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Abstract

We consider some theoretical aspects of the control prob-
lem for robots with rigid links, having some joints rigid
and some with non-negligible elasticity. We start from
the reduced model of robots with all elastic joints intro-
duced by Spong, which is linearizable by static feedback
(as for the rigid robot model). For the mixed situation,
we give first structural necessary and sufficient conditions
for input-output decoupling and full state linearization
via static state feedback. These turn out to be very re-
strictive. However, when a robot fails to satisfy these
conditions, we show that a dynamic state feedback al-
ways guarantees the same result. This implies that, for
the mixed rigid/elastic joint case, the role of dynamic
feedback is essential. The explicit forms of the needed
nonlinear controllers are provided in terms of the dynamic
model elements.

1 Introduction

Joint flexibility is present in many current industrial
robots. When harmonic drives, belts or long shafts are
used as motion transmission elements, a dynamic dis-
placement is introduced between the position of the driv-
ing actuators and that of the driven links, which is the
output to be controlled. This small deflection concen-
trated at the robot joints is a major source of oscillatory
problems, when accurate trajectory tracking or high sen-
sitivity to cartesian forces is required.

The experimental findings of [1] on the GE P-50 arm
first showed that to overcome the above effects one should
include joint elasticity in the model used for control de-
sign. An early study on the modeling of robots with joint
elasticity can be found in [2]. A more detailed analysis
of the model structure has been later presented in [3].

‘When considering the performance of nonlinear control
techniques for trajectory tracking, such as feedback lin-
earization or input-output decoupling, the first reported
results were of negative flavor. In particular, it was shown
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in [4] that a 3R elbow-type arm with all joints being elas-
tic fails to satisfy the necessary conditions for lineariza-
tion or for decoupling via static state feedback.

Since rigid joints are the limit case of a flexible behav-
ior, with stiffness going to infinity, the dynamic model of
robots with elastic joints lend itself to a singularly per-
turbed format [4]. Several approzimate nonlinear con-
trollers have been proposed using the intrinsic two-time
scale dynamics of the system [4, 5, 6]. Performance is
satisfactory, provided that the joints are sufficiently stiff.

A solution to the problem of ezact tracking of smooth
trajectories for the robot links (i.e., beyond elasticity)
can be obtained via dynamic state feedback. In this ap-
proach, there is no limitation on joint stiffness, which may
be large or very small. The method has been proposed
first in [7] for a 3R elbow-type arm, while a general ap-
proach to dynamic linearization and decoupling of robots
with all joints being elastic is described in [8, 9]. Physi-
cally, dynamic feedback is introduced to compensate, at
a given joint, for the small torque couplings arising from
the acceleration of the actuators at other joints. Slowing
down this low-energy effect allows to make use of higher
authority commands. In fact, after dynamic compensa-
tion, the effective control action at a given joint is given
by the local motor torque, which affects the associated
link position through the fourth-order dynamics of the
elastic joint.

Indeed, the design of a nonlinear dynamic state feed-
back control is quite complex and this leaves open the
way to simpler approaches with a similar provably good
performance. A reduced model for robots with arbitrary
joint elasticity was introduced in [10], assuming that the
kinetic energy of the electrical actuators is due only to
their own rotor spinning. This assumption is very reason-
able, especially when the reduction gear ratios are large.
It was shown in [10] that this reduced model of robots
with elastic joints satisfies the conditions for exact lin-
earization and decoupling via static state feedback.

Both dynamic models —the reduced and the complete
one— have been used extensively by researchers working
on the control of robots with joint elasticity. A review of
the modeling assumptions and of various proposed con-
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trol techniques can be found in [11]. We just note here
that the distinction between the complete and the re-
duced model vanishes for some common robot kinematic
configurations.

In this paper, we consider a different class of robot
arms having some joints that can be considered com-
pletely rigid and some other where elasticity is relevant.
This mixed picture is the common rule rather than the
exception for industrial arms, e.g. in the Scara family,
just because the actuator/transmission arrangements are
mechanically different at each joint. A couple of kine-
matic configurations with mixed joints were already stud-
ied in [12], where it was found that dynamic state feedback
was still needed for obtaining exact linear and decoupled
closed-loop behavior. We generalize here the approach
to the whole class of robot arms with mixed rigid/elastic
joints and study the structural situations that arise from
the point of view of applicability of nonlinear control
methods. However, differently from [12], we assume the
same simplifying hypothesis of [10] in the modeling phase.
The purpose of this choice is two-fold: %) to obtain re-
sults based on a model that is as practical as possible; i)
to show that the need for dynamic compensation in this
class of robots is not related to the use of a complete or
of a reduced model.

