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Abstract—A new frequency-domain approach to the analysis
and design of learning control laws for achieving a desired
repetitive behavior in a dynamical systems is presented. The
scheme uses two separate filters in order to obtain rapid im-
provements in a specified bandwidth while cutting off possibly
destabilizing dynamic effects that would bar learning conver-
gence. In this way, the trade-off between global convergence
conditions and approximate learning of trajectories is made
explicit. The synthesis is presented for single-input single-output
(SISO) linear systems, but the method is of general application.
The proposed learning controller has been used for exact track-
ing of repetitive trajectories in robot manipulators. In particu-
lar, actuator inputs that enable accurate reproduction of robot
joint-space trajectories are learned in few iterations without the
knowledge of the robot dynamic model. Implementation aspects
are discussed and experimental results are reported that show
how the proposed learning scheme avoids the occurrence of
unstable phenomena over iterations.

I. INTRODUCTION

EARNING control is a technique in which the input

signal required to achieve a given behavior as output of a
dynamical system is built iteratively from successive experi-
ments. Performance on repetitive tasks is improved from one
iteration to the other until the desired goal is attained.

One major advantage of learning control is that it works
even with limited a priori knowledge of the mathematical
model of the system. In particular, the development of an
accurate model can be restricted to that part of the system
dynamics that is known exactly, has small parametric uncer-
tainties, and can be evaluated in real time with little computa-
tional effort. Under suitable assumptions, the learning scheme
will acquire from trials the additional information needed for
the successful completion of the task. As compared to adap-
tive control schemes, learning control is limited by the
assumption of a repetitive nature of the desired behavior.
Moreover, no explicit parameter identification is performed
and the learning process should be restarted when tackling a
different task. On the other hand, the learning scheme can be
made robust with respect to unmodeled dynamics, as opposed
to standard adaptation schemes, while the need for iterative
operation is not restrictive in many situations.
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Another relevant aspect of learning schemes is the simplic-
ity of the resulting control law, enabling a cheap implementa-
tion without heavy real-time computational burden. There-
fore, high-performance microcomputers are not required as
most part of the numerical processing can be done off line.
Instead, a rather large amount of memory is needed for
storing the time profiles of selected process variables. This is
not a real drawback, as memory cost is low and continuously
decreasing, whereas size is growing at a fast rate.

Iterative learning has already found wide application in the
robotic field. In fact, the repetitive task of tracking a desired
path is a very natural one for an industrial manipulator.
However, this control technique can be applied to a broader
class of systems and operative conditions, including those
subject to periodic disturbances. In [4], a learning controller
has been added in parallel, or ‘‘plugged-in’’, to an already
existing controller designed for a disk drive actuator in order
to compensate for structural misalignments. A similar ap-
proach can be used for rejecting the effects of eccentricity in
electrical motors. As a result, the learning strategy allows to
relax the requirements of a purely model-based control de-
sign. Moreover, it provides a natural way to generate the
suitable feedforward action needed to modify a constant
set-point regulator into a trajectory tracking controller.

In the rapidly increasing related literature, most of the
proposed learning algorithms were investigated first for the
case of linear systems [1]-[8]. The analysis of the conditions
that guarantee convergence of the iterative scheme is per-
formed either in the frequency [1]-[3] or in the discrete
[4]-[6] or continuous time [7], [8] domains. For linear
time-varying systems of dynamic order two (also called
acceleration systems), different simple learning laws have
been studied, based on the proportional integral (PI), propor-
tional derivative (PD), or proportional-integral derivative
(PID) treatment of the velocity error. In particular, the last
two require also a direct or indirect measure of joint accelera-
tions [9].

Extensions to specific classes of nonlinear systems were
also considered [9]-[13]. These include mechanical systems
—like robot arms—which possess the relevant properties of
being stabilizable by a linear PD law and exactly transformed
into a linear system by means of a nonlinear state feedback.
Although the proof of convergence is more involved in these
cases, the resulting learning control scheme is still simple.

In this paper, a new learning controller is proposed and its
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convergence studied for linear time-invariant systems, using

a frequency-based approach. The specific features of this
scheme are:

1) Relaxed convergence conditions are obtained as the
method allows for different weighting of ‘‘what to
learn’’ from the current trial and ‘‘ what to remember’’
from the previous ones. Only a small amount of addi-
tional signal processing is needed to enforce conver-
gence, typically cutting off high-frequency system dy-
namics. In a robot arm, these could be originated by
unforeseen elasticity of the joint transmissions.

