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Abstract

Learning control has been successfully applied for track-
ing repetitive trajectories in robot manipulators, under
the assumption of perfect rigidity of links and transmis-
sions. When joint elasticity is non-negligible, the usual
convergence conditions fail to hold due to the lack of
passivity between motor torque input and link veloc-
ity output. More recently, convergence conditions have
been derived that guarantee learning convergence un-
der milder assumptions, by giving up perfect tracking
of reference signals beyond a certain frequency. The
case of robots with joint elasticity is used here to il-
lustrate the usefulness of this frequency-based design
methodology. An efficient and simple iterative learn-
ing algorithm is presented, allowing to solve the output
tracking problem with limited knowledge of system dy-
namics and using only a linear stabilizing feedback on
the motor variables. Simulations reported for a two-
link planar robot under gravity show good motion per-
formance also in this critical case.

1. Introduction

Learning control of robot manipulators is a tech-
nique allowing the correct execution of repetitive tasks
through iterative training [1,2]. In order to learn
the motor torque required for trajectory reproduction,
only a reduced knowledge of the robot dynamic model
is used. A priori information is limited to basic prop-
erties owned by the mechanical system, such as pas-
sivity of the mapping from torque to link velocity [3],
rather than accurate estimates of the model parame-
ters. The learning process can also be interpreted as a
simple (i.e. model independent) computational scheme
for obtaining the so-called inverse dynamics solution
to the tracking control problem, without introducing
high-gain feedback.

The learning approach has been shown to be robust
w.r.t. measurement noise [4], but other phenomena like
actuator dynamics, link and transmission flexibility, or
measurement delays are usually not included in the
theoretical analysis. When some of these effects are
not negligible, the standard convergence conditions no
longer hold; eventually, closed-loop stability may be
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destroyed. In experiments, unmodeled dynamics con-
centrate their actions at high frequencies and the out-
come is a degradation of the learning process in the
long run. This drawback was noticed by several re-
searchers [5,6].

While exact learning algorithms are quite sensitive
to the above effects, a frequency-based approach has
been introduced in [7] which efficiently handles the
problem of unmodeled dynamics. The proposed learn-
ing algorithm is designed as a combined filter, generat-
ing feedforward term for the next trial by a frequency-
dependent weighting of both the control effort (viz. the
error) at the current trial and of the previous memory.
Convergence conditions can be derived that are weaker
than the usual ones, compromising with the accuracy
of the learned behavior.

The design tools used are standard in the engi-
neering practice: linearization around a nominal op-
erating point, Nyquist diagrams, and linear filtering.
The ease and flexibility of use of this learning method
has been demonstrated also experimentally on several
robotic systems, ranging from conventional manipula-
tors [7], to redundant robots [8], and to one-link flexible
arms [9,10]. The resulting control scheme is very sim-
ple and can be implemented with a limited computing
power.

In this paper, we apply our learning method to the
case of robots with rigid links but with elastic joints.
Increasing interest is now being devoted to the con-
trol of this class of robot arms [11-13], due to their
relevance in current industrial environments. In fact,
elasticity concentrated at the joints accounts for the
presence of common transmission elements like har-
monic drives, belts, or long shafts, all of which are
deformable.

Accurate trajectory control of robots with joint elas-
ticity is recognized to be a difficult problem, even when
the dynamic model is accurately known. This class of
nonlinear systems does not fulfill in general the nec-
essary conditions for exact linearization or decoupling
via static state feedback —the basis for the computed
torque method [14]. The resort to nonlinear dynamic
state feedback solves the problem but requires a very
complex control law [15]. Also, there is no passivity



property between the motor torque input and the link
velocity output [16]. This gives rise to problems also
for adaptive schemes, which are only at a beginning
stage [17,18], as well as for convergence of standard
learning techniques.

In the absence of a reliable dynamic model, there
are very few results on learning of repetitive trajecto-
ries in joint elastic robots, mainly reported in [19]. One
of the major limitations relies in the non-collocation
between the reference trajectory defined at the link
level —which is one-to-one related to the end-effector
position— and the desired input to be learned, the
torque at the motor level. This motivated the ‘two-
stage betterment’ approach of [19]: first, the motor
reference trajectory is iteratively acquired; next, the
required input torques are learned. These two inter-
twined processes slow down considerably the overall
convergence. Moreover, the analysis is performed with
the simplified dynamic model of [12], while numerical
results were obtained only for slow trajectories and no
gravity. Considerable problems were reported due to
high-frequency noise.

