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Abstract

An ilerative scheme is proposed for learning the input
torques that produce a specified repetitive end-effector
trajectory for a redundant manipulator, without ez-
plicit knowledge of the robot dynamic model. The ap-
proach does not rely on a specific inverse kinematic
solution. A main aspect of the learning problem for re-
dundant robots is that the number of driving error sig-
nals (in the task space) is strictly less than the number
of inputs to be determined (in the joint space). During
the iterative process, conirol effort is transferred from a
linear feedback law designed for the end-effector error
to the learned feedforward term. Stabilization of the
closed-loop system is obtained by joint velocity damp-
ing. The basic learning algorithm is designed in the
frequency domain, while a digital implementation of
the necessary signal filtering improves learning perfor-
mance, both in speed and uniformily of convergence.
Simulations are reported for a three-link planar manip-
ulator. The inclusion of a kinematic singularity avoid-
ance scheme is also illustrated.

1. Introduction

Accurate trajectory tracking can be achieved in robot
arms using nonlinear state-feedback or feedforward
model-based control laws. These are commonly de-
noted as computed torque or inverse dynamics tech-
niques [1]. In presence of uncertainties, the control
design should include a robustifying strategy, rang-
ing from variable structure to adaptive control solu-
tions [2]. When parametric uncertainty is large or un-
modeled dynamics become relevant, these techniques
may produce unsatisfactory results, especially during
transients.

If the required task is repetitive in nature, as in many
robotic industrial operations, an appealing alternative
for dealing with largely unknown plants is provided
by learning control [3-5]. In this approach, the in-
put torque required to move the robot arm along a
specified trajectory is built iteratively from successive
experiments. Starting from the closed-loop error ob-
tained at the current trial, a feedforward signal is com-
puted off line and stored for successive application. For
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conventional rigid robots, convergence conditions have
been obtained and the learning technique has been suc-
cessfully implemented for reproducing both joint and
cartesian trajectories. It can be shown that the learn-
ing process asymptotically inverts the plant dynamics
along the given trajectory [6]. Thus, learning can be
seen as a method for obtaining the nominal torque,
without explicitly computing through the (uncomplete
or uncertain) dynamic model.

Recently, increasing interest has been devoted to the
design and control of redundant manipulators, i.e. hav-
ing a number of degrees of freedom larger than the one
strictly needed for performing a given task. The ex-
tra motion capabilities of such robotic structures offer
advantages in executing dexterous tasks in complex in-
dustrial and non-conventional environments, and have
been used for avoiding obstacles in the configuration
space [7], for maximizing arm manipulability [8], or
for uniformly distributing torque demand among the
joints [9].

In general, no closed-form solution exists to the in-
verse kinematic problem for redundant robots. There-
fore, several numerical algorithms have been proposed
for computing joint paths from cartesian ones, based
on differential motion. Redundancy is then exploited
for optimizing various criteria, using projected [10] or
reduced gradient [11] methods. However, when joint
trajectories are generated using only the kinematic
model of the robot and local information on the end-
effector path, dynamic performance is generally un-
predictable {12]. In order to obtain overall satisfactory
joint torques, exact knowledge of the dynamic model of
the robot is needed. Moreover, only global resolution
schemes are able to guarantee stable and bounded joint
solutions [13]. These requirements and techniques are
somewhat restrictive since robot dynamic parameters
are known only with a large degree of approximation
and global schemes are computationally intensive, ask-
ing for the solution of two-point boundary value prob-
lems.

As an alternate control approach, it is proposed here
to extend learning to redundant manipulators, so to
achieve a desired end-effector motion without restrain-
ing the arm to a particular feasible joint trajectory.



This strategy combines the inherent simplicity of learn-
ing algorithms with the possibility of avoiding an
explicit inverse kinematic solution. Moreover, since
learning is intrinsically defined on the whole trajec-
tory, the resulting torques will typically display global
stability properties.

In the presence of redundancy, the learning problem
has the following peculiarities:

e the number of driving signals, i.e. the error compo-
nents in the task space, is strictly less than the num-
ber of input joint torques to be determined, implying
a sort of ‘loose’ excitation for learning purposes;

a feedback controller should be available that stabi-
lizes the robot motion at the joint space level, with-
out explicit knowledge of the arm mechanical char-
acteristics.

