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Abstract

We consider the inverse dynamics problem for robot
arms with flexible links, i.e., the computation of the
input torque that allows exact tracking of a trajec-
tory defined for the manipulator end-effector. A sta-
ble inversion controller is derived numerically, based
on the computation of bounded link deformations and,
from these, of the required feedforward torgue associ-
ated with the desired tip motion. For a general class
of multi-link flexible manipulators, three alternative
computational algorithms are presented, all defined on
the second-order robot dynamic equations. Trajectory
tracking is obtained by adding a (partial) state feed-
back, within a nonlinear requlation approach. Experi-
mental results are reported for the FLEXARM robot.

1 Introduction

Modcling robot manipulators as rigid mechanical sys-
tems is an idealization that becomes unrealistic when
higher performance is requested. Tasks involving fast
motion and/or hard contact with the environment are
expected to induce deflections in the robot compo-
nents, exciting an oscillatory behavior.

A source of vibration in robot manipulators is
link flexibility, introduced by a long reach and slen-
der/lightweight construction of the arm [1]. In order
to be able to counteract the negative effects of flexibil-
ity, advanced robot control systems should be designed
on the basis of a more complete dynamic model (see,
e.g., [2]).

In robotic systems with multiple flexible links, out-
put trajectories are typically defined at the level of
manipulator tip, i.e., beyond the structural flexibil-
ity.  Standard tools for solving trajectory tracking
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problems in nonlinear systems, such as feedback lin-
earization, input-output decoupling, or inversion con-
trol (see, e.g., [3]), are not sufficient in this case. In
fact, the mapping between the joint torque input and
the end-effector position output in robots with flexible
links is associated with an unstable zero dynamics [4],
the nonlinear equivalent of non-minimum phase zeros
in a linear setting. Therefore, a straightforward ap-
plication of inversion-based control would lead to a
theoretically unbounded increase of the internal arm
deformation and, in practice, to control saturation.

In this paper, we address the problem of reproduc-
tion of end-effector trajectories, with internal stabil-
ity, using model-based state feedback control. Differ-
ent approaches have already been presented in order
to keep the internal arm deformation limited, while
tracking the desired tip motion of multi-link manipu-
lators: inversion in the frequency domain (5, 6], itera-
tive learning control [7, 8], nonlinear regulation {9, 10],
or a combination of these. We recognize here that the
key common feature is the computation of bounded
link deformations (with associated joint trajectories)
allowing the desired motion of the manipulator tip.

After reviewing the basic modeling assumptions
in sect. 2, we present in sect. 3 a unified framc-
work for three alternative numerical solutions to the
end-effector trajectory tracking problem. In sect. 4
we report experimental results obtained with the
FLEXARM robot, a prototype two-link planar ma-
nipulator with a flexible forearm [11].

2 Dynamic Modeling

Consider an open kinematic chain structure, with a
fixed base and N moving flexible links, interconnected
by N rotational joints. As usual, the use of approxi-
mate finite-dimensional models is preferred for multi-
link flexible manipulators. In the following, some as-



sumptions are made:

Assumption 1 Link deformations are small, so that
only linear elastic effects are present.

Assumption 2 For each link, flexibility is limited to
the plane of nominal rigid motion, i.e., to the plane
normal to the preceeding joint azis.

While Agsumption 1 is standard, Assumption 2 is
introduced for simplifying the control task. It implies
that each link can only bend in one lateral direction,
being stiff with respect to axial forces and to torsion.
In view of this, the bending deformation w;(x;,t) at a
generic point z; € [0, 4;] along the sth link of length #;
is modeled, using separation in time and space, as

Nei

wi(r;,t) = Z bij(2:)6:5(), i
=1

L...,N, (1)

where the Ne; spatial components ¢;;(x;) are assumed
modes of deformation satisfying geometric and/or dy-
namic boundary conditions, while §;;(¢) are the asso-
ciated generalized coordinates.