A practical goal of our work is to find the minimum
complexity of nonlinear feedback controllers enabling per-
fect trajectory tracking in nominal conditions. By avoid-
ing the use of a state-space approach (i.e., working di-
rectly with the Euler-Lagrange dynamics), we are able
to provide a complete answer to the question whether
static or dynamic state feedback is needed. This answer
is based on the structure of the dynamic model terms.
In this way we easily recognize the physical role that dy-
namic feedback plays in robots with mixed rigid/elastic
joints.

2 Dynamic Modeling and Preliminaries

Consider a serial robot arm with n rigid links and all
joints being elastic. Let g be the n-vector of link po-
sitions, and 6 represent the n-vector of actuator (viz.,
rotor of electrical motor) positions, as reflected through
the transmission ratios. The difference ¢; — 8; is the ith
joint deformation.

The rotors of the actuators are modeled as uniform
bodies having their center of mass on the rotation axis,
implying that both the inertia matrix and the gravity
term in the dynamic model are independent from the
actual internal position of the motors.

The complete dynamic model of a robot arm with all
elastic joints can be written as [3]

[1%(8) Blj(q)] [gj]+[0(q,23agl)(q,9) Cz(g,d)] [g]

[ [E)-2 o

where B(q) is the inertia matrix of the rigid arm, J is
the constant diagonal inertia matrix of the actuators (re-
flected through the transmission ratios), By (g) represents
inertial couplings between actuators and links, the C’s
terms are Coriolis and centrifugal forces, g(q) is the grav-
ity vector of the rigid arm, K is the diagonal joint stiffness
matrix, and u is the n-vector of torques provided by the
actuators (performing work on 6).

Assuming that the angular part of the kinetic energy
of each rotor is due only to its own spinning, a reduced
dynamic model of a robot arm with all elastic joints has
been introduced in {10]:

B(9)i+Clg,4)d +9(g) +K(g—0) = 0 (2)
Ji+K@6—-q) = u,

where the dynamic terms left over are the same appearing
in (1).

In the following, we will use the shorthand notations
n(g,q) = C(q,9)d + g(q) and ¢ = diq/dt".

It is known that model (2,3) can be transformed into a
linear one through a static state feedback and a change of
coordinates. Moreover, the same transformation will give
a decoupled input-output behavior between new inputs v
and outputs y = ¢ [10]. In fact, differentiating (2) with
respect to time gives

B()a® + B(g)i +n(q,d) + K(¢—8) =0  (4)

and
B(q)q™ +2B(q)q® + B(q)§+ii(g, 4) + K(¢—6) = 0. (5)

Setting ¢*) = v and replacing 4 from (3) in eq. (5), we
can solve for u as

u=JK Y (B(g)v+a.g,4,4,¢P) + K6 —q) (6)
where B .
as = (K + B)§+2B¢® + .

Equation (6) constitutes the static state feedback lin-
earizing law, and depends, in general, on ¢ and its first
three time derivatives and on 6. However, the measure-
ments available in principle for implementing any control
law are the motor position § and velocity 6, and the link
position ¢ and velocity ¢, i.e., the full state of the system.
The mapping from measurable quantities to ¢ and ¢® is
obtained from eq. (2) and, respectively, eq. (4) as

i=-BYq)[K(¢-0)+9(e) +Cla.0)d], (V)
¢ = -B7Y(9) [B@i+K(@ -8 +ila.d], ®)

where eq. (7) should be used in eq. (8) to eliminate the
dependence on §. The global linearizing coordinates are
indeed the output y = g, the link velocity § = ¢ and
the second and third time derivatives, § and y®, where
eqgs. (7,8) can be used.
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Assume now that r out of the n robot joints are rigid
while the remaining n — r are elastic. By reordering the
generalized coordinates we can write the reduced dynamic
model of a robot arm with mized rigid/elastic joints as
follows:

500 Bro] ]+ [mted)

0
+ {KE(QC—BE)] B
Jebe + Ke(fe — ge)

HE
Y. (10)

Here, the r-vector ¢, collects the generalized coordinates
of the rigid joints, where the position of the driven link
equals the position of the motor as reflected through the
transmission ratio. The (n — r)-vector g contains the
positions of the links driven by elastic joints, while the
motor positions of these joints are collected in the (n —
r)-vector 8,. The inertia matrix, Coriolis, centrifugal,
and gravity terms have been partitioned according to the
dimensions of ¢, and ¢.. In particular, B,.(q) = BZ.(q).
Being diagonal blocks of the symmetric inertia matrix,
matrices By-(g) and Beg(q) are invertible for any value
of g. The torques produced by the motors at rigid and at
elastic joints are labeled u, and u., respectively. Finally,
the constant diagonal matrices of joint stiffness K. and
actuator inertia J. have now dimension n — r.