2) The presence of a feedback controller, designed for the
original plant, is explicitly included in the convergence
analysis. Thus, the elements of the learning algorithm
will be designed with respect to closed-loop characteris-
tics, which are more convenient and predictable than
open-loop ones.

Because the approach is frequency oriented, it provides

deeper engineering insights during the design phase,

where tools like frequency response, filtering, and

Nyquist plots can be used directly.

3

~

The paper is organized as follows. The learning algorithm
is presented for the case of a SISO linear system, subject to
feedback from the output. The peculiarities of the proposed
approach over previous ones can be fully illustrated already
in such a simple case. It is then easy to incorporate the basic
ideas into other existing analyses (see e.g. [2], [6], and [9]),
in order to extend the applicability of the method to the
multivariable case and to robot motion control. A discussion
of the modifications needed for trajectory tracking in robot
manipulators is included. The main implementation issues of
the learning control law are then described and experiments
are reported for a geared prototype robot arm. The obtained
results will clearly point out the capability of avoiding the
occurrence of unstable behavior in the learning process.

II. LEARNING CONTROL ALGORITHM

With reference to Fig. 1, let a scalar linear plant be
described by ‘its transfer function p(s) between the Laplace
transforms of the applied control input # and of the output y.
A feedback compensator c(s) is designed for this system,
based on the error e = y, — y, where y, is the reference
signal for the output. Typically, the purpose of this controller
is the stabilization of the original system and not the accurate
tracking of trajectories. The resulting scheme has closed-loop
transfer function w(s), given by

w(s) = y(s) _ _p(s)e(s) (1)

~ya(s) 1+ p(s)e(s)

At iteration k, a learning contribution v, is added to the
controller output to yield

ui(s) = ui(s) + vi(s) = c(s)ec(s) +uels) (2

which is the input applied to the plant. Note that u) is the
control effort of the feedback controller c(s), which is de-
signed independently from the learning part. The system

Vi (1)
Learning —» Memory (k+1)
Algorithm
d Memory (k)
u't) Vi)
Yalt) +__ elt) + y(t)
Controller > Plant  j—>p
R u(t)

Fig. 1. Overall block diagram of the learning controller.

output can be rewritten as

p(s)
va(s)- (3)

The learning algorithm is defined by an update law for
V41> which may depend in general from one or more of the
various signals present in the system: v, u,, Uy, Vi, Vg
and e. Avoiding the use of redundant information, the update
vy 1 Will be chosen as

visi(8) = als)ui(s) + B(s)vi(s). )

The frequency-dependent functions «(s) and B(s) will be
selected to accelerate the learning process while providing

convergence. Manipulating (4), the next iterate takes the
form

Yi(s) = w(s) ya(s) +

vk+1(s) =

oz(szc szs) e

I+ p(s)ec

+(B(s) — a(s)w(s))u(s). (5)
A similar iterative expression holds for the error sequence
€ = Ya — Yk-
__1-8(s)
"1+ p(s)e(s)
+(B(s) = a(s)w(s))e(s). (6)

Due to the repetitive nature of the desired output y, over
successive trails, and to the assumed stable characteristics of
the involved functions, sequences (5) and (6) will converge
for all values of s = jw such that

[B(s) — a(s)w(s)| < 1. 7

The smaller is the magnitude of the left hand’side of (7), the
faster will be the rate of convergence. Under this condition,
the limit values of the learning memory and of the error are

Cyls) a(s)w(s)
= 2(s) 1-B(s) + a(s)w(s)

A E)) Ya(s)

(®)

() = Jim ve(s)
and

eu(s) = lim ey(s)
Ya($) 1 - B(s)

= T3 00)e00) T-B0) * alow(s)” )

The contraction condition (7) generalizes the one usually
found in the literature, where 8(s) = 1 [7]-[9]. If this choice
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is feasible, i.e., if an «(s) can be found such that
|1 — a(s)w(s)|< 1, one recovers exact reproduction in the
limit, or

*(s) = Ya(s)
vm( )— p(s) (10)

The role of filter B(s) can be illustrated directly using the
Nyquist frequency plot. Two typical Nyquist diagrams of
1 — a(jw)w(jw) are reported in Fig. 2. In the first case,
stability is guaranteed for all finite w; in the second, an
unstable behavior will occur due to the presence of signal
components with w > w;, and the learning process will
diverge over iterations. In the latter case, (7) may be satisfied
only by introducing a frequency-dependent (B(s), designed
with the aim of forcing the whole plot inside the unitary
circle. Note that if the phase of a(jw)w(jw) asymptotically
reaches —90°, then it is not necessary to introduce any
filtering action B(s). This phase condition is related to the
one of strict positiveness of the impulse response of the given
linear system, as referred in [8].