Here, we face the learning problem directly in a ‘one-
stage’ fashion. In particular, the following convenient
facts will be used:

e A model independent feedback controller is included
for a better shaping of the closed-loop behavior of
the system. In particular, global stabilization can
be accomplished by feeding back only motor vari-
ables [20].

For robot arms with elastic joints, even described
by a general dynamic model [20,21], invertibility of
the plant is always guaranteed. In fact, an algebraic
relationship can be derived between the desired tra-
jectory (and its time derivatives) of the link outputs
and the required input motor torques [22].

Since the learning algorithm is to be applied off-line
between one trial and the successive one, noncausal
digital techniques can be used in the signal filtering
in order to avoid learning oscillations and increase
the speed of convergence.

The paper is organized as follows. In Section 2, rel-
evant properties of the dynamic model of robots with
joint elasticity are presented. Next, the general learn-
ing methodology is briefly recalled. In Section 4, the
actual steps in the design of the learning filters are out-
lined for a two-link planar arm with rotational joints
moving under gravity. Simulation results on fast joint
trajectories are reported in Section 5.

2. Properties of the Dynamic Model

The general dynamic model of a robot arm with N
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tor. In the 2N x 2N positive definite inertia matrix,
ity, and are zero when Mj is constant. Gravity terms
positive coefficients of joint elasticity are contained in
the motor and at the link side of the transmissions.
(A) M, constant.
model displays a series of properties listed hereafter.
state feedback.
P2.
Instead, the mapping between motor torque u and ve-
erties are very helpful.

elastic joints has the block-partitioned form [20,21]
Mi(g) Mxg)| 1G], | K& -Kr||4g
0 Kg [/
+ [HAl(q1 0') + HBl(qa q) HBQ(qi q.)
Hps(q,4) 0
+ [ 0 Fn
where g and @ are N-vectors of link and motor coor-
dinates respectively, and u is the actuator torque vec-
the block Mj(q) is strictly upper triangular. Matrices
H,, Hps, and Hpg have a linear dependence on veloc-
are present only in e;, since the center of mass of each
motor is assumed to be on its own rotation axis. The
Kg = diag{ki,...,kn}, while F, and F; are diagonal
positive semidefinite matrices, representing friction at
In the following, we will restrict for simplicity our
attention to:
This is the case of a 2R planar arm or of a 3R manipu-
lator with vertical trunk and no offsets. The resulting
P1. System equations (1) are in general neither lin-
earizable nor input-output decouplable via static
The mapping between motor torque u and link
velocity ¢ is not passive.
locity @ still satisfies the passivity condition [18]. In
spite of the above ‘negative’ results, the following prop-
P3. Fully actuated robots with joint elasticity have no
zero dynamics [15].

For this class of systems, a more general control law
based on dynamic state feedback can be used to trans-
form the closed-loop equations into fully linear and
input-output decoupled ones.

P4. Regulation at a constant link reference posi-
tion can be achieved using only motor feedback
plus a constant gravity compensation at the set-
point [20].

The stabilizing feedback at g = gq is

u= Kp(084 — 0) — Kpb + e1(qa), 2
with Kp > 0 and sufficiently large Kp > 0, and where
00 =qa+ K5 e1(qa)- 3)



P5. For any smooth reference trajectory qq(t) of the
links, the associated trajectory 64(t) of the motor
variables can be derived in closed-form [22].

Under assumption (A), this can be shown as follows.