The model (9,10) is quite general and thus the depen-
dence of the sub-blocks of the inertia matrix is in principle
on the whole link position vector ¢ = (gr,¢.). The par-
ticular arrangement of the arm kinematics may lead to
special internal structures, in much the same way as in
the model of a fully rigid arm.

3 Inverse Dynamics Computation

We show first that the system (9,10) is invertible from
the input-output point of view, so that we can explicitly
compute the nominal feedforward that enables exact re-
production of a desired trajectory. This is specified in
terms of link motion, both for the links driven through
rigid and through elastic joints.

From the second equation in (9) we get

de = "B;el(‘Z) [Ke(qe —0.) +ne(q,9) + Ber(Q)‘ir]

that replaced into the first equation in (9) yields

[B'rr(Q) - Bre(‘])Be_el(Q)Ber(‘I)]‘ir =

ur —np(g,q) + Bre(Q)Be_el (@) [Ke((bz — 6e) + ne(g, Q)]
This equation can be used to define the nominal torques
to be applied at the rigid joints. Let ¢?(t) = (¢2(t), ¢d(t))
be the desired link trajectory, then

ur(t) = nr(g*(), ¢°()) = Bre(¢*()) B2} (¢%(2)) -

[Ke(a2(t) - 02(1)) + me(a® (), ¢*(1))]  (11)
+[Brr(g?(8)) = Bre(q*(t)) B2 (a%(1)) Ber ((£))] 2(2).

In eq. (11), the desired position 64(t) of the motors at the
elastic joints is solved from the second equation in (9) as

03(t) = q2(t) + K7 [Ber(q())d2(2)
+ Bee(g%(1))d2(t) + ne(g%(2), 44(2))].

In order to compute the nominal torques to be applied
at the elastic joints, we need to diﬁerentigte twice the
second equation in (9) and then replace 6. from (10).
This gives

ul(t) = K. (82(t) — q2(t)) + Je K7t [Bee(a?())a{M % (2)
+ae(g4(t), (1), @ (8), a4 (t), P4 (t))], (12)

where (dropping dependencies)

Qe = Berq7(“4) + 2Berq7(-3) + Ber‘i’r
+ ZBequs) + Beefe + fle + Kede-

Equations (11) and (12) solve the inverse dynamics
problem for robots with mixed rigid/elastic joints. We
remark that:

o The reference link trajectories should be smooth
enough to guarantee perfect tracking in nominal con-
ditions, namely with matched initial state and per-
fectly known dynamic parameters. In particular, the
link trajectories associated to both rigid and elastic
joint types should be in general four times differen-
tiable. The higher order requirement for g%(¢), in-
stead of an expected value of two, results from the
inertial cross-couplings represented by matrix B.,.

e The previous formulas are useful in practice for de-
riving feedforward terms in a nonlinear regulator for
trajectory tracking problems [13]. However, when
actual state measurements are used in place of nomi-
nal state reference trajectories, this inverse dynamics
computation does not allow to obtain input-output
decoupling and linearization of the error dynamics.

4 Decoupling and Linearization via
Static Feedback

We analyze next the input-output decoupling properties
of the mixed rigid/elastic joint robot model. In doing so,
we will find that, for a special class of robots, a static
state feedback will be sufficient to this purpose. The de-
coupling static controller will then automatically yield
also linearity of the closed-loop dynamics. This paral-
lels the properties of both full rigid and full elastic joints
robots.
Let the output be defined as

v=a]

(13)
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Taking twice the derivative of (13) gives

. [Brr — Bre B! B, ]! 0] [u,
y [Bee - BerB;rlBre]_chrBr_rl 0 Ue

+ (g, 4, ee) = A(Q)u + 7(‘1’ q, 96)'

Matrix A(q) will be the so-called decoupling matriz of the
system, provided that all its rows are non-zero [14]. The
relative degree of each output g,.; associated to a rigid
joint is pr; = 2 (¢ = 1,...,7). In fact, from the matrix

identity
B,, B.] I 0
Ber Bee _B;alBer Bt;al
_ Brr_BreBe_elBer BerBe—el
- 0 I !