Let 6 € RY be the vector of joint angular positions,
and 8§ € IRMe the vector of link deformations, where
N, = Zfil N,;. The arm kinematics and its kinetic
and potential energy can be described in terms of §, &,
and their first derivatives. The FEuler-Lagrange equa-
tions provide the dynamic model of an N-link flexible
manipulator in the form of N + N, second-order dif-
ferential equations.

For the ease of presentation, we neglect gravity ef-
fects and introduce a further assumption:

Assumption 3 The total kinetic energy of the system
1s evaluated in the undeformed configuration 6 = 0.

The following dynamic model for control design is
then obtained (see, e.g., [2] for details):
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The positive-definite symmetric inertia matrix B is
partitioned in blocks according to the rigid and flex-
ible components, c¢ is the vector of Coriolis and cen-
trifugal forces, K > 0 and D > 0 are diagonal ma-
trices, of dimensions N, x N, representing the arm
modal stiffness and damping, while 7 is the torque
at the joints. Note that no input torque appears in
the right-hand side of the last N, equations (2), be-
cause link deformations in eq. (1) are described in the
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reference frames clamped at each link base. By As-
sumption 3, the inertia matrix B, and thus also the
Coriolis and centrifugal terms ¢, are independent of 8,
while the velocity terms cs lose the quadratic depen-
dence on 8. In addition, being Bss a constant, cg loses
also the quadratic dependence on 8.

Since our objective is the tracking of an end-effector
trajectory, we conveniently define as system output

3)

where the constant N x N, matrix ®. is defined as

s @i N (8)/ i} (4)

The output y; is a linear approximation of the angle
pointing from the ith link base to its end. According
to Assumption 2, the direct kinematics of the flexible
manipulator, i.e., the position of the arm tip, can be
written in terms of the components of y.

We finally point out that the model structure (2)
holds for any finite-dimensional approximation of dis-
tributed flexibility. Moreover, in the presence of uni-
form mass distribution for each link, any dynamic
model of the form (2) retains the same relevant con-
trol feature, namely the zero dynamics associated with
output (3) is always unstable (see, however, [12]).

y:9+(b86)

&, = block diag {¢:1(4:)/ i, - ..

3 Stable Inversion Control

Inversion control is effective for tracking joint trajec-
tories of a flexible link manipulator (i.e., with y =8 in
place of eq. (3)), because the zero dynamics is stable
in this case [13]. The direct extension of an inversion
control law to the tip output (3) leads to closed-loop
instabilities, due to inadmissible feedback cancellation
effects.

Frequency domain inversion has been proposed
in [5, 6] as one of the first solutions to this insta-
bility problem. By working in the Fourier domain,
this method defines the required open-loop control
torque in one step (for a linear model of one-link flex-
ible arms) or in few iterations (in multi-link manip-
ulators). Learning control has been applied in [7, 8]
for iteratively building the input torque over repeated
trials on the same desired output trajectory. Both
approaches generate a non-causal input command: a
non-zero torque is applied in time before the actual
start of the output trajectory. This preloading effect
brings the flexible manipulator in the proper initial
state that enables reproduction of the desired trajec-
tory, while preserving an overall bounded link defor-
mation. Nonlinear regulation has been used in [9, 10]:



asymptotic output tracking is obtained by closing a
stabilizing state feedback around a computed refer-
ence state trajectory. Finally, separation of stable and
unstable zero dynamics and non-causal operation are
the main features of the stable inversion approach pro-
posed in [14, 15].

All the above methods share a common idea: in or-
der to exactly reproduce an end-effector trajectory, the
links of a flexible manipulator should undergo a spe-
cific output-related bounded deformation history. Any
attempt to control the arm deformation in a different
way, e.g., trying to reduce as much as possible link
deformation like in vibration damping control [4], de-
stroys exact tracking and may induce closed-loop in-
stability.