As a first consequence, the control action has to be
iteratively acquired as a generalized force in the task
space. Transformation of the obtained cartesian forces
into applied joint torques will then be made using the
Jacobian transpose of the direct kinematics. On the
other hand, the stabilization feature is needed in or-
der to prove convergence of standard learning algo-
rithms [5]. It is known that, in the absence of grav-
ity, a proportional-derivative feedback on the position
error (i.e. a model-independent law) guarantees asymp-
totic stability for conventional robots [14]. Under the
same assumption, a simple modification is given here
for redundant manipulators. In particular, asymptotic
stability of arm configurations will be obtained using
PD cartesian error feedback plus joint velocity damp-
ing. The gravity case can be handled as usual, adding
integral control action.

The learning algorithm that will be used is a refined
version of a frequency-based one proposed in [6], which
generates the feedforward term to be applied at the
next trial by taking advantage both of the control ef-
fort at the current trial and of the learning memory.
For linear systems, it has been shown that convergence
conditions can be derived which are weaker than the
standard ones. The basic algorithm is designed as a
filter in the frequency domain. Use of digital tech-
niques in the actual implementation of the learning
filters leads in general to a better performance [15]. A
Weighted Centered Arithmetic Mean (WCAM) pro-
cessing of sampled data is presented, which avoids
oscillations in the learning process and increases the
speed of convergence.

A three-link planar arm with rotational joints is consid-
ered in this paper as a case study. Simulation results
are reported for straight and curved cartesian paths.
The inclusion of a singularity avoidance scheme within
the learning process is also evaluated.
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2. Preliminaries

The dynamics of a rigid robot arm with N joints is

(1)

where q € IRY are the generalized joint coordinates,
B is the positive definite inertia matrix, Sq contains
the centripetal and Coriolis terms, and g is the gravi-
tational force vector. Matrix S can be chosen so that
B — 2S is anti-symmetric. Let the task p4(t) be spec-
ified in terms of end-effector coordinates p € RM, re-
lated to the joint coordinates by the direct kinematics

(2)

B(q)4 + S(q,9)a+g(q) =u,

p =k(q), k: RN — RM.

Since M < N, the manipulator Jacobian J in

J(a)a (3)
is a non-square M X N matrix. The cartesian error e is
defined as

(4)

Assume now that the robot lives in a constant grav-
itational field. All configurations (q,q) with @ = 0
are then equilibrium states of the undriven system (1).
The following theorem provides a feedback law that
globally stabilizes the redundant manipulator at a fixed
cartesian point pg, with zero joint velocity, indepen-
dently from the particular model parameters.

b

€ =Ppqg—P

Theorem. Consider the dynamics (1), with g(q) = 0,
and assume that rank J = M in (3). Then, the control

law

u=JT(q)[er+Kvé] - Kpq, (5)
with symmetric Kp > O, Ky > O, and Kp > O, is
such that @ — 0 and e — 0.
Proof. Define the Lyapunov candidate

1
V =-eTKpe + quB

3 3 (6)

().
Since & = —p = —Jq, substituting (5) into (1), and
using the antisymmetry of B — 28, the time derivative
V becomes

V=elKpé+ -2-qTBq +4"Bg
T . l-T L . . T (7)
= —e KpJq+§q (B-28)4+q"u

=-4T(I"KyI+Kp)q <0, for § # 0.

When q = 0, the closed-loop system is described by
B(q)q = JT(q)Kpe, so that § = 0 iff Kpe € N(IJT).
By the rank assumption on J, the arm cannot get



stucked with e # 0, eventually coming to a rest con-
figuration with zero cartesian error. Q.E.D.

It should be pointed out that the final configuration
q* reached by the robot under the action of (5) is not
a specific one, apart from being such that k(q*) = pa.
Thus, the above result shows asymptotic attraction
of closed-loop trajectories toward the invariant set of
zero-velocity configurations associated to the desired
end-effector location. This is a desirable feature rather
than a drawback, because no a priori configuration is
imposed to the arm, apart from the one that will be
produced by the learning process itself. Note also that
the N x N matrix JTKyJ in (7) is only positive semi-
definite, having at most rank M < N. Therefore, the
damping Kp on the joint velocity is strictly needed to
prove asymptotic stability. Viceversa, one may also set
KV =0in (5)