The first N equations evaluated at ¢ = gq(t) yield

Mi(gq)éa + M26 + Hp1 (g4, 4a)da

, )
+ Kg(ga — 0) + Figa + €1(ga) = 0,
that can be rewritten as
Mab — Kgb = —wy(t), (5)

with a known forcing time function on the right-hand
side. Due to the strictly upper triangular form of M,
(5) is a singular linear differential equation, that can
be solved recursively for 6 as

N
ed,,-(t)=kii(wd,¢(t)+ S (Madibas (1), (6)

j=i+l

fori=N— 1,. oy 1, with 04,N(t) = wd’N(t)/lcN. Ac-
cordingly, the nominal feedforward u, required for the
given output trajectory can be computed using (6) in
the second set of N equations (1):

ua(t) = MT g+ M3y + K5(02 — q4) + Frmba.  (7)

Equations (6) and (7) give an explicit form for the
input to be acquired during the learning process and
specify that the reference trajectory g4(t) must be
piecewise C3 for exact reproduction. They also im-
ply that the required nominal input ug4(t) is a causal
one, i.e. it depends only on the current desired state of
the robot arm.

3. Review of the Learning Method

In [7] a new frequency-based learning algorithm was
introduced and its convergence was formally proven
for linear systems.

. Here, we follow the slightly different approach
shown in Fig. 1. This scheme is more suitable for the
case of robots with elastic joints, since it conveniently
separates the stabilization phase from the learning one,
needed for accurate tracking. In particular, we stress
that the error used within the feedback control loop,
can be different from the one used for updating the
learning term.

For the ease of description, consider a linear scalar
plant and let y4(t) be the desired repetitive time be-
havior for the system output y, and e(t) = yq(t) — y(t)
the error. Assume that the plant has already been
stabilized in a robust way, being w(s) = y(s)/v(s) the
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resulting closed-loop transfer function. At the kth iter-
ation (k =1,2,...), the following relations hold among
Laplace transforms of the involved signals:

(reference input)

I

vk(s) = ya(s) + px-1(s)

yk(s) = w(s)ve(s)

wi(s) = als)ex(s) + B(s)ur-1(s) (learning law)

©)

where p(t) is the content of Memory k, which will be
transferred to Memory (k—1) at the end of the current
iteration. pg(t) is the initialization of the memory, con-
taining all a priori knowledge about system dynamics.
a(s) and B(s) are two filters that must be designed so
to guarantee convergence.

(plant output)

I

W
T
By
Memory (k) [« Leaming
Memory (k-1) Algorithm
[y
M v
y + A7 u kr
o X .| Controller Plant |

Fig. 1 — Block diagram of learning control

It is easy to verify that u satisfies an iterative equation
whose convergence is guaranteed by the contraction
condition

|8(jw) ~ a(jw)w(w)| <1, 9)

where it is assumed that a(s) and B(s) are stable, and
that the signals are Fourier transformable. This condi-
tion generalizes the one in (1], where 8 = 1. The limit
values, when k — oo, for the error and the plant input
are respectively

_ (1-8Gw)) (1 — w(jw))
1 - B(jw) + a(jw)w(jw)
1 - B(jw) + a(jw)

1 - B(jw) + a(jw)w(jw)

In the frequency range where 8(jw) = 1, these collapse

to
ya(jw)
w(jw)’
showing that an exact learning is obtained for these
frequency components, through asymptotic plant in-
version.
If 3 is restricted to be the unity in (8), the conver-
gence condition (9) may not hold. Introduction of a
non unitary and frequency-dependent S(jw) enforces

yd(jw)l

€oo(jw)
(10)

Ya(jw).

Voo (Jjw) =

eco(jw) =0, (11)

Voo (Jw) =



convergence of the learning process, in face of a track-
ing performance degradatation.

In the implementation of the learning functions
and B, one can usefully resort to some non-causal
digital processing, e.g. finite impulse response filters
that improve convergence speed and reduce the oscil-
latory behavior during learning. In particular, in {8-10]
Weighted Centered Arithmetic Mean (WCAM) [23] fil-
ters of order n were used. If the sampling time is T¢,
this filter is characterized by the transfer function
aze=5T 4 g;eiTe
2n+1

n
ao
W‘(‘:%AM(S) = on+1 + Z , (12)
=1

where Wét';)c anm (jw) is a real function.

Finally, a further improvement can be obtained
through the shift of data in time, advancing them by
T, with the goal of satisfying eq. (9) for a larger set of
frequencies. In the Laplace domain, this amounts in
introducing an anticipative term e°T4 in the learning
filters.

