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Abstract

We analyze the dynamic mobility of a kinematically
redundant robot driven by forces/torques imposed on
the end-effector, an interesting example of underactu-
ated system. Under suitable assumptions, the system
can be put via feedback in two special forms, namely
the second-order triangular and Caplygin forms. Non-
linear controllability tools are used to derive conditions
under which the robot can be steered between two given
configurations using end-effector commands. With a
PPR robot as a case study, a steering algorithm is
proposed that achieves reconfiguration in finite time.

1 Introduction

The dynamic mobility problem is considered for
a kinematically redundant robot controlled only
through forces/torques imposed at the end-effector
level. In particular, we analyze the conditions un-
der which the robot can be arbitrarily reconfigured,
and we propose a steering algorithm that achieves the
reconfiguration in finite time.

From an applicative point of view, this problem
and its solution may be of interest in the manipula-
tion with multifingered hands or in cooperating tasks
with multiple robot arms [1]. In both cases, while the
natural input commands are defined at the task level
(i.e., in terms of forces/torques at the tip of each open
kinematic chain), one is also interested in the internal
configurations assumed by each robotic subsystem.

For conventional (non-redundant) robots, the mo-
bility problem is trivial because there is a one-to-one
mapping between end-effector and joint commands.
Instead, for a kinematically redundant robot with n
joints, only m < n end-effector commands are avail-
able. Therefore, we are dealing with a class of under-
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actuated mechanical systems, namely with strictly less
control inputs than generalized coordinates.

Underactuated systems often arise in the presence
of nomholonomic constraints, e.g., in wheeled mo-
bile robots [2], in dextrous manipulation [3], and
in satellite-mounted manipulators [4]. The presence
of non-integrable differential constraints introduces a
fundamental difference between local and global mo-
bility of these systems. In fact, while feasible instanta-
neous motions at each configuration are restricted, ac-
cessibility of the whole configuration space is still pos-
sible by appropriate maneuvers. From a control point
of view, it is known that nonholonomic systems have
a structural obstruction to the existence of smooth
time-invariant stabilizing feedback laws [5]. This has
motivated the use of open-loop controllers [6] and of
time-varying (7] or discontinuous feedback [8, 9].

While nonholonomy is most of the times intrinsic to
the nature of the problem, there are instances where
enforcing a nonholonomic behavior may present ad-
vantages. Recently, a planar nonholonomic manipu-
lator has been designed [10] so as to allow configura-
tion control of its n joints using only two velocity in-
put commands at the robot base. In the same spirit,
in [11] we have determined conditions for choosing one
(of the many) inverse kinematic maps of a redundant
manipulator so that full accessibility of the configu-
ration space is guaranteed by using only m < n task
velocity commands. Finally, [12] addresses the prob-
lem of arbitrarily positioning an object in the plane
by pushing it along a limited set of directions.

In all the above cases, both the system analysis
and the control synthesis are performed at a first-
order kinematic level, assuming the direct applicabil-
ity of generalized velocity inputs. The underlying dif-
ferential constraints on the system are in the first-
order (Pfaffian) form A(q)g = 0, ¢ being the system
generalized coordinates [13]. Second-order dynamic
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models of nonholonomic systems have been considered
in [14, 15], with generalized forces as inputs, but still in
the presence of first-order nonholonomic constraints.
However, there are many control problems for un-
deractuated systems where the underlying differential
constraints appear directly in a second-order form

R(q)§ +s(q,¢) = 0. 1)

For example, Arai and Tachi have considered a robot
with one passive joint and on/off brakes [16]. Hauser
and Murray [17] and later Spong [18] have developed
control laws for the Acrobot, a 2R robot with unactu-
ated shoulder joint moving in the vertical plane.

For this class of mechanical systems, inclusion of
the dynamics in the analysis is mandatory. As in the
first-order case, constraint (1) may or may not be inte-
grable. In the first case, one may distinguish between
partial integrability to a velocity-dependent constraint
and total integrability to a purely configuration-
dependent constraint. When constraint (1) is not in-
tegrable, the system is nonholonomic and there is no
limitation to the accessibility of the robot state space.
Oriolo and Nakamura [19] have performed a detailed
analysis of eq. (1) for underactuated manipulators,
giving conditions for partial or total integrability.

