task follows slightly different steps in the two
cases, as a result of the associated inverse dynamics.
Let first the task be specified by the triple

(A des(B)s A des (), 815 des (1))

with a desired force assigned along the dynamic directions. The
nominal input torque for this task formulation is computed directly
from (25) as

XA des
Uges = (IB™H(Q | Ar.des

SK.des

—m) (33)

where (JB™!)* is any right generalized inverse of JB~! [16], and J
is assumed to have full rank. One possible choice is BJ#, where J#
is the pseudoinverse of J. The closed-loop system is then described
by

Xa A4 des
Ar | = |ARdes |» (34)
Sk SK des

while the resulting (parametric) accelerations in the dynamic direc-
tions will be

§p =Br'ng + BL'THY A 4. (35)
If instead the task is specified by the triple
(8D.des (1), A des (£), 81 den (1))

priority is given to the assignment of motion along the dynamic
directions. Solving the environment dynamic model (14b) for the
active force parameterization

Xa=(THYa) 'ng +(THY4) 'Besp. (36
using (23), and defining
M =J3q-Tgsn —Tosp
~IB 'n—IB I YATEY4) 'ng, (37)
Q= [TD +IB Y (TLY ) 'Be
IBI'Yr  Tk| GTH)
the system dynamics can be rewritten as
R 8D
Qla,s)|Ar | =f(a.q.5,8) +J(@B (qu. (38
él\'
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Yo

Fig. 1. Robot turning a crank with a free knob.

The nominal input for the task is computed in this case as

[8pdes
Waew = (IB7Y(Q [Arodes | — 7). (39
81 des
Similarly to (34), the closed-loop system will be described by
8p 8D des
Ar | = | ARdes (40)
SK 8K des

while the resulting (parametric) active forces in the dynamic direc-
tions are obtained by just replacing the desired value 81 qes in (36),
or

A= (THY.) 'ne + (THY ) 'Brép des- (a1)

Note that for the dynamic parameters sp and A 4, this second choice
mimics the behavior obtained in impedance control schemes: active
contact forces are implicitly determined by the selection of a desired
end-effector pose, and compatibility with the environment is not
programmed a priori but obtained through dynamic balance [3].

Equations (33) and (39) give nominal torques that have to be
applied in the absence of any uncertainty. Indeed, an effective hybrid
controller should include a strategy for dealing with model imperfec-
tions and other types of disturbances. Also, suitable transformations
have to be implemented for mapping desired and measured end-
effector motions and contact forces into their parametric descriptions.
These and related control issues are discussed in more detail in [13],
[17].

V. EXAMPLES

The following examples illustrate the modeling approach for simple
tasks in the presence of environment dynamics. This analysis leads
also to a task specification procedure to be used with generalized
hybrid control laws.

A. Robot Turning a Crank with a Free Knob

Consider the robot task of turning a crank with non-negligible mass
and inertia in the vertical plane. With reference to Fig. 1, we suppose
first that the knob is free to rotate at the crank pin. All vectors will
be expressed in an inertial frame °S fixed with the robot base. Let a
be the crankshaft axis, b the rotation axis of the knob, both parallel
to Xo, and c the axis of the crank web, normal to both a and b and
intersecting b at the point B. The crankweb has length r. A frame
"S is attached at the robot end-effector with origin in B and the
hand grasp is such that the x,, axis is always kept parallel to b. This
leaves one degree of freedom to the end-effector orientation.

Fig. 2. Environmental parameterization for the case of a free knob,

Since the knob inertia is negligible (or, if not, it can be included in
the robot end-effector inertia), the dynamic model of the environment
can be written using the angle between the crank web ¢ and the
absolute axis yo as the only dynamic variable s;. To determine
uniquely the contact configuration between robot end-effector and
environment, we need also one kinematic variable that can be chosen
as the absolute angle s between z,, and z; (see Fig. 2).