All the above reasoning can be applied to a lin-
earized and decoupled version of a multi-input multi-
output nonlinear plant, viz. the robot arm, resulting
in a decentralized approach to learning. However, be-
ing the synthesis developed on a plant approximation,
even when condition (9) is nominally satisfied for each
local input-output channel, there still could be stabil-
ity problems in the real learning process. In practice,
the design of learning controllers based on a known
linear approximation generally results in satisfactory
results [4]. This procedure will be illustrated in the
next two sections for a robot with joint elasticity.

4. Design for a Two-Link Arm

We will consider a two-link robot with elasticity at
both joints, moving in a vertical plane. The blocks in
the general model (1) become (see Fig. 2):

Ma(g) = :023-:. 2;22 ciossqq:, a3 + Zzacos th]
M, = g ‘:)6]’ Ms = [‘1(;1 l?s]
Hp\(9,9)§ = [~z Si:::gi’;;‘ilh)] -
ws=[4 o)
@ = [remp i esta o)

Here, Hay = Hpz = Hps = 0. Moreover, no damping
is assumed to be present (F} = F,,, =0). '
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For designing the learning filters and the stabilizing
linear feedback, it is convenient (but not mandatory)
to perform a linearization of the dynamic equations at
an operating point (go, 69,0,0), with 6 related to go
through an equation similar to (3). This yields

[ERERAEER)]

K;; will contain both the elasticity matrix Kg and the
elements of the matrix dei(go)/9g. If a linear feedback
is closed on the motor variables (see also (2)), then

Kn
K2

Kj2
K22

Aq

[M1(qo) M;
Af

ME M

Au= —KpAf§ — KpAd. (15)
The actual values of Kp and Kp should be chosen sat-
isfying some desired steady state response and specified
transient behavior.

From (16), one can derive the 2 x 2 open-loop trans-
fer matrix from Au(s) to Ag(s), whose diagonal el-
ements will be used independently for the design of
decentralized learning filters o;(s) and B;(s), i =1,2.

Indeed, the whole procedure requires the knowl-
edge of the coefficients in the linearized equations (14).
However, only approximate values are needed at this
stage. On the other hand, one can also perform simple
experiments on the real arm in order to tune the gains
in (15) and to determine transfer functions from the
ith motor torque to the ith link position.

Fig. 2 — A two-link robot with elastic joints

The assumed robot geometric and inertial data (includ-
ing the motors) provide the following model parameter
values:

a; =11.743 a4 =70.656 a7y =189.17
ap =2.7 as = 23.296 ag=52.928. (16)
a3 = 24817 ag = 0.1456
The elastic coefficients are
k1 = 29800, ks = 14210. 1n

With the arm equations linearized at go = 6y = 0,
be an ‘effective’ inertia matrix (at the link side of
the elastic transmissions) is obtained by adding up



rows/columns 1 and 3, and 2 and 4 from the inertia
matrix in (14),

a; + 2a3 + a4
a2 + a3 +as

a2 +a3 +as
a3 +as

M,s5(0) = (18)
The gains in the feedback controller (15) are then
designed assuming that 90% of the gravity is me-
chanically compensated and that a maximum error of
0.001 rad is tolerated in the chosen configuration g,
i.e. with the arm fully extended. Selecting a damping
ratio of { = 0.6 leads to

| s

resulting in natural frequencies wy; ~ 36 rad/sec and
wn2 ~ 30 rad/sec for the two control loops.

Using only the diagonal elements w;;(s) of the
closed-loop transfer matrix W (s), the synthesis of the
learning filters is performed on the Nyquist diagrams of
Bi(jw) —a;(jw)w;; (jw). This typically requires a trial
and error approach, and may take advantage of the
designer’s classical control experience. In our case, a
satisfactory behavior was obtained using:

24000
0

0
5300

1800
0

0

KP:[ 450] » (19)

10(0.1s + 1)(s? + 165 + 1600)

_ 0.015s
ai(s) = (0.01s + 1)(s2 + 6405 + 160000)
Bi(s) = 0.000255 +1 [ 1+ =T +eT\*
W)= 0.001s + 1 3
2
aa(s) = 2.5(0.1s + 1)(s® + 16s + 1600) £0-0155

" (0.01s + 1)(s2 + 320s -+ 40000)
Ba2(s) = B(s).
(20)

Here, T, = 0.0025 sec is the actual sampling time used
for closed-loop control. Within §;(s), a first order fil-
ter WCAM(s) is used repeatedly. Each application
produces output samples y(k) that average input data
u(k) in time as

u(k) = u(k—1)+ugk)+u(k+1). (1)

Moreover, a time lead of Ty = 0.015 sec is introduced
in a;(s) and az(s).