The case of redundant robots driven only by end-
effector forces/torques falls in this class of problems,
and in fact it is possible to write a set of dynamic
constraints of the form (1). Instead of checking the
total or partial integrability of the second-order dif-
ferential constraint, we will perform a controllability
test in the proper nonlinear setting of the problem
(see {20, 21]), often a more systematic procedure. If
this test is verified, it is possible to apply an end-
effector steering algorithm for reconfiguring the re-
dundant arm between two equilibrium points. Such
an algorithm can be inspired in principle to the litera-
ture on nonholonomic motion planning. However, the
presence of a second-order differential (and dynamic)
constraint brings forth a drift term in the system equa-
tions, requiring special caution in the extension.

The paper is organized as follows. In the next sec-
tion, we show that a partial feedback linearization al-
lows to put the robot dynamic equations in a simpler
format useful for analysis and control. The existence
of two special forms is pointed out in Sect. 3. A de-
tailed controllability analysis is performed in Sect. 4,
and in Sect. 5, we describe a point-to-point steering
algorithm applicable to redundant robots that admit
a second-order triangular or Caplygin form. The al-
gorithm is illustrated using a PPR planar robot as a
simulation case study.
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2 Partial feedback linearization

Consider a manipulator with n joints whose end-
effector pose is described by m variables, being n —
m > 0 the degree of kinematic redundancy. Denote
by g € IR" the joint coordinates vector, and by J(q)
the m x n standard Jacobian of the robot. We shall
assume that kinematic singularities are avoided.

Following the Lagrangian approach, the dynamic
model of the system can be written as

B(q)§ + h(g,4) = I (9)F, (2

where B(q) is the n x n inertia matrix, h(g,§) =
c(q,q) + e(q) collects the vector ¢(q,q) of centrifugal
and Coriolis terms and the vector e(gq) of gravitational
terms, while F' is the m-vector of generalized forces
acting on the end-effector.

Partition the joint vector as ¢ = (qa,¢p), with
go € R™ and ¢, € R™ ™. Correspondingly, the dy-
namic model (2) may be written as

Baa Bab qa ha. !:JTJ
.. = & {F. (3
ERAIHERF I

Assume that, with the given partition,

Jg Bap | _
rank[ JT By } = n. (4)

Due to the full row rank assumption for J(g), this
can always be achieved, after possibly reordering the
joint variables. Model (3) can be left-multiplied by
the following nonsingular matrix T'(¢)

T= Im "BabBl;bl
-BLB Y I, !

where I,;, is the m x m identity matrix, so as to obtain

éaa O qll Ba jg"
~ . z = F Fv
[ OT By b N hs Jr
where O is an m X (n — m) matrix with zero entries,
and J, is always nonsingular by virtue of property (4).
At this point, the end-effector generalized forces F

can be chosen as a partially linearizing and decoupling
feedback control

F=J;7 (Baau+ha)., (5)

with 4 € JR™ an auxiliary input vector, so that the
dynamic equations take the form

Go = u, (6)
G = Byt (JT T ha — ho) + B! JE I Bagu
= f(¢.9) + G(@)u. (7)




Interestingly, we can derive from egs. (6-7) the
second-order differential constraint

é(q)q.a =gy + f(QvQ) =0, (8)

that is always satisfied by the robot during its motion.
If this constraint could be integrated twice to a purely
configuration-dependent constraint, the robot would
not have complete mobility in the configuration space.
We will come back on this at the end of Sect. 4.

3 Special second-order forms

While the system can always be put in the form (6-7),
simplifications are obtained under suitable hypothe-
ses. When the vector field f and the matrix G in
egs. (6-7) depend only on ¢,,¢, and on g,, respec-
tively, the dynamic equations become

Go = u_’ ~ (9)
‘jb f(qav Qa) + G(qa)u- (10)
We call this a second-order triangular form. Below, we
give conditions under which this form can be obtained.

Assumption 1. The robot Lagrangian £ and the
Jacobian J do not depend on the joint variables gp.<

I

This property is indeed restrictive, but can be achieved
in many interesting cases. One possibility is to ex-
ploit the existence of cyclic variables [22], i.e., gener-
alized coordinates whose value does not affect the La-
grangian. In the proper joint coordinates, such vari-
ables do not appear neither in the inertia matrix B
nor in the gravitational vector e.

As a consequence of Assumption 1, both vectors ¢
and e do not depend on ¢. Let

c(9as Gargs) = CI(Qaa‘ja) + ¢"(Gar4a, @),

where ¢/(¢q,qs) includes the velocity terms involving
only the ¢,,’s, while ¢’ (g4, §a, §») collects the velocity
terms in which at least one ¢y, appears. We have the
following result, whose proof is given in [23].