The use of B(s) is particularly advantageous in the pres-
ence of unmodeled destabilizing dynamics.  For example, the
Nyquist plot of a simple pole dynamics where a small delay
is added is shown in Fig. 3, together with the plot obtained
by using a lag compensator for 3(s). With the introduction of
B(s), the high-frequency content of the closed-loop signals
will not be anymore harmful for stability. The price to pay is
that learning performance degradates above a certain w,.
However, this may not be particularly restrictive as the
reference signals are usually characterized by useful band of
frequencies, beyond which there is no practical interest of
reproduction. In any case, accurate tracking of the desired
trajectory will be preserved within the specified bandwidth.

The learning process (5) can be equivalently described
avoiding reference to a specific trajectory y, by introducing
a “‘virtual’’ transfer function between the desired behavior
and the memory signal

ek(s) = 0.

(11)

It is easy to see that the following recursion is obtained:

a(s)e(s)(1 - p(s)m(s))

1+ p(s)c(s)

Micsi(s) = + B(s)m(s).

(12)

Again, under assumption (7), the limit value for (12) is found
as

1 a(s)w(s)
p(s) 1= B8(s) + a(s)w(s)

mm(s) =

(13)

Using this result, a limit transfer function can be defined as

2(s) o 1=B(s) + als)

Wo(s) = lim ya(s) 1 - B(s) + a(s)w(s)
(14)

Equation (14) can be used to quantify—in the frequency
range—the amount of introduced approximation in the repro-
duced reference trajectory, thus representing a useful guide
for design purposes and performance evaluation.

When B(s) = 1, it is easy to see that wX(s) = 1. More-
over, for any choice of «(s) satisfying the simplified contrac-
tion condition, one has

1

mi(s) = .

2= o0 (19)
Relation (15) expresses the fact that the learning block
asymptotically inverts the plant. When (3(s) is not the iden-
tity, the same holds true—at least in a specified frequency
range. It is expected that this inversion process may be
troublesome for plants having right half-plane zeros. How-
ever, the trajectory data from each trial are processed only
after execution time and thus inversion is performed off line.
In particular, an anticipative (noncausal) learning update can
easily be devised by letting the new memory v, ,(#) depend
also on error values e (7) at times 7 > f, given the trajec-
tory executed at the kth trial. As a result, the proposed
learning strategy is applicable also to tracking problems in
systems that display a nonminimum phase behavior, e.g., for
the end-point trajectory learning in a one-link flexible arm
[14].

Vice versa, whenever the choice

(16)

is a feasible one, then B(s) can be safely taken equal to 1 and
exact tracking will be achieved after just one trial. Thus, (16)
provides the optimal theoretical choice for the learning pro-
cess. It also confirms the intuitive idea that including the best
available model w,(s) of the closed-loop system in the con-
trol-weighting part (i.e., in «) of the learning update (4) will
speed up numerical convergence. Note also that the use of a
feedback controller ¢(s) is very advantageous with respect to
the ease of choosing a near-optimal «(s). In fact, although
the plant transfer function itself p(s) may not be known
exactly, the feedback controller c(s) could be designed so as
to dominate the overall closed-loop behavior w(s). Accord-
ingly, the objective of a well-designed feedback c(s) should
be the robust stabilization of the original plant, together with
the largest reduction of the phase lag within a wide band of
frequencies.

The learning control algorithm has been introduced with
reference to Fig. 1. In this scheme, the learning contribution
can be described as a feedforward action relieving the control
effort of the feedback controller. An equivalent scheme is
obtained if the closed-loop signal extracted for learning and
the injected feedforward signal (i.e., u} and v,) are both
moved just before the compensator in the direct path. Ele-
mentary block algebra shows that the same concept can be
realized as in Fig. 4, where the tracking error e, is used in
place of ), for learning purposes. In this case, the signal i,
stored in the memory is related to the one in Fig. 1 by
U, (s) = v, (8)/c(s). The convenience of such an implementa-
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Fig. 2. Plots of 1 — a(jw)w(jw) for stable (1) and unstable (2) learning
algorithms.
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Fig. 3. Stabilization of an unstable learning algorithm using a lag compen-
sator as filter 8(jw).