Figures 3 and 4 show the Bode diagrams of the
modulus of the local transfer functions w;(jw) and
wap(jw), before (dashed) and after (continuous) the
introduction of the learning filters. In these plots, the
original transfer functions already include the action
of the compensation feedback (19). The associated
Nyquist diagrams of 8;(jw)— c;(jw)wy;(jw), © = 1,2,
are within the unitary circle for all frequencies; ac-
cording to (9), convergence of the learning iterations is
guaranteed.
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5. Simulation Results

The two-link robot with elastic joints specified by the
set of parameters (16) and (17) was used for simulation.
Learning control was tested on a quintic polynomial
trajectory

WO _gly 15ty 10, (22
a5 — o tf tf tf

satisfying zero initial and final velocity and accelera-
tion, and chosen equal for both links. The traveling
distance and time are set to gy = 1 rad and ¢y = 1 sec,
resulting in a quite fast motion. The robot starts at
rest from go = 0, with no initial joint deformation and
in the maximum gravity loading configuration. The
final position implies a non-zero joint deformation.

The system equations were integrated using a 2nd
order Runge-Kutta method with sampling time T, =
0.0025 sec, and the tracking results using learning are
reported in Figs. 5-8 for a total of 1.5 sec.

It can be seen that the tracking accuracy is very
good after about 50 iterations. However, the error is
already reduced by a factor of 25 in about 18 iterations,
from a peak value of 0.5 rad at the first trial when only
motor PD control and reference trajectory feedforward
are applied; in particular, it is halved in just 9 trials
(Figs. 6 and 8). For a rough comparison, the learning
method in [19] achieves similar results in double the
number of iterations (over 100).

The memory pug, shown in Fig. 9 for joint 1, learns
the necessary modification to the trajectory position
reference (see eq. (8)), so to improve the output track-
ing performance. Accordingly, the input motor torques
are corrected over trials, progressively changing their
composition from feedback to feedforward action, as
illustrated in Fig. 10 for joint 1. Note that in the early
iterations of the learning process, oscillations grow up
around the final configuration (error, memory, and in-
put torque plotting scales are magnified there by a fac-
tor 50). The large transient errors during the gross
motion dominate the whole learning process at this
stage. As soon as these are reduced, also the termi-
nal part of the error will be smoothed. Small torque
oscillations after 1 sec are needed to keep the links at
their desired position, counteracting with the motor
action the residual undamped vibration. These oscil-
lations are indeed eliminated in the output tracking
errors (i.e. on the link side) of Figs. 6 and 8.

6. Conclusions

The design of a repetitive learning controller for robots
with elastic joints has been presented, following a
frequency-domain approach. This choice allows to
properly handle the presence of high-frequency dynam-
ics associated to joint elasticity, which would exclude
the application of other iterative learning algorithms.



The frequency shaping of the method does only
affect the bandwidth where the desired behavior is
exactly reproduced. Convergence properties are pre-
served without the need of using a slower two-stage
betterment process. The numerical results obtained in
simulation for a fully nonlinear multi-link case show
that our algorithm is superior to the only other exist-
ing learning approach to this problem.

The present learning scheme is easy to be imple-
mented and requires on-line feedback of motor mea-
sures only. The simplicity gained with learning con-
trol is particularly relevant for robots with elastic
joints, when compared with the real-time complexity
of model-based techniques producing the same tracking
accuracy. As a result, the choice of iteratively invert-
ing the system should be considered as computation-
ally advantageous in this case, even when the robot
dynamics is relatively well known.
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Fig. 3

Fig. 7 — Trajectory tracking for link 2 at k = 1,9, 51
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