Proposition 1. Under Assumption 1, the dynamic
equations (6-7) of the system take the second-order
triangular form (9-10) if and only if
CH(Qay qav Qb) E R(JT)v
where R(JT) denotes the range space of matriz J7T.
A further simplification of the form (9-10) occurs
when the acceleration drift f term in eq. (10) is zero.
In this case, the dynamic equations become
da = ua (11)
G = §1(ga)ur+ ...+ Gm(ga)tm. (12)

We refer to this system as a second-order Caplygin
form, extending the definition of [14].

Proposition 2. Under Assumption 1, the dynamic
equations (6-7) of the system take the second-order
Caplygin form (11-12) if and only if
ceR(JT) and ee R(JT).

Again, we refer to [23] for the proof. We shall see that
the existence of a triangular form or, even better, of a
Caplygin form has consequences on the controllability
analysis as well as on the synthesis of a control law.

4 Controllability analysis

In investigating the dynamic mobility of redundant
robots under end-effector commands, we are basically
interested in determining whether, for any choice of
two robot states 20 = (¢° ¢°) and z¢ = (g% ¢%),
there exists a finite time T" and an input u (related
to the generalized forces F through eq. (5)) such that
z(T, 2% u) = z¢. This amounts to testing the control-
lability of the corresponding dynamical system

= flz)+gi(x)us + ... + gm(@)um.  (13)

While general criteria for verifying this kind of con-
trollability do not exist, it is known that the latter is
implied by small-time local controllability (STLC) [21].
Thus, establishing the STLC property would guaran-
tee that our dynamic mobility problem is solvable. Be-
low, we recall a sufficient condition for STLC.
Assume that the control input v = (uy,...,uUn)
of system (13) takes values in the limited region
Q={uve R": |lu| <p;,i =1,...,m}. Define
the accessibility distribution Ac as the distribution
generated by the smallest Lie algebra C containing
f,91,...,9m. Given a Lie bracket v € C, denote by

8%(v),6*(v),...,6™(v) the number of occurrences of
fig1,. .., 9m, respectively, in v. Any vector of nonneg-
ative integers 6 = (6, 61,...,0,) such that 8; > 6,

Vi = 1,...,m, is called an admissible weight vector,
and the 8-degree of v is defined as > i~ 8;6*(v).
Theorem ([24]). Assume dim A¢(z°) = n and that,
for any Lie bracket v € C such that 6°(v) is odd and
8Y(v),...,8™(v) are even, there exists an admissible
weight vector 6 such that v is f-neutralized, i.e., it
can be written as a linear combination of brackets of
lower 8-degree. Then, system (18) is STLC from 2°.

In the following, we shall simply call ‘bad’ the Lie
brackets with 6° odd and 61,...,6™ even. Thus, to
establish the STLC property for system (13), one

1762



needs (3) to exhibit a basis of the state space (a
2n-dimensional manifold) whose elements are chosen
among f,g1,...,gm and their ‘good’ Lie brackets, and
(it) to show that there exists an admissible weight vec-
tor @ such that all bad Lie Brackets are #-neutralized.
Since controllability properties are invariant under
invertible state feedback, we may conveniently ana-
lyze our system by using the state-space form (13)
corresponding to the partially linearized egs. (6-7), in
which the state vector is z = (qq, g, §a, ¢») and

da Om
flg.9) = [ . 03 :] ’ gi(q) = l: On—m :I , (14)

with the n-vectors f , §; defined as
oo - 0 ]
flg,9) = : =] 1T Ethrw
0 0
L f(a,4) | L 3:(9) |
(15)

We shall characterize the controllability properties
of system (13-15) at an equilibrium point z° in the
case of a single degree of redundancy. However, a
similar discussion can be repeated for the general case.

Proposition 3. Consider the system (18-15) with
n—m=1. If at z° = (¢%, ¢§,0,0)

y { [9s: [f: ge]}(z*) # 0,
o [0l =0,
then the system is STLC at z°.