it follows that the first r rows of A(q) are of full rank
7 and thus none of them is identically zero. By similar
matrix algebra, we have for the last (n — r) rows

rank [Bee — By B! Br] !B, B;;}

r

= rank Be, < min{r,n —r}. (14)

From this result, it is immediate to see that matrix A(q)
will coincide in part or totally with the decoupling matrix,
depending on the structure of matrix B,,. In turn, the
actual decoupling matrix will always be singular, unless
B, = 0. Thus, when B.,. # 0 the necessary condition
for input-output decoupling by static state feedback is
violated.

Consider then the case Be,. = 0. The relative degrees of
the elastic joint outputs willbe p. ; >2(j =1,...,n—r)
and no conclusion can be drawn at this stage about the
decoupling property. However, we show next that a static
state feedback law will both decouple and linearize the
closed-loop dynamics, provided that some additional con-
ditions are satisfied by the robot dynamic model. Indeed,
the dynamic equations (9,10) become in this case

B, (9)dr + nr(q, ‘I) = Ur
Bee(q)de + ne(q, Q) + Ke(ge — 6e) =0
Jebe + Ke(oe - qe) = Ue-

(15)

As a stronger assumption we require the term n.(g,q)
to be independent from g¢,, ie., ne = ne(g,gde). Us-
ing the definition of Christoffel symbols for the Coriolis
and centrifugal terms, it can be shown that this happens
iff the diagonal blocks of the inertia matrix in egs. (15)
have only a local dependence of the form B, = B.(g,)
and Bee = Bee(ge). This, in turn, implies also that
n, = n,(q,ge). The above assumption guarantees that
all outputs associated to elastic joints (i.e., the last n —r
components of y) will have relative degree equal to four.
Define then the static state feedback control law

ur = Byr(gr)vr +nr(q:4r) (16)
te = Je K. " (Bee(ge)ve + (g, ¢, e qsa)))
+ Ke(6e - ge) (17)

with v, and v, as new inputs, and where (dropping de-
pendencies)

afs = (Ke + Bee)de + QBequg) + fle

in which
de = —B1(qe) [Ke(ge — 6e) + nelq, de))
£3) = —B;l(qe) [Bee(Qe)qe + Ke(de - ée) + he(q’ q.E)} :

The assumption on B, and B.. ensures that the last
term in q§3) will not depend on §,, a fact that would lead
again to a singular decoupling matrix thus invalidating
the static feedback approach.

Using the control (16,17), we finally obtain the linear
and input-output decoupled closed-loop system

Gr = vr
@ _
e e

This result is summarized in the following

Theorem 1 The dynamic model (9,10) of robots with
mized rigid/elastic joints, with output (13), can be input-
output decoupled and fully linearized by static state feed-
back if and only if:

Z) Ber =0
ZZ) B, = rr(Qr) and B, = ee(Qe)-

Whenever it applies, the required static state feedback law
is given by (16,17).

We note that the decoupling and linearizing control
law (16,17) can be implemented using only the measures
of the original state (gr,dr,ge,ge,be,0e). Moreover, in
this case the computed torque technique for rigid robots
and the linearizing control of [10] are recovered in the two
limit cases of = n and r = 0, respectively.

It is interesting to check how Theorem 1 applies to
some examples of robot arms.

Example 1. (Cylindrical (PRP) arm) The robot inertia
matrix takes on the diagonal structure

b11 0 0
B(g)=| 0 b2(gs) O
0 0 bas

When the second and third joints are of the same kind
(rigid or elastic), the system is completely linearizable by
static feedback law. Note that when all joints are elastic
(so that B,, vanishes), this robot is feedback linearizable
by static state feedback [15]. In fact, the complete and
reduced dynamic models (i.e., egs. (1) and (2,3)) coincide
for this arm.

Example 2. (3R elbow-type manipulator) The inertia
matrix has the structure

bi1(ge, ¢3) 0 0
B(q) = 0 baz2(g3) b23(ga)
0 be3(gs)  bas
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If the base joint is rigid and the shoulder and elbow joints
are elastic (or vice versa), this robot satisfies only condi-
tion 1) of Theorem 1, but not condition #). If the shoulder
and the elbow joints are of a different kind, both condi-
tions are violated. Static feedback will then always fail
for linearization and decoupling purposes.