3. Learning Algorithm

3.1 The basic scheme

Following [6], the general input-output structure of
the proposed learning control is given in Fig. 1. For
ease of description, consider a linear scalar plant with
transfer function p(s). Let yq(t) be the desired repet-
itive time behavior for the system output y(¢), and
e(t) = ya(t) — y(t) the error. An error feedback con-
troller with transfer function ¢(s) (e.g. a PD law) is
closed around the system, with the main purpose of
stabilization. The resulting closed-loop transfer func-
tion is denoted by w(s).

v ()

Learning »1 Memory k
Algorithm
Memory (k-1)
u't) Vit (1)
ya® 4+ __elt) + y()
Controller i Plant  ps
- u(t)

Fig. 1 — General block diagram of learning control

At the kth trajectory trial, a previously stored memory
contribution vg_1(t) is added to the feedback controller
output, so to generate the plant input u(t) = u'(t) +
vk-1(t). Note that the control effort u'(t) of the closed-
loop controller is present only for a non-zero output
error e(t). The system output can be rewritten in the
Laplace domain as

4(s) = w(Oas) + T ) (®)

1+ p(s)c
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The update v; of the learning process (that will be the
feedforward at trial k + 1) is chosen as
0 (s) = a(s)u'(s) + B&)ve-r(s),  (9)
with properly selected filters a(s) and B(s). Due to
the repetitive nature of the desired output, it can be
shown that the iterative process {v} will converge for
all values of s = jw such that
18(s) — as)u(s)| < L. (10)
The above contraction condition generalizes the one
found in [3], where 3(s) = 1. It guarantees the exis-

tence of limit values (k — 00), both for the error and
the memory signals:

() = L= BC) 20!
= E TR+ aloul) THp6 ()
a(s)u(s) (o)

T 1= B(s) + afs)w(s) p(s)
When S(s) = 1, these collapse to

voo(s)

ya(s)

p(s)’

showing that an exact learning is obtained (ec(t) =
0) and that learning asymptotically inverts the plant
along the given reference trajectory. If B(s) is re-
stricted to be one, the convergence condition (10)
may not hold preventing to obtain even part of the
nice properties expressed by (12). Introduction of a
non unitary and frequency-dependent B(jw) enforces
convergence of the learning process, in the face of a
tracking performance degradatation. Nevertheless, fre-
quency components of the reference yg lying in the
range where |f(jw)| = 1 will still be exactly repro-
duced.

Condition (10) is a guide in the choice of « and 3. With
this respect, a very helpful tool is the Nyquist diagram
of B(jw) — e(jw)w(jw), drawn from experimental data
or using a nominal w(s) (see {6] for examples). Note
that the dynamic behavior w(s) of the closed-loop sys-
tem may be dominated by the chosen feedback con-
troller ¢(s), resulting in an easier and more successfull
design of a(s) and B(s).

3.2 Improvements

exo(s) =0, Veo(8) = (12)

The above reasoning can be applied to a linearized
and decoupled version of a multi-input multi-output
nonlinear plant, viz. the robot arm. Being the design
based on a linear and decoupled approximation of the
plant, even when condition (10) is satisfied nominally,



there still could be stability problems in the real learn-
ing process. In the robotic application, convergence
proofs in [3,5] show that this is not the case, at least in
principle. These proofs extend directly to the general-
ized learning algorithm (9). In practice, the presence
of transmission elements with a high reduction ratio
generally masks the nonlinear and interacting part of
arm dynamics. Thus, the design of a learning control
based on the above linear approximation generally re-
sults satisfactory. However, space is still left for speed-
ing up the whole process.

Some modifications of the basic learning scheme are
proposed next, that were found valuable in improving
convergence speed and in considerably reducing the os-
cillatory behavior during learning. The main idea in
choosing a(s) and fS(s) is to shape the phase response
of the system, compensating also for the lag typically
introduced by the closed-loop controller but without
modifying the overall gain. Based on this, the design
proceeds as follows:

e os) is designed in the frequency-domain, based on
the best available linearized model;

e [(s) is realized in discrete-time as a WCAM filter,
weighting the input samples so to attenuate high-
frequency content of the output signal;

e a backward shifting of A future samples of the out-
put of filter a(s) is included, so to further improve
learning speed.

Note that non-causal operations are feasible in the
above signal processing, since the learning algorithm
is performed off line at the end of each trajectory trial.