35,ke{l,...,m (16)

Proof. Consider the set of 2n good vector fields

B = {911'"agn—la[fvgl]w-'y[f,gn--l],
l95, (£: 9wl U L9, [ g1}

When ¢ = 0, the structure of the elements of B is:

0
g = {A"}, i=1,...,n-1
G

[fa gz] =

, t=1,...,n—1

& o o
S

[fv [gj7 [f1 gk]” =

lg;,[f,9x)] = [

with
tz () On—l
ik\q) = = 3
* Yin(q)
and
8gk 98 00k, 95, O af .
Dik(g) = 8Qak 9051 8g,% 55 \ 3g 0% | 95>

(17)
where ¢, is the i-th component of the subvector g,.
If [g5,[f> g&]](z¢) # O holds, its only nontrivial scalar
entry v;x(q) is nonzero at z., and the vectors in B
span a 2n-dimensional space at z°.
We have to show now that all bad Lie brackets are
¢-neutralized. The first group of bad brackets to be
considered is [gi, [f, g;]}, for ¢ = 1,...,m. Since

On ith 1& On-l
- y Wi i = = ,
i Yis

the vector field [g;, [f, :]] is aligned with [g;, [f, gx]]-
Consider the admissible weight vector  defined by

90:0]':1 and 617—:2,2#0,1#]

9i, [f> 9] =

With this choice of the weight vector, the 8-degree of
[95, 1f, gx]] is equal to 4, while the §-degree of [g;, [f, 9:]]
is 5 for ¢ # j, and 3 for i = j. However, by hypoth-
esis the Lie bracket [g;, [f,g;]] is zero at x¢. Hence,
nonzero bad brackets of the first group can be written
as linear combinations of brackets of lower 6-degree
(namely, of [g;, [f, gx]] alone). The proof may be com-
pleted by verifying that all other bad brackets are 6-
neutralized in a similar way. .
Note that, in order to test condition (16), one simply
needs to compute the scalar functions ¥y at z°.

In the particular case of systems in the second-order
triangular form (9-10), the sufficient condition (16) for
small-time local controllability becomes

|+ g~ o)
[#—H =) =0

da,

I5,ke{l,...,m}:

(18)
where expression (17) has been used. 3
Finally, for systems in the second-order Caplygin
form (11-12), condition (16) simplifies to

(98 + 22| @) #0,

345,kef{l,...,m}:

(19)
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We briefly point out the close relationship be-
tween the controllability of system (13-15) and the
non-integrability of the second-order differential con-
straint (8). If the robot is controllable via end-effector
commands, then we have accessibility to any point in
its state space. Hence, there does not exist any ge-
ometric restriction on the robot attainable configura-
tions, implying that the differential constraint (8) is
not integrable. In other words, eq. (8) represents a
second-order nonholonomic constraint for our system.

On the other hand, the loss of controllability is
equivalent to the integrability of eq. (8), under suit-
able regularity assumptions [23]. However, since con-
dition (16) is only sufficient for STLC, and STLC is
sufficient for controllability, its violation does not nec-
essarily mean that constraint (8) is integrable.

5 Point-to-point steering

Assume our redundant robot is STLC from the end-
effector. We now address the problem of determin-
ing a proper sequence of input commands so as to
transfer the system from an initial equilibrium point
z% = (¢%,0) = (¢2, 4}, 0) to a desired equilibrium point
xt = (qdv 0) = (qgv qg’ 0)

In principle, one may either use an open-loop con-
trol law, or a feedback control law that renders z¢
asymptotically stable. The design of feedback stabi-
lizing laws is more difficult, but they are preferable
for real-time motion control under uncertain or per-
turbed conditions. However, it is necessary to take
into account the following result [23].

Proposition 4. A redundant robot moving in the hor-
1zontal plane is not smoothly stabilizable at an equilib-
rium point z° via time-invariant feedback end-effector
commands. In particular, this is true for redundant
robots that can be put in second-order Caplygin form.

Since standard nonlinear control techniques typically
produce smooth stabilizing laws [20], the above corol-
laries indicate that there is no ‘simple’ way to design
end-effector commands in a feedback mode. In view
of this, we present below an open-loop controller that
generalizes the holonomy angle method [14], a tech-
nique for steering controllable driftless systems widely
used in the nonholonomic motion planning context.

The proposed strategy for point-to-point motion
prescribes the execution of two phases:

1. Drive in finite time T3 the joint variables g, to
their desired values ¢ with zero velocity, by a
proper choice of u. Correspondingly, we have
¢(T1) = gf and ¢o(T1) = ¢ # O in general.