Representing the end-effector orientation with zx:-Euler angles,
the absolute pose p is written as a function of s

T 0
Yy Yya +rcossp
p= : _ | =4 + rosm SD =T(s). 2)
[
i SK
Ly 0

Differentiating (42), and multiplying it by G as in (2)?, one obtains
the parameterization of the admissible end-effector velocity v:

i 01 0

v 0 —rsinsp

z 0. rCoss . R .
v=1l,1=11 int | COS "0 lip = Trén+Tpip. (43)

Wy 0 0

W 04 0

Using the reciprocity condition (9) to determine reaction forces, a
parameterization of all contact forces is given by

1 0 00 0
0 cossp 0 O —sinsp
_ |0 sinsp 0 O cos §p
F=lo 0 oo/t o [M
0 0 10 0
0 0 01 0

YrAr + Yalda, (44)

where the independent column Y 4 satisfies (19) and A4 is a force.

Although other definitions of Y » in (44) are possible, the chosen
one has a ‘natural’ interpretation: the first two columns are associated
to forces along axes b and c of the crank; the second two are
associated to moments around Y; and z. Indeed, the contact force
component that does not lie in span [Yr], i.e., Y a4, appears only
when explicitly considering the environment dynamics.

The overall dynamic model of the system can be written symbol-
ically as

B(Q)d +n(q.q) =u—-J"(q)F.

I.3p + Doép + glom, cos sp = Th(s)F. (45)

21n this case, for ¢ = v = 0 one has w, = V.
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Fig. 3. Robot turning a crank with a fixed knob.

where m, is the crank mass, ¢. is the distance from center of mass
to axis a, I, is the moment of inertia of the crank w.r.t. a and D, is
the viscous friction coefficient at the same axis. From (43) and (44),
the product THF = rA4. The elimination procedure of F from
(45) leads to equations of the form (29), where in this case (29b)
and (29c) would be scalar. Using the notation in (27), (29b) can be
particularized as

[-5p 4 Dosp+glomecossp = I'Pq(q.s)(m(q. q.s.8)

+J(q)B(q) " 'u). (46)

In the case of a 6-dof robot with full rank Jacobian (b = n = 6),
the coupled system will have a two-dimensional dynamics, function
only of the environment variables sp and sx (see [9] for details).
Two hybrid control laws can be proposed in this case: if the crank
has to rotate at a constant speed w, then $p des = w and (39) should
be used; instead, if a desired torque M is needed (mimicking the
operation of bolt fastening), then A4 e = M/r and (33) has to be
used. In both cases, the hybrid controller should keep track also of the
four reaction forces/torques Ar and of the single kinematic quantity
Su, typically setting their desired values to zero.

B. Robot Turning a Crank with a Fixed Knob

In the case of a crank with a fixed knob at the web extremity
(Fig. 3), only the first dynamic parameter is needed for specifying
the end-effector velocity:

0

—rsinsp

TCOTSD §p =Tp(sp)sp.
0
0

v =

(47)

The column T, represents the only generalized direction of admis-
sible motion and implies that there cannot be a translational velocity
without an angular one, and vice versa.

A straightforward choice for the S-dimensional reaction force
parameterization leads now to

1 0 0 0 0

0 —sinsp cossp 0 0

_ |0 cossp sinsp 00
F= 0 _, 0 0 0 Ar+Yala

0 0 0 10

0 0 0 01

=YgrAr+ Y, (48)

Fig. 4. Robot pushing a mass on a rail.

Note that the second column of Y  identifies a generalized direction
in which the environment reaction balances a force along b x ¢
together with a torque about b. Three feasible choices for Y4 in
(48) are

r 0 0
—sin §p 0
S & 0
Y= msom s YYo= 1
0 0
L 0 0
[ 0
—m sin sy
5 COS 8§
Ya(a)= | TFILT (49)
P
L 0

where the first two are both special cases of the third one, which is
obtained from (21) for an appropriate diagonal weighting matrix W
(see also [13]). The scalar « has the dimension of a length. For any
value of «, the force parameter A 4 () associated to Y 1 () has the
dimension of a torque.