tion is that the learning controller can now be added without
‘‘opening’’ the previous loop but just by modifying the
reference signal of an existing feedback control scheme.
Also, Fig. 4 allows to point out a structural difference of the
proposed learning scheme in relation with other ones [7], [8]
working on an open-loop system or, externally, on a closed-
loop one (see the dashed lines). In fact, previous schemes do
not have the ‘‘direct’” link from the reference signal y, to
the closed-loop plant. This further connection allows the
proper operation of the system already at the first iteration,

A
Vit ®

Learning

Algorithm

Memory (k+1)

A

Yalt)

Memory (k)

Controlier > Plant T

Fig. 4. Modified block diagram of the learning controller.




DE LUCA ef al.: A FREQUENCY-DOMAIN APPROACH TO LEARNING CONTROL 5

when the memory content is zero, and increases the robust-
ness of the method with respect to progressive variations of
¥, from one iteration to the other.

Finally, the extension of condition (7) to the multivariable
case is quite straightforward and can be done following
similar steps as in [2]. Let P(s) be the transfer matrix of a
square plant (i.e., with the same number of inputs and
outputs), and let C(s) be the chosen multivariable precom-
pensator. Denoting by A(s) and B(s) the two learning
filters, respectively on the applied on-line control and on the
memory, the convergence condition is given by

| B(s) = A(s)(1 + C(s)P(s)) "' C(s) P(s) | <1 (17)

where || - || is any matrix norm. This expression can be
further simplified when, as customary, A(s), B(s), and
C(s) are chosen to be diagonal.

III. ApPLICATION TO ROBOT TRAJECTORY CONTROL

The previous learning scheme is designed using a linear
system as the model of the plant. Indeed, the dynamic model
of a rigid robot arm with N joints is nonlinear and interact-
ing and can be written as

(J/+B(q))d+ (D+5(q,4))g+g(q) =u (18)

where geR”™ are the generalized joint coordinates, J +
B(q) is the positive definite inertia matrix, S(q, ¢)¢ con-
tains the centrifugal and Coriolis terms, Dg is the viscous
friction term (with D diagonal), and g(gq) is the gravitational
force. In (18), the first two terms have been explicitly written
as a linear plus a nonlinear contribution. The constant inertia
term J is due both to the inertia of the motors and to the
mean average link inertia, as reflected through the gearings.

It is a common practice to design industrial robots using
high-geared transmission elements. In this case, the linear
dynamics overrides the nonlinear one and J becomes diago-
nally dominant. Thus, the previous learning technique can be
applied directly to this case, provided that the diagonal
compensator C(s) is designed as a proportional-derivative
controller plus a gravity compensation (see also [9]); in the
time domain

w(t) =Kp(qs~ q) + Kp(4a—d) +2(q) (19)

with K, > 0 and K, > 0. If the joint velocity is available
for measurement, the PD part of this control law is imple-
mented as a linear feedback from the full state of the robot
arm. The closed-loop system becomes then nearly linear and
its input-output behavior in the Laplace domain can be
represented by

q(s) = (Js* + (D + Kp)s + Kp) " (Kps + Kp)qu(s)
(20)

or, with diagonal J and using local (decentralized) PD
controllers,

wi(s) = a,(s) _ Kpis+Kp,;
l 94,:(s)  Jis*+(D;+Kp ) )s+Kp,
i=1,--,N. (21)

These expressions are used in the design of filters «,(s) and
B(s) satisfying condition (7).

There are cases when the foregoing hypothesis of an
approximately linear behavior is too unrealistic; typically, the
full nonlinear dynamics becomes relevant for robots with
open kinematic chains and direct-drive actuators. Even in this
case, it is well-known that the feedback law (19) asymptoti-
cally stabilizes the robot dynamics around any desired regula-
tion point [15]. Therefore, the overall control strategy will be
modified only in the learning algorithm. In particular, if a
possibly good approximation of the dynamic model is avail-
able, a feedforward term can be used to reduce the learning
effort. This term is introduced as the initialization of the
learning memory of the controller. At the first iteration
(k=1

vi(1) = (J. + B,(q4))d,
+(D, + S.(das 4a))da + 8.(94) (22)

is used, where the subscript e denotes the ‘“best’’ estimated
model. This model may differ from the correct one because
of the inexact knowledge of system parameters, as well as for
the simplifications introduced in evaluating the dynamic
terms. Note that there are no specific restrictions on this
initial guess, which may even be very poor. A general
convergence analysis which is applicable to this approach can
be found, e.g., in [18].