Let y4(t) be a desired smooth reference trajectory
for the tip, defined in a finite interval [0,T]. Using
eq. (3), we can eliminate 6 and 6 from the last N,
equations in (2), obtaining

Bssb + Dé + K6 + Bls(y — ®.6) (y - @eé)
+es(y — Beb,y — ) =0, (5)

which is a dynamic constraint to be always satisfied
by tip motion and link deformations. Plugging the de-
sired evolution y4(t) in eq. (5) gives a set of nonlinear
differential equations for the only unknown function
6(t). Suppose that a bounded solution é4(t) can be
found (together with its first and second time deriva-
tives). We can use then the first N equations in (2)
for defining the nominal input torque

Ta = Bog(0a)0a + Bos(84)ba + co(ba,04,64),  (6)

where

04(t) = ya(t) — Peba(t) (7)
is the required joint motion. As a result, the main bot-
tleneck is the computation of a bounded solution §4(t)

to eq. (5) (evaluated at y = yq(t)). In the following,
we present three alternative numerical methods.

3.1 Method 1:

regulation

Approximate nonlinear

In nonlinear output regulation [3], the control law
is formed by two contributions: a feedforward term
driving the system output along its desired evolution,
and a state feedback term necessary to stabilize the
closed-loop dynamics around the reference state tra-
jectory. For a flexible link manipulator, the feedfor-
ward term is given by eq. (6), while the desired link
deformation 64(t) is part of the reference state trajec-
tory to be computed.
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The output reference trajectory should be gener-
ated by an exosystem with state denoted by Yy. Each
component of the reference state trajectory will be
specified as a nonlinear function of the exosystem state
Yy. For a flexible manipulator it is then sufficient to
determine 6; = w(Yy) and b4 = (On/3Yy) Y.

In particular, the vector function 7(Yy) should sat-
isfy eq. (5), evaluated along the reference output evo-
lution:

+ Bls(yq — ®em(Ya)) (i]d - q’eﬁ(Ya))

Bsstt(Ya) + D7(Yq) + Kn(Ya) (8)
+ Cs (yd - CI)eW(Yd), Yd — <I>e7'r(Yd)) = (.

An approximate solution 7(Yy) to eq. (8) can be ob-
tained by a numerical approach, as in many practical
nonlinear regulation problems [16]. If we use a class
of basis approximating functions that are bounded in
their arguments, 7(Yy) will necessarily be a bounded
function over time as long as the trajectory yq(¢) and
its derivatives are bounded.

In [9], a polynomial function of Yy has been used as
7(Yy). The nonlinear terms in eq. (8) are expanded in
Taylor series and the constant coefficients in 7(Yy) are
determined through the polynomial identity principle.
Computational savings are obtained via a recursive
procedure, solving eq. (8) for increasing expansion or-
ders until the final desired precision is obtained.

As noted in [15], this approach does not allow the
use of noncausal inputs. Therefore, although the com-
puted link deformation §4(t) = @(Yy(t)) may be differ-
ent from zero at time t = 0, there is no way to preload
the manipulator to such a value.

3.2 Method 2: Iterative inversion in the
frequency domain

For linear non-minimum phase mechanical systems,
a stable inversion algorithm in the frequency domain
has been introduced in [5], by regarding both the
input 7(f) and the output yq(t) as periodic func-
tions. Provided that the involved signals are Fourier-
transformable, all quantities will automatically be’
bounded over time.

An extended interval of definition is considered
for the output reference trajectory, namely with t €
[~A,T + A, where A gives enough time to preload
and discharge the internal deformation in the flexible
manipulator, without motion of its end-effector. In-
deed, we have: y4(t) = yq(0), for t € [~A,0], and
ya(t) = ya(T), for t € [T, T + A].



When the system is nonlinear the inversion algo-
rithm is applied repeatedly, using successive linear ap-
proximations of the whole flexible manipulator equa-
tions around the nominal trajectory [6, 17].