As for the system dynamics, when the choice Y 41 is made, (29b)
takes the same formal expression (46). The robot-environment dy-
namics is now described by n + 1 second-order differential equations,
out of which only n + 1 — h are independent. Again, if 2 = n, the
overall system will have a one-dimensional dynamic behavior.

C. Robot Pushing a Mass on a Rail

Consider a dynamic task in which a robot is pushing on a heavy
body of mass mn that slides within an horizontal rail as in Fig. 4,
where the relevant task frames are also shown. The manipulator has
a flat end-effector—a disk of radius »—which enables to exert torques
around two independent directions on the frictionless skewed face of
the body. The body itself is anchored to a wall through an elastic
spring of stiffness k. We suppose that full planar contact is kept
at all times, so that a bilateral constraint can be assumed for the
end-effector.

Two kinematic variables are needed to define the position of the
end-effector center on the skewed face, while a third one specifies
the orientation angle around the face normal. Instead, one dynamic
variable is needed to define the position of the body along the rail with
its zero value chosen at the rest position of the spring. Representing
the end-effector orientation with z.:-Euler angles, its pose p is
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written as
&€ SK1
Y Y4+ sk ocos3+ sp
z sK 2sin
p=|"|= B =T(s)  (50)
%
J 3
3 SK .3

where /3 is the angle of the skewed face with respect to the horizontal
plane. Differentiating (50), and multiplying it by G, one obtains

1 0 0 0

0 cosj3 0 . 1
v= 0 singd 0 :j\i + 0 io

0 0 0 t.." 0"

0 0 —sing |l 0

0 0 cos /3 0

=Txsx +Tpsp. (51)

Based on the reciprocity condition (9) and on (19), reaction and
active forces can be parameterized as

0 0 0
0 0 sin 3
_ U 0 /\R 1 — COS ,43 _
F= L 0 L\R 2] + 0 Aa =YrAr+Yara (52)
0 cosi 0
0 singd 0

where Ar1 and Agrg2 have dimensions of torques, and A4 is the
parameterization of the linear force in the active direction. The two
columns of Yr correspond to two orthogonal directions lying on
the skewed face of the body, while Y 4 is associated to the surface
normal.

The assumption of surface contact imposes certain restrictions on
the force parameters. In particular, since the robot is “pushing,” it is

Aa 2 0. (53)

Accordingly, the parameterization for the reaction moments will have

to satisfy
VAR + AR S Aar

since the application point of the active force should be inside the
tool disk. As a consequence, no torques can be applied without
also pushing on the body. With this task specification, an hybrid
controller will typically regulate Ar to zero and either impose a
positive value for the active force parameter A 4, or specify a motion
within a positive domain for sp. Finally, the dynamic model of the
environment is

(54)

mép + kesp = THF = Aasin 3, (55)

which has to be completed with the robot dynamics.

VI. CONCLUSION

A control-oriented framework for describing kinematics and dy-
namics of robots in contact with a dynamic environment has been
presented. The main idea is to introduce a minimal parameterization
of the basic quantities that arise in connection with hybrid con-
trol tasks. The environment and contact interaction with the robot
end-effector are characterized through both dynamic and kinematic
variables. From this description, generalized directions of admissible
end-effector motion are derived. together with active force directions
in which an energy transfer is realized from robot to environment and

directions along which contact forces are balanced by the environment
reaction. The overall dynamics of the robot-environment system has
been derived in this framework.

Most peculiarly to the proposed modeling approach, dynamic
directions can be determined along which active forces and end-
effector motion exist at the same time. Thus, the classical vision
of hybrid tasks where two kinds of directions exist, those where
only force control is possible and those where only motion control is
feasible, is enriched by the addition of a third set of directions along
which force or motion control may be performed in alternative.

A suitable task-based dynamic modeling approach is available, and
its flexible usage has been illustrated here on representative cases.
The simplicity of this modeling allows an useful formulation of the
control problem in a series of practical hybrid tasks, e.g.. pushing
a wheeled vehicle, opening doors, deburring with pneumatically
suspended tool and in general in all those cases where a robot arm
has to manipulate massive objects in constrained motion or payloads
that possess relative degrees of freedom in the grasping.
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