2. Perform a cyclic motion of duration 75 on the g,
variables (i.e., a motion such that g,(T1 + T2) =
¢.(T1) and ¢,(T1 + T>) = 0) so as to obtain the
desired value gf for g, with zero final velocity.

The first phase can be performed using standard dis-
continuous feedback control for the decoupled chains
of two integrators represented by eq. (6).

In the second phase, which is inherently open-loop,
it is convenient to select the cyclic control input u
within a parameterized class, in order to simplify the
computation of the required command. The chosen
class of inputs should be sufficiently rich to contain a
solution for the problem [23]. This procedure is greatly
simplified if the system equations can be put in second-
order triangular or Caplygin form.

The main difference of the proposed technique with
respect to the ancestor method in [14] lies in the struc-
ture of the second phase, due to the nonholonomic con-
straint (8) being expressed at the acceleration level.
As a consequence, the variations of g, and ¢, along
the cycle depend on the trajectory of the g, variables,
i.e., not only on the geometric path but also on the
time history. Thus, it is not possible to implement
the second phase as a sequence of feedback stabiliza-
tion steps, like in [14].

In the next section, we present a case study to il-
lustrate how to design a suitable class of input trajec-
tories for a robot that admits a Caplygin form.

6 A case study: The PPR robot

Consider a PPR robot, having two prismatic and
one revolute joint, moving on a horizontal plane (see
Fig. 1). This manipulator is redundant for the task of
positioning the end-effector in the plane (n —m = 1).

The dynamic model of this robot under end-effector
cartesian forces is

B(gs)d + c(gs, 43) = J (gs) F.

The expression of the various terms can be found
in [23]. Note that the inertia matrix and the Jaco-
bian matrix depend only on gs, i.e., the revolute joint
position, so that Assumption 1 holds choosing either
gy = q1 OF gy = g2. It can be verified that, in both
cases, the rank property (4) is generically achieved;
in particular, it must be g3 # 7/2 + k7 for the first
case and g3 # kn for the second case. These values
correspond to singularities for the feedback law (5).
However, at any point of the state space, at least one
of the two feedback laws is well-defined.

For this manipulator, it is ¢ € R(JT) and e = 0, so
that Prop. 2 applies. This means that, by using the
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Figure 1 — A planar PPR robot

feedback control (5), the dynamic equations will take
a second-order Caplygin form. As a matter of fact,
depending on the choice of g3, two alternative forms
are obtained. For example, we obtain

o-[8]-[]
¢ gs uz |’ (20)
go = g2 = aitangsu; + Pisecqsus,
where «; and B; are constant coefficients.

Being §; = a;tangs and §» = (;secqs, the sim-
plified controllability condition (19) is satisfied with
j=1and k = 2, since

03 0q _ _en

g1 _
o1 0Oqs cos2 #0 and 5_:0

Hence, complete dynamic mobility under end-effector
commands is guaranteed. Below, we apply the two-
phase strategy of the previous section in order to steer
the PPR robot to a desired configuration g.

The first phase can be performed by using the dis-
continuous feedback law

i =Y Slgn(q - qa1 + Z’YIqa:lqai[) i= 1’ 27

where 4, is an arbitrary positive constant [14].

For the second phase, a convenient choice is to use
rectangles as cyclic paths in the g, variables, with
bang-bang accelerations on each side and traveling
time T, = 46 (see Fig. 2). The generic input in this
class is expressed as

( Ul(t) Ui, ’LLQ( ) 0, t€[0,5/2),
ul(t)=-—U1, u2(t) 0, t€[6/216)7
’11,1(75) 0, ’U,Q( ) Us, tE[(S, 36/2),

J ur(8) =0, ua(t)=—Us, te[36/2,26),
ul(t):_Uly u2(t):O~, € 257 56/2)1

u(_Ulw U27t) [
ul(t)=U1, UQ(t)=O, t€[56/2,3(5),
[
[

l

ul(t)=07 uz(t)=“U21 € 357 75/2)7
\ u1 () =0, ua(t)=Us, €[76/2,49).

wy=U, uy=-U
9o, D w=0 u=0
u=0 uy=0
uy=-Ujy ug=-Uy
[ L]
up=0 u=20
uy="U uy=Up
A uy=U, uy=-U, B
ug=0 ug=0
4q,

Figure 2 — A rectangular trajectory in the g, variables

This choice yields a simple form for the ¢, evolution:
in fact, on each side of the rectangle, only one input
is active, while the other is zero, keeping the corre-
sponding component of ¢, constant. In particular,
along sides AB and CD we have us = 0, imply-
ing ¢e, = g3 = constant and ¢, = G2 = Giui, with
g1 = g1(q3) = o tangs = constant. This shows that
also the acceleration ¢, is bang-bang. Wrapping up,
we have that () a closed-form expression for ¢s(t) is
available along AB and CD, and (%) the velocity g,
is equal at the vertices of each of these two sides.

