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Fig. 5. First modal frequency as detected by TTFE.
and the variation of the frequency where these peaks occur admits a di-
rect functional relationship with the payload carried by the robot. Results
for this example system have shown that, practically speaking, any class
of desired tracking trajectory (that is, aside from an ideal pure sinusoid
which excites only one frequency component) with reasonable amplitude
is sufficient to assure an accurate estimate of the first bending frequency;
this was illustrated with the use of a very small slew (5°) in the reported
experimental results. The gain scheduling controller based on the esti-
mated frequency of the first flexible mode proved to be efficient in terms
of computing effort to tune the controller, and compensated satisfactorily
for a varying payload. The scheduling scheme also guarantees that the
controller used is stable since all possible values for controller parameter
combinations are known @ priori to produce a stable response.

Use of acceleration signals for identification and control has proven to
be successful in general flexible structure applications, and specifically
for flexible manipulator identification and control in one- and two-link
robots at Ohio State. The problem of computation delay experienced in
rigid robot applications is much less severe in the case of flexible-link
robots due to slower system response. That is, the relatively low modal
frequencies (1-2 s periods) dominate the time required in the algebraic
loop. Moreover, delay due to mechanical wave propagation is easily
accounted for in the identified z-domain transfer function.
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Design of an Exact Nonlinear Controller
for Induction Motors

ALESSANDRO DE LUCA anp GIOVANNI ULIVI

Abstract— A novel approach to the control of induction motors is
presented, based on differential-geometric concepts for the control of
nonlinear systems. Structural properties of the model are pointed out,
and a proper selection of physically meaningful system outputs is in-
dicated which yields, via static state-feedback, exact state linearization
and input-output decoupling of the closed-loop system. The proposed
approach is used to design a controller for motor torque and flux.
Simulation tests are included.

I. InTRODUCTION

The design of a new high-performance controller for drives using an
induction motor as an actuator will be considered here. The relevance of
this control problem is witnessed by the large number of investigations
carried out both from a theoretical and a practical point of view [1]. A
major aspect is how to cope with the nonlinear and coupled dynamic
behavior of the machine. Typically, the state equations of an induction
motor are bilinear {2], while a natural output variable to be set under
control, the motor torque, is a nonlinear function of the state.

The control system has to be designed for driving the motor torque
along a given profile while keeping limited, even during fast transients,
both the machine flux and the current sinked from the inverter supply.
In fact, when the modulus of the machine flux exceeds some threshold
value, the motor operates in an improper way. On the other hand, the
inverter cannot source a current value which is higher than its rated one,
even for short time intervals.

In many of the proposed approaches to this problem, the motor flux and
the torque are controlled separately. One of the most effective schemes,
known as field-oriented (or vector) control [31-[5], works with a con-
troller which approximately linearizes and decouples the relation between
input and output variables. This is obtained by means of a proper selec-
tion of state coordinates, under the simplifying hypothesis that the actual
machine flux is kept constant and equal to some desired value.

In this paper, the use of control techniques based on the differential-
geometric approach is proven to be effective for the design of a full
linearizing state-feedback controller for induction machines. The moti-
vation here is twofold. First, this approach leads to a control solution for
the induction motor which is exact in the sense that simplifying hypothe-
ses are not taken into account @ priori. Second, embedding the problem
in a general framework allows a systematic investigation of the structural
properties of the model and provides a solid theoretical background to
other effective methods.

General results on feedback linearization and input-output decoupling
are available for the class of smooth nonlinear affine systems [6]-[7].
A comprehensive introduction to these results can be found in [8]. The
relative control techniques are quite mature and have already found useful
application in different areas [9], [10]. In particular, interesting results
have recently appeared in the field of switched reluctance motor control
[11].

The nonlinear dynamic model of the motor is introduced in Section II.
Section III briefly outlines the design methodology. Section IV contains
the main results: the relevant control properties of the dynamic model
of the induction machine are pointed out and the synthesis of an exact
linearizing and decoupling state-feedback controller is described in detail.
In the last two sections, simulation tests are reported and discussed.
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II. Dynamic MopeL of THE INDUCTION MACHINE

Based on the two-phase equivalent machine representation and under
the standard simplifying modeling hypotheses, the dynamic behavior of
a voltage-fed induction motor is described by a set of four nonlinear
differential equations [1]. As state variables, it is convenient to use the
projections of the stator current and stator flux vectors on a (d, g)-axes
reference frame rotating at the same speed of the desired stator flux
vector. The iy and i,; components of the stator current can be obtained
on the basis of direct measures, while the flux components ;s and ;s
can be reconstructed very efficiently be means of a bilinear observer, as
shown in [12], [13]. Thus, full state availability can be assumed in the
controller design. The projections vys and vy, of the supply voltage and
the slip frequency ws, i.e., the difference between the desired angular
speed of the flux and the mechanical speed w, are taken as input variables.
The speed w is a slowly varying parameter, the mechanical dynamics
being much slower than the electromagnetic one.