The same idea can be used in a simpler fashion,
namely by itcerating the linearization process only on
the flexible dynamics. For, expand the inertial term
BX(+) around a joint configuration 6, e.g., the final
one, as

Bis(y — ®.6) = Bs(0) + Bis(y — 2.6,6)  (9)
and rewrite eq. (5) as
Bé+ Db+ K6+ f(3,9,7,6,6,6,6) =0,  (10)
with B = Bgss — BE;(0)®., and
f =By — ®6)jj — Byg(y — :6,0)®.0
+es(y — ®eb,y — D). (11)

We compute a bounded link deformation 64(t) as-
sociated with the end-effector motion yq(t) by the fol-
lowing algorithm:

1. Choose an initial 6(°)(t), with first and second time
derivatives, over the time interval [-A, T+ A}. Typ-
ically, 6©)(t) = 0. Set k = 0.

2. Using eq. (11), define the forcing term

f(k) (t>:f<yd(t)a yd(ﬂ’ yd(t), 6<k) (t)’ 5(k) (ﬂa 6(k> (t)7 é%*
(12
and find a bounded solution §(t) of
Bé+ D6+ K+ f®(t)=0 (13)

using the FFT method as in [5]. Denote the solution
as 6+ (¢), defined for t € [-A, T + A].

3. I |sF+D (1) — 6B (1)) < es forall t € [—A, T + A,
set 84(t) = 6*+1 (1) and stop. Else, set k =k + 1
and go to step 2.

3.3 Method 3: Iterative learning in the

time domain

Robot learning control allows to acquire from experi-
ments (or from simulations on an accurate dynamic
model) the input torque needed for reproducing a
desired output trajectory [18]. The trajectory is re-
peated several times and, at the end of each trial, the
tracking error is used for updating the command to be
applied at the next iteration. This method is well es-
tablished for rigid robots, with simple PD-like updates
of the input command.

In the presence of link flexibility, additional filtering
of high-frequency signal components is needed to guar-
antee convergence. Since the tracking error process-
ing is performed off-line, noncausal filtering is allowed
(i.e., we can update the command at a given instant
using also error samples at later instants of the previ-
ous trial), as well as anticipated shifting of signals in
time. In this way, we can learn the input torque to be
applied for t € [-A,T + A], even outside the interval
of actual definition of the output trajectory [7].

A similar approach is proposed here for the numer-
ical solution of eq. (5). Again, we limit the learning
process to the flexible dynamics. Instead of using the
tracking error, define a deformation torque error as

e = Bssb + D6+ K6 + Bl (ya — Be6) (yd - @eés')

+ cs(ya — @b, Ya — Bed), (14)

namely the left-hand side of eq. (5), evaluated on the
desired output trajectory y4. Indeed, an admissible
link deformation history §(t) satisfies

e(6,6,6,t)=0, Vte[-A,T+AlL (15)

According to the iterative learning paradigm, we com-
pute the link deformation &4(t) associated with the
end-eflector motion yg(t) by the following algorithm:

1. Choose an initial §(9)(¢), with first and second time
derivatives, over the time interval [-A, T+A]. Typ-
ically, 6 (t) = 0. Set k = 0.

2. Using eq. (14), define
e®)(1) = e(6M (1), 68 (1), 6™ (1), 1). (16)
If

W@ <o, VEE[-AT+AL  (17)

set 8q(t) = 6()(t) and stop. Else, process the error
elF)(t) by finite-impulse response (FIR) filters as
in [7], obtaining a filtered version eg,k)(t) and its
derivative égck)(t).

3. Update by the following PD-like learning rule

5+ (1) = 609(1) — Kpp el (1) — Kup (1),
(18)
with sufficiently small learning gains Krp > 0 and
Kip >0.Set k=k+ 1 and go to step 2.
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3.4 Final remarks

e Although a complete convergence analysis is lack-
ing for Methods 2 and 3, their success is supposed
to depend on the strong underlying linear structure
of equation (13) and definition (14), respectively.
In particular, the dependence on 6(t) in the fore-
ing term f®*) of eq. (13), in view of Assumption 1,
is a small perturbation affecting the reference cut-
put trajectory yq(t). Similarly, the nonlinear time-
varying part in e*) is mainly due to y4(t) and thus,
being repetitive in nature, is well handled by the
learning process. Moreover, the update (18) can be
seen as a step of the gradient method for solving
eq. (15).