A CAM filter of order n uses 2n + 1 input samples lo-
cated symmetrically with respect to the current time
instant, producing an averaged output with mean value
centered at the current sample. A WCAM filter uses
symmetric weights a; on the input data. If the sam-
pling time is T, this filter can be characterized by the
following transfer function:

Wislam(s) =

n - 81T, 31T,
ag a;e ¢+ q;e*tte
(1
T on+1 + ; 2n+1 ( 3)

Setting w, = 27 /T, since

n 2a~cos(2”‘”
(n) ag ¢ w

is a real function, WV(S();AM(jw) will introduce no phase
modification to the input signal — apart from a pos-
sible sign inversion. The set of weights in (14) will
be determined by imposing proper conditions on the
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magnitude, in particular

Wé‘?g‘AM(O) =1, WéV()Z'AM(]wk) =0, k=1,

(15)
for n selected angular frequencies wy. In alternative,
some of the free coeflicients could be used to impose
zero values also to derivatives of (16). Figure 2 shows,
for n = 2 and as a function of w/w,, a comparison
between the magnitude of an unweighted (dashed line).
and of two types weighted filters. The first weighted
filter (continuous line) imposes zero values at w; =
we/3 and wy = w/2, while the second one (dotted
line) is obtained by setting

y W WL a1 (i)
WéV)CAM( 26) = 0’ _vzl}q:%ﬂl_lw:wc/Z = 0’

(16)

resulting in

ao = 1.875, a; =125, as=0.3125. (1)

With these coefficients, the transfer function Wé‘?)CAM
is always positive and no sign inversion occurs.

Magnlitude

O O O O
N s O @

0.1 0.2 0. 3 0.4 0.5
Fig. 2 — Comparison between CAM and WCAM
As for the shifting step A used to modify «a(s), a sim-
ple optimization procedure was implemented for deter-

mining its optimal value with respect to the maximum
allowable bandwidth.

3.3 Overall control law

Combining the stabilizing feedback controller (5) with
the learning algorithm (9), designed , and introducing
the above modifications yields the proposed learning
control scheme for redundant manipulators. For carte-
sian learning, the on-line control law is

u=J"(q)[Kpe +Kvé+vi1] ~Kpq, (18)

while the off-line learning update is for each scalar
cartesian component (j=1,..., M)

v k(8) = i WCAM(S [O‘J (S)U (s) +ﬁ3( )”j,k—l(s)]:
@j(s) = e*®1a;(s), (19)

Bi(s) = Wi can (9)-



The closed-loop control effort is u’ = u — JT(q)vk-1.
In the first trajectory trial (k=1) a feedforward vo(t)
is used, containing a priori information on the sys-
tem. Note that an additional WCAM filter is included
in (19) for generating the next learning feedforward.

This scheme can be further modified by introducing
a rotation matrix R(pg4), relating cartesian position
errors and commands to their counterparts in task co-
ordinates, i.e. in terms of local tangential, normal and
binormal components with respect to the desired path.
A cleaner tuning of the end-effector behavior as well as
independence from path orientation are gained in this
way. The final block diagram of the learning controller
is reported in Fig. 3.

Fig. 3 — Learning control for redundant robots

4. Case Study

Consider a 3R planar robot arm, moving on a horizon-
tal plane (g(q) = 0) and executing end-effector trajec-
tories. The dynamic model results in more compact
equations when given in terms of absolute joint angles
¢;, in place of the standard Denavit-Hartenberg angles
6; (see Fig. 4). Indeed,

q1 1 00
q=|g@|=]11 1 0|6=T4, (20)
q3 1 11

so that torques uy produced by the motors give rise to
generalized forces u = T~Tu, to be used in (1). The
elements of the symmetric inertia matrix B(q) are

b1 =15 + mldi + (m2 + ms)@
b1z = (mady + mafs)fy cos(ga — q1)
b1z = madsly cos(ga — q1)

byy = Iy + mad2 + maf3

bas = madsly cos(gz — g2)

baz = Is + m3d§
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while the velocity terms h(q,q) = S(q,q4)q are

hy = —(mady 4+ mal2)1 sin(gz — q1)d3
— madsfy sin(gs — q1)d3

hy = (mady + m3y)ty sin(gz — 1)}
— madaly sin(gs — q2)43

ho = madsf) sin(gs