Therefore, setting X = [ias, igs» Pas» Pgs )T and u = [vas, vgs, @517,
the dynamic equations describing the motor behavior are bilinear and
can be written as

X =f(x)+gx)u 1)
where
—(@ +B) 0 Aﬁ a“/’\s
Sooax=| O B % & |,
—ao A, 0 0 w
0 —ao A, —w 0

tah, 0 x

0 1/eAs —x;

gx) = =1[g1 g28:(x)]
0 X4
0 1 ~=X3

anda = R, /(0 As), B =R, /(cA,), 0 = 1—(M? /A A;). The parameters
R, and R, are the stator and rotor resistances, As and A, are the stator
and rotor self-inductances, and M is the mutual inductance.

The rotor flux components are linear combinations of the chosen states

Par = (Pas — o Asias)Ar IM, Pgr = (Pgs — UAsiqs)Ar/Ma

while the torque produced by the machine takes the form

T, = SOd:iqs - ‘quids

when a motor with one pole pair is considered.

III. NonLiNear ConTroL DEesion TecHNIQUE

Consider a square multiinput multioutput nonlinear plant to be con-
trolled:

X =S +gWu =10+ gitou @

i=1

Yy =hx)=[hx) - hn ] 3

where x € R", f and each of the g; are smooth vector fields, and
each output #; is a smooth function. A common approach is to look for
transformations which map this nonlinear control problem into a linear
one. In particular, one may try to find a state-space transformation z =
T'(x) and a state-feedback law of the form

u =a(x)+bxw 4)

with b(x) nonsingular such that the obtained closed-loop system shows
a linear behavior in z (feedback linearization), or an input-output linear
and decoupled behavior (noninteraction), or both of them (full lineariza-
tion). Conditions for the solution of the above problems are known,

dim My(x) =3,

1305

based on the differential-geometric approach [6]-{9]. The sufficient part
of these conditions is constructive and leads to a synthesis procedure for
the control law.

As in many applications, the outputs (3) for the induction motor system
are not completely specified from the beginning. Meaningful outputs can
be defined in several ways, related to the control goals. The question that
arises is how to select proper output functions which meet the overall
performance objectives and enable us to solve the above control synthesis
problems. The design approach taken here is summarized in four basic
steps:

1) check the conditions for feedback linearization of the state equations,

2) derive the set of partial differential equations (PDE’s) needed for
the construction of the linearizing transformation 7°(x), and find solutions
which can be assumed as system outputs,

3) if needed, complete the set of outputs by choosing other suitable
smooth functions of the state, based on the design objectives,

4) compute the control law in the form (4) by applying the decoupling
technique [8] to the system with the above outputs.

The successful completion of these steps leads to the design of a static
state-feedback controller which yields full linearization in the closed-
loop. A similar philosophy is pursued from a theoretical point of view
in [14] for the decoupling problem.

In the following, L;h = dh - f will denote the Lie derivative of
a function 4 w.r.t. the vector field f, with L’}h =L (L’}_‘h) and
L}h = h. The Lie bracket of two vector fields f and g is defined in
local coordinates as [f, gl(x) = (0g/0x - f —Of/0x - g)(x). A set of
vector fields {f;,i = 1,---,k} defines pointwise a distribution A as
A(x) = span {fi(x),{ = 1,---,k}; its dimension at x is the dimension
of A(x). A distribution is involutive if it is closed under the Lie bracket
operation.

IV. ControL DEsiGN For THE INDuCTION MoToR

1. Feedback Linearizability

The first step of the design procedure requires us to verify the feedback
linearizability of the induction motor state equations (1). Since the state
and input dimensions are n = 4 and m = 3, the general necessary and
sufficient conditions for feedback linearization in some (open and dense)
region ¥V C [R* [6], [8] particularize in the following conditions on the
distributions M; and M, :

(L) My =sp{g;,i =1, 2, 3} is involutive and of constant dimension
in V,

(L2) M, =sp{g:, If, &, i =1,2, 3} is of dimension 4 in V.

From [g;, £:](x) = 0, [g1, &31(x) = ~&2, (&2, &3](x) = g, involu-
tivity of M, follows. Moreover, (L1) holds since

Vx €V & {x e R*|x| #x3/0A; or xp # x4 /oA ).
Next, from

a+pB(l-0) w
ol oA

If,8dx)=-A4-g = [

T
[f, 8lx)=-A-g, = [f © 2+pl-o) ,‘M}

A A
If, glx) =0

it is possible to show that dim M, (x) =4 in V, so that also (L2) holds.
The controllability indexes «;, i = 1, 2, 3 associated with system (1) are
computed from the set of integers

ro & dim My(x) =3
ry £ dim M, (x) — dim My(x) =1
re £ dim My (x) —dim M, _,(x) =0,
£ #{r;lr; >4, j=0,1--} [6]. This yields

Vk >2

using the definition «;

Ky =2,K2=1,K3=1.