IV. IMPLEMENTATION ASPECTS

A hardware/software environment suitable for real-time
experimentation of robot control laws has been developed at
the Robotics Laboratory in our Department. The system is
constituted by 6-degree of freedom (dof) prototype manipula-
tor and a multimicro process computer. Fig. 5 illustrates the
main building blocks of the system.

The robot arm has a symmetric distribution of masses and
no shoulder or elbow lateral displacements. All joints are
revolute and are actuated by dc motors through harmonic
drives with transmission ratios equal to 160. The inertial
parameters and the dynamic model of the robot arm, with the
last three joints held fixed, are given in [16]. Approximately
90% of the gravity loading is compensated by means of a
system of springs. Motors are powered by current amplifiers,
whose reference values are provided by 12-b D/A convert-
ers. Each joint is equipped with a resolver and a dc tachome-
ter for velocity feedback. The analog outputs of both sensors
are converted into digital values with a resolution of 16-b/2
rad and, respectively, 11-b/(rad/s).

The multimicro architecture is composed by an IBM XT286
personal computer using digital I/O ports to communicate
with a board based on a Texas TMS 32025 Digital Signal
Processor (DSP) with 4K words of RAM program memory
and 2K words of data memory; the DSP computer is directly
interfaced to the converters of the robot (see [17] for more
details).

In this hierarchical structure, the XT286 performs the
high-level control actions and provides the system mass
memory and graphic user interfaces. All functions are pro-
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Fig. 6. Speed and position profile of the joint trajectories.

grammed in Pascal; in particular, the trajectory generation is
done at this level. Moreover, a programming environment
for the TMS 32025 is supported, including an editor and a C
cross-compiler. Executable codes are downloaded to the DSP
through the same channel used for real-time communications.

The proposed control law has been implemented on this
architecture with the specific goal of testing the performance
of the learning part. A simple linear state-feedback has been
used as the closed-loop controller of Fig. 1, neglecting the
nonlinear term g(q) in (19), as gravity effects are almost
entirely compensated by the mechanical design.

The closed-loop linear control is performed by the DSP at
a sampling rate of 400 us. The most relevant system vari-
ables (among the others, position and velocity errors and the
output ' of the linear controller) are stored every other
sampling instant in a local buffer and transferred to the
XT286 every 20 ms, the sampling time of this computer.
These data are progressively saved in a large buffer in the PC
RAM. At the same rate, the proper segments of the time-
varying reference signals y,(¢) and v,(t) are downloaded.
At the end of each trial, the PC buffer is processed off-line
and the new learning output v, () is computed according
to (4). .

We remark that the overall control law has a natural
decomposition that matches perfectly with the levels of the
available computing structure. As a matter of fact, the princi-
ple of simple, fast low-level modules governed by devices

devoted to more complex but slow rate tasks is typical of
most industrial controllers.

V. EXPERIMENTAL RESULTS

Several experiments were performed for evaluating the
tracking performance of the learning controller. The results
reported here refer to a trajectory specified for two of the six
axes of the prototype arm. Only joints 2 and 3 are required to
move, so that the desired motion of the arm is restricted to a
vertical plane. The reference trajectory is defined in the joint
space and is composed of two trapezoidal velocity profiles
(see Fig. 6). Each joint moves back and forth by approxi-
mately 160°, extending the arm symmetrically around the
upward stretched configuration. The maximum speed reached
is 50°/s for both joints, while the maximum accelerations are
40 and 50°/s? for joints 2 and 3, respectively. The total
traveling time is about 9 s. These values are close to the
maximum allowable velocity and acceleration for this robot,
which are specified respectively as 60°/s and 60°/s>.

Table 1 contains the PD gains used for the feedback
controller and the estimated link inertia and joint viscous
friction. These coefficients should be used in the linear
dynamic model (21). In the same table, the actual values of
the motor torque constants K, ; are also included. In all
experiments, the learning memory is initialized as v, = 0,
i.e., no feedforward is used at the first trial.

Figs. 7 and 8 show the profiles of the position errors of
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Fig. 8. Position errors for joint 3 in trials 1, 3, 6, and 12.