5 Decoupling and Linearization via
Dynamic Feedback

Consider now the general case in which one or both con-
ditions of Theorem 1 are violated. In these cases the
decoupling matrix will always be singular. Input-output
decoupling and full state linearization may still be ob-
tained, but we need to pursue a more general strategy
based on dynamic state feedback. We will show this in a
constructive way.

We start by adding two integrators in series on each
input channel associated to the rigid joints. The state of
each pair of integrators will be conveniently denoted as
0r; and 6"”, leading to the dynamic extension

Ur = by, ér = Upe, (18)

where ure is an r-vector of new inputs. These added in-
tegrators will become the state of the dynamic compen-
sator. The combination of (9,10) and (18) is rewritten
as

(526 0 [l M o] [3
and
[é 5)] m + [Ke(oeo—qe)} - [H '
Defining the system outputs as in (13), and denoting

by B(g) and n(q,q) the overall robot arm inertia matrix
and the nonlinear dynamic terms in (19), we have

o= (%]
v= B_l(Q)([Ke(efr— qe)} B "(q"”)

V= —B(g (B(q)B*(q)({ K~ a] +09)

(20)

(21)

- [Ke(éfr— qe)] +h(q,¢1)).

Since no input appears explicitly at this differential stage,
the relative degree is larger than three for all outputs.
Finally, taking twice the time derivative of (19) and us-
ing (20) yields

: L 0
B@a® + 2800 + 0.0+ | ;|

- [Kejgl[ue i"}e(qe - 66)]] '

The resulting decoupling matrix of the extended robot
system

Q=50 g g 5]

is nonsingular for all g (and 6), while the relative degrees
are p; = 4,1 =1,...,n. Since the sum of the relative de-
grees equals the dimension of the extended state space,
namely [2r + 4(n — r)] + 2r = 4n, the input-output de-
coupling law

] A raeaad®), @)
with
L o7
T 10 K.J?

(213(4)(1' +17(q,4) + [Keéje + KnglKe(Oe - qe)D’

will also completely linearize the closed-loop system. The
linearizing coordinates are defined by (13) and (21). The
combination of the dynamic extension (18) with the static
feedback law (22) from the extended state gives the re-
quired dynamic state feedback law.

This result is summarized in the following

Theorem 2 When the conditions of Theorem 1 are vi-
olated, the dynamic model (9,10) of robots with mized
rigid/elastic joints, with output (18), can be input-output
decoupled and fully linearized by dynamic state feed-
back. The required dynamic state feedback law is given
by (18,22).

We note explicitly that the dependence of a on § and
g® can be transformed into a dependence on g, ¢, 6.,
and 6, (the original state of the robot) and on 6, and 6,
(the state of the dynamic compensator) by means of the
right hand sides of (21), used in the proper sequence. The
closed-loop system is described in the linearizing coordi-
nates by n chains of four input-output integrators, each
from v; to ¢, i.e.,

@ = .

Stabilization and trajectory tracking can then be per-
formed in the usual way, on the linear side of the prob-
lem.

6 Conclusions

We have analyzed the theoretical aspects of the prob-
lem of input-output decoupling and exact linearization
by state feedback for robots having some joints rigid and
some elastic. It was proved that static state feedback
works successfully if and only if no coupling is present
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in the robot inertia matrix between the variables of the
rigid joints and those of the elastic joints. This is a
rather strict condition, hardly ever satisfied by robot
kinematic/dynamic arrangements. However, when this
condition is not met, dynamic state feedback will guar-
antee a linear and decoupled closed-loop dynamics. In
these cases, the dimension of the dynamic compensator
is always equal to 2r, where r (with 0 < r < n) is the
number of rigid joints.

The obtained results may be somewhat surprising.
While the two extreme cases of robots with all rigid joints
and with all elastic joints are both linearizable and decou-
plable by static feedback, dynamic feedback is required
in most cases for the intermediate situation if we desire
the same control properties. As a matter of fact, the role
of dynamic feedback is to slow down the effects of torques
applied at the rigid joints with respect to those acting on
the motor side of the elastic joints.

We were able to derive closed-form expressions for both
the static and the dynamic feedback controllers. These
may serve as a reference basis for designing and imple-
menting robust and/or adaptive controllers.

All results were obtained using, for the elastic joint
modeling part, the reduced model of Spong [10] which
neglects small inertial terms. Indeed, a similar analysis
can be performed starting from the complete dynamic
model of robots with mixed joints.
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