Therefore, in the specified region V of the state space, the induction
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motor is feedback equivalent to the following linear system in Brunovski
canonical form:

o1 - - 0

z+ v = Az + Bv. (&)

2. PDE’s Derivation and Solution

The canonical form (5) is obtained in the closed-loop once the proper
coordinates z = T(x) are chosen. In order to build the transformation
T (x), three smooth functions #; (x), i = 1, 2, 3 have to be found [6] such
that in V'
LgiLjhi(x) =0, j=1,2,3,

0<k<k-2, i=1,2,3.

In general, this is a set of mx (n— m) partial differential equations which
have to be solved. Solutions are denoted by 4; (x) in view of the fact that
these functions will be used as system outputs. Since xy = 2, A (x) has
to verify forallx € V

Lghi(x) =0,  j=1,2,3. ®)

From &, = k3 = 1, no conditions are imposed at this point on A, (x) and
h3(x). Conditions (6) develop into the set of partial differential equations:

oh, on,
(‘E*—UASTX@_O
on, . Ohy
%, +0A:3Tc4_0
SO Oh o om
29x, Yox, | Yoxs oxs

The following equation is derived from the previous system:
oh, ohy
- TN (k3 —0Ax)z— =0
(xs aAsxz)ax3 (x3 —0A "‘)ax,

where at least one of the two x-dependent coefficients is nonzero in V.
In the subregion of ¥ where both coefficients are nonzero, the system of
PDE’s implies that /, has to depend explicitly on all four components
of the state. It is easy to see that a feasible solution is

1
hi(x) = 3106 = aAsx1)? + (xa — 0 Ax2)*]. 0]

This function is proportional to the squared norm of the rotor flux 2 (x).
Use of (7) as one of the system output helps ensure correct motor op-
eration. In fact, in order to keep the total motor flux limited, one may
control either only the stator or only the rotor flux due to the tight cou-
pling between the two windings.

3. Selection of the Other Outputs

To solve the problem of full linearization, the set of outputs has to be
completed by choosing /5 (x) and A3 (x) so that the matrix

LeL? ' hi(x) LeLph(x)
LL? () | = | L) ®)
L L ™ ha(x) Lohy(x)

is nonsingular in a neighborhood of a given X chosen in V. Note that
this is always possible, although the choice is not unique [8, p. 242].
Depending on the specific A (x) and h3(x) used, further singularities
could be introduced in the control scheme since the above matrix may
not have full rank globally on V.

It may seem that the requirements expressed by (6) and (8) impose
unnecessary restrictions on the design alternatives. Indeed, these math-

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 34, NO. 12, DECEMBER 1989

ematical conditions reveal the presence of physical constraints which
are inherent to the motor, thus providing a formal basis to intuition.
As an example, a simple and appealing strategy would be to use the
torque Ty (X) = X2X3 — X1 X4, the squared norm of the stator current
I*(x) = x* + x2, and of the stator flux ®2(x) = x] + x} as system
outputs. However, these output functions would violate both (6) and the
nonsingularity of (8). Also, condition (8) would not be fulfilled even if
any of these quantities is replaced by ®2(x). The reason for this is that
the torque is the vector product of current and flux, while rotor flux, sta-
tor flux, and stator current are linearly dependent terms. Therefore, it is
impossible to assign arbitrary and independent values to these quantities.

The following choice, together with (7), leads instead to a satisfactory
design:

hy(x) =Tn(x),  h3(x) =Xa. ®

These two functions are such to make matrix (8) nonsingular. The motor
torque represents a natural control objective. Choosing the g component
of the stator flux as output allows us to guarantee the proper orientation
of the reference frame with respect to which all motor variables are ex-
pressed. Note that if this output is forced to be zero, part of the controller
implementation could be simplified by formally replacing x4 = 0 into
the equations.

4. Synthesis of the Controller

Using the above outputs, a fully linearizing state-feedback law is de-
rived by means of the decoupling algorithm [8]. For the application of
an input-output decoupling law, the decoupling matrix A(x) is required
to be nonsingular. The entries of this m X m matrix are

@ () = Lg, L} ™ hi(x)

where r; is the relative degree of the ith output at X, . By construction,
A(x) will have the form (8). In fact, the computed outputs have the set
of relative degrees equal to the set of the system controllability indexes
[14]. Since

det A(x) = x38(0 — D[(xs — 0 AX2)? + (63 — 0 Ax 1)1 0 A

and 8 #0, ¢ # 1, A(x) is nonsingular if and only if x; # 0 (nonzero
d component of the stator flux) and /;(x) # O (nonzero rotor flux).
These inequalities define the region of validity of the proposed controller.
During normal motor operation, these singularities never come into play.
The nonlinear state-feedback control u = a(x) + b(x)v is defined by