In all methods, the evaluation of §,(¢) and Sd(t) at
time t = (, together with the use of eq. (7) for the
robot joint angles, provides the correct initial state
producing a bounded evolution for the link defor-
mation. If the flexible manipulator starts in this de-
formed state, use of eq. (6) yields ezact tracking of
the end-effector trajectory.

If the initial state is not on its computed reference
trajectory, a stabilizing term should be added in
order to drive the state towards this solution, and
only asymptotic output tracking can be guaranteed.
This can be accomplished —at least locally— using
a linear state feedback regulator, characterized by
a matrix F,

0u—9
r=r+F P (19)
by — 6

with 74 given by eq. (6). One can also use a simpler
stabilizing matrix F' in eq. (19), as in the partial
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state feedback controller
T =714+ Fp(0a—0)+ Fp(ba—8), (20)

with positive definite (diagonal) matrices Fp and
Fp [4]. Note that control (19) (or (20)) can be
applied over the whole interval [—~A, T+A], yielding
a more robust version of a non-causal trajectory
regulator.

4 Experimental Results

We report here some experimental results obtained for
the end-effector trajectory tracking of FLEXARM, a
two-link planar manipulator with a flexible forcarm
and direct-drive DC motors available at the Robotics
Laboratory of DIS (see Fig. 1). The dynamic model
of the arm can be found in [11], where two modes are
used for describing the forearm bending in the horizon-
tal plane of motion. The essential data are as follows:



the length of the first rigid link and of the flexible fore-
arm are, respectively, £;1 = 0.3 m and £, = 0.7 m; the
forearm weight is 1.8 kg and its first two eigenfrequen-
cies are at 4.7 and 14.4 Hz.

Since the first link is rigid, the output vector is
defined as (see eq. (3))

0

Y71 0s + o1 (€2)821 /00 + b22(f2)622/82 | (21

The reference trajectory is a Tth-order polynomial
with zero initial and final velocity, acceleration, and
jerk for both output components. The first output
(joint 1) moves 45°, while the second output (tip of
flexible forearm) moves 90° in T = 2 s.

The control law is given by eq. (20) with Fp1 = 100,
Fpg = 130, FD1 = 6, and FD2 = 8 Method 3
was used for the computation of link deformation,
extending learning over 3 s (A = 0.5 s). Conver-
gence of the deformation torque error with tolerance
€e = 1078 Nmin eq. (17) is reached within 30 itera-
tions on the nominal model.

Figure 2 shows the desired and actual trajectory
for the two outputs, with maximum errors of about
0.8° and 1° respectively (see Fig. 3). The applied joint
torques are given in Fig. 4. The small offset values
are due to noise and to some residual gravity effects
caused by imperfect balancing of the structure.

In Fig. 5, the computed velocity profiles of
the two joints, 845 and 4o from eq. (7), and of
the angular deformation at the tip, wy(f2)/fa =
(do1(#2)6a,01 +P22(f2)84,22) /L2, are compared with the
actual ones, Similarly, the computed and the mea-
sured forearm deformation at the tip are reported in
Fig. 6. The differences come from the inaccuracy
of the model used for control computations. Before
t = 0.5 s and after t = 2.5 s, the prcloading and dis-
charging effects can be appreciated.

5 Conclusions

The problem of designing controllers that make use
of stable model inversion has been considered. Three
numerical methods based on approximate nonlinear
regulation, frequency domain learning, and time do-
main learning can be effectively used been to compute
the bounded deformation history of a flexible arm ma-
nipulator whose tip trajectory has been assigned. The
last two methods are able to generate the non-causal
nominal input torque required to preload the flexible
link to the proper initial state that enables reproduc-
tion of the desired trajectory. The experimental re-

sec
Figure 4: Control torques at joints
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Figure 5: Computed and actual (dashed) velocities

sults show the good level of tracking accuracy that
can be obtained in practice.
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