On the other hand, along BC and DA itisu; = 0so
that g,, = 1 = constant. Hence, §, = do = Jo(t)u2
with ga2(t) = g2 (g3(t)) = B1secqgs. No closed-form is
available for the solution of the latter equation, and
the variation of ¢, = ¢2 along BC and DA as a func-
tion of U must be computed numerically. For illus-
tration, Fig. 3 shows the relationship between Us and
the variation of ¢, obtained for model (20), with the
dynamic parameters given in Sect. 6.1.

Based on these considerations, we can determine

Variation of G2 velocity (ms)

1 08 08 04 02 0 02 04 06 08 1
U2 (rad/et2)

Figure 3 — Variation of ¢, = ¢o after one cycle vs. Uz
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the parameter values U5, U3 that yield the desired re-
configuration according to the following procedure:

1. Using Fig. 3, select U so as to obtain the desired
variation —¢} for ¢, along BC and DA (hence,
along the cycle). Compute the corresponding
variation @, of gy via forward integration.

2. By using the closed-form expression for ¢a(t)
along AB and CD, determine U} so that the vari-
ation of g2 along AB and CD equals ¢¢ — ¢ — 3.

Note that, if no variation of ¢, is required (i.e., if
gf = 0), Fig. 3 would suggest to set U; = 0. This
choice, however, is not feasible, because any value of
U, would give no variation for g at the end of the cy-
cle. Therefore, in this case it is necessary to perform
two cycles giving velocity variations of equal magni-
tude and opposite sign.

6.1 Simulation results

The proposed approach has been simulated for a PPR
robot having all links of unit mass and a uniform thin
rod of length 2 m as third link. We present only the
results of the second phase, which is the most inter-
esting. Suppose that at the end of the first phase, the
joint configuration is ¢ = (0,0.5,0) [m,m,rad] with
velocity ¢! = (0,0.05,0). The final desired state at
time 46 = 8 sec is ¢¢ = ¢¢ = (0,0,0). The desired
joint reconfiguration corresponds to an end-effector
displacement from (3.5,2.5) to (3.5,2).

A careful examination of Fig. 3 shows that the re-
quired variation of —0.05 m/sec for ¢ is obtained for
U3 ~ —0.80 rad/sec?. This introduces a net variation
G for g, along sides BC and DA approximately equal
to —0.07 m. As a result, the total variation needed
for gz is —0.43 m/sec? The desired value of U; is then
easily computed as Uf = —0.43 m/sec?.

The trajectories of the joint variables along the rect-
angular cycle, the corresponding cartesian forces F'
acting on the end-effector and a stroboscopic represen-
tation of the arm motion are shown in Fig. 4. Points
A’, B', C’, D' and E’ are respectively the cartesian-
space images of the corners A, B, C, D, and A again.
As expected, the closed rectangular trajectory in the
g, space does not correspond to a closed path in the
cartesian space.

7 Conclusions

A mobility analysis of redundant robots driven by end-
effector generalized forces has been performed by using
tools from nonlinear controllability theory. We have

joint variables (m.rad)

4 5
time (s)

4
o

o

carteslan forces (N)

&
[

4 5
time (s)

Figure 4 - Joint evolutions (top), cartesian forces
on the end-effector (center) and arm motion (bottom)
along the cycle

identified conditions under which such systems may be
cast into second-order triangular or Caplygin forms,
and we have exploited these particular structures in
order to design an end-effector steering algorithm that
achieves a desired joint reconfiguration in finite time.
The PPR planar robot was used as a case study to
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illustrate the proposed approach.

We are currently considering the design of feedback
controllers to perform the reconfiguration in a more
robust fashion, as well as the application of our tech-
nique to more complex redundant robots. Finally, the
tools introduced in this paper with reference to a spe-
cial class of underactuated mechanical systems might
prove beneficial also in more general cases. In particu-
lar, both the nonlinear controllability analysis and the
reconfiguration algorithm are quite naturally applica-
ble to underactuated robots.
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