(x3 —oAsxy) _aA:(x4 —aAsxy)

26— I 0 W) 0
- _ (x4 — o Asx2) oAs(x3 —aAsx1)
b =AT'W = | 35 o)) e °
(x4 —0Asx5) oAs(x; —oAx) 1
2x38(1 — o)h (x) 2x3h1(x) X3

a(x) = — A7) [Lihi(x)  Lyha(x) L)1
with
Lih(x) = Bo{wAs (1 — o) (x) — Asl(a + B)(1 — o) + 4B0]
(1xs 4 x2x0)+ Alo(a +28) — ao’}(xF +x3) + B(1 +0)(x3 +xD}

Lyhy(x) = —(@/a A0S +x3) — (e + B (x) +0(x1X3 +x2xa) (10)
Lshy(x) = —(wx3 + ag Asx2).

Physically interesting terms can be recognized in (10), like the squared
norm of the stator current I2(x) and of the flux ®2(x) and the scalar
product I5(x) - ;(x) = x,x3 + x,X4. These quantities are independent
of the orientation of the reference frame (d, ¢) and this may help in the
implementation.

The resulting closed-loop system is input-output decoupled and linear
in the coordinates z = T(x) specified by

z1 =hx), 22 =Lshi(x),

23 = hy(x), 24 = h3(x).
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Fig. 1. Time evolution of the controlled outputs and of the stator flux.
&, ®,:6---10 Vs; Tpp: —1300 - --1300 Nm; g0 —0.05---0.05 Vs,

The control synthesis is then completed on the linear side (i.e., in the z
coordinates) with the design of a stabilizing external input v.

The overall control computations can be organized so that 29 products
and 19 sums are performed for each measurement of the state x and of
w [15]. A very conservative figure of the time needed using a simple
digital signal processor is 100 us, well within the control requirements.

V. SimuLATION REsuLTS

The proposed approach has been tested by simulation on a high-power
induction motor with model parameters

a =27232s, B =17.697s, g =0.064, As =0.179 H.
The rated values of the stator and rotor fluxes are, respectively, equal to
7.3 and 6.88 V-s, while the maximum torque is 1000 Nm. The controller
should smoothly regulate the motor torque at T, qes , keep the squared
norm of the rotor flux at its rated value @ ;. , and align the d axis of the
reference frame with the desired stator flux vector (i.e., constrain
to 0). Simulations were performed at the mechanical speed of 300 rad/s,
close to the motor rated value, starting from a steady state and applying
a step change in the desired torque from 100 to 1000 Nm. The results
obtained using the nominal parameters show that a sampling time of 1
ms does not induce significant errors.

In an actual drive, the parameters of the machine are not exactly
known. In particular, during the normal motor operation, the param-
eters o and § are affected by drifts as large as 10 and 50 percent of their
nominal values, respectively. These maximum variations were used next
to verify the robustness of the controller. The design of the external in-
puts v; is based on a PID scheme (with K, = 235, K; =450, K; =22)
for the rotor flux and on a PI control (K, = 180, K; = 900) for the
g component of the stator flux. Simple proportional control (K, = 50)
is chosen for the torque since the reference signal for this variable is
generally imposed by an outer loop designed for the load speed.

Feedback from the full motor state was used in the simulations, without
including an observer for the stator flux components. Actually, for the
same motor and with the same variations of the parameters, the flux
observer described in [12] has a rate of error convergence faster than 20
ms with a residual error A®; /d; < 0.001.

The time evolution of the system variables in the case of a 50 percent
higher value for 3 is shown in Figs. 1 and 2. The maximum errors on the
relevant variable (A®,= 0.15, A®, = 0.27, Ay, = 0.003, AT, = 200)
are well within the acceptable ranges. Moreover, variables which are not
directly controlled (i.e., Is and ®,) show neither oscillations nor

L ws 4

0 1sec

Fig. 2. Time evolution of the control inputs and of the stator current.
Vas: —40 -+ -40 V; vgs: 2000 - - 2500 V; wy: —12--- 12 rad/s; I5: 0 ---350
A.

overshootings. Similar results were also obtained for variations in the
parameter «, thus confirming the robustness properties.

VI. ConcLusioNs

It has been shown that the differential-geometric approach can be effec-
tively used for the design of a nonlinear controller for induction motors.
The full state linearization and input-output decoupling problems were
solved by means of a static nonlinear state feedback. Simulation tests
indicate a very satisfactory behavior of the proposed controller and its
robustness in the presence of the typical parameter uncertainties of the
machine. Moreover, a digital signal processor implementation is feasible
due to the sufficiently long sampling times allowed.
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