TABLE 1
VALUES OF THE RELEVANT PARAMETERS FOR THE PD CoNTROL LOOPS
Parameter Joint 2 Joint 3 Units
J; 82.5 26 kg m?
D; 130 100 N - m/(rad/s)
Kp ; 22.7 472 A/rad
Kp 20.4 12.3 A/(rad/s)
Ky 45.7 27.5 N-m/A

joint 2 and 3 along the given trajectory, as the learning
proceeds. Data refers to trials 1, 3, 6, and 12, where it is
evident that the amplitude of the error has been greatly
reduced. A more quantitative information can be obtained
from Fig. 9, which shows the root mean square (rms) value
of the errors against the trial number. The convergence of the
error to zero is quite regular and follows the expected

asymptotic behavior, despite the high level of static (dry)
friction present at the joints of this manipulator. The stiction
phenomenon is quite relevant in our case, vanishing the
efforts for an accurate modeling of robot links dynamics and
limiting also the effectiveness of model-based controllers,
e.g., the computed torque method [19]. Note that static
friction cannot be assumed as a strictly repetitive disturbance
and also causes slightly different initial conditions in succes-
sive trials. Despite this, the learning controller behaves in a
quite robust way even with respect to these kind of problems.
If an integral-type controller were used instead, it would
result in oscillations around the final set point.

Fig. 10 displays the evolution of the learning memory v,
and of the feedback control action ) for joint 2; the same
quantities are shown for joint 3 in Fig. 11. From these, it can
be seen that the closed-loop effort is transferred to feedfor-
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Fig. 9. RMS values of position errors vs. trial number.
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Fig. 10. Memory control v (upper trace) and feedback control u (lower
trace) in trials 1, 3, 6, and 12, for joint 2.

Sec
Fig. 11. Memory control v, (upper trace) and feedback control u}, (lower
trace) in trials 1, 3, 6, and 12, for joint 3.
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Fig. 12.  Comparison of position errors at iteration 12 for joint 3, with filter

B(jw) (upper trace) and without it (lower trace).

ward action as the number of iterations increases. Although
the memory is learning the required input, the error along the
trajectory is driven to zero together with the closed-loop
control. At iteration 12, only high-frequency ripples are left
in the feedback control u},, which will not be learned thanks
to the presence of filter 3(s). The residual errors are mainly
due to the inconsistency between velocity and position mea-
surements, since two different sensors are used. These effects
are very small indeed, namely with peaks of the order of
0.5°.

All the above results were obtained using, for both joints,
the learning filters

1

B(s) 1 +0.008s
The chosen low-pass filter B(s) gives a cutoff frequency of 20
Hz. The selection of a constant value for «(s) is a conserva-
tive one, as it takes no advantage of the knowledge about the
closed-loop system, as would be suggested instead by (16).

In order to verify the benefits on the overall stability
induced by the introduction of B(s), a set of experiments
were performed setting B(s) = 1. After an initial period of
learning (10 iterations) some small oscillations appear. Fig.
12 compares the position errors of joint 3 at iteration 12,
obtained with and without the filter 8(s). The lower trace
clearly reports a high-frequency oscillation superimposed to
the useful signal. This phenomenon has been already ob-
served experimentally in [6], where a deadband on the track-
ing error was used to avoid instabilities.

a(s) = 0.25 (23)

VI. CoNCLUSIONS

A new frequency-domain learning algorithm has been pre-
sented that properly handles the presence of destabilizing
dynamic signals and guarantees convergence of the iterative
process. The rationale behind this approach stands in the
clear separation between learning capabilities of the algo-
rithm and convergence issues. The frequency shaping of the

algorithm does not affect adversely the number of required
trials but only the bandwidth where the information content
of the desired behavior will be reproduced.

The learning scheme can be added in parallel to an existing
feedback controller in order to improve performance. The
analysis has shown that starting with a closed-loop system
yields relaxed convergence conditions that can be more easily
satisfied. The learning technique has been implemented for
the trajectory tracking control problem in robot manipulators.
The benefits gained by adding a filtering device on the
learning memory, and in particular the capability of rejecting
an oscillatory behavior buildup, were clearly illustrated by
the experimental results. The obtained rate of convergence is
quite good, even if no a priori knowledge on the dynamic
model was initially stored in the learning memory. Although
the reported experiments refer to robotics, this should be
seen as a case study: the learning algorithm is of general
application to all those processes for which high-performance
but still simple controllers are needed in repetitive tasks or in
the presence of periodic disturbances.

Further research includes a discrete-time analysis of the
algorithm, suited for the case of truly nonlinear models of
robot manipulators. The discrete-time approach is also con-
venient for thoroughly exploiting the possibilities of non-
causal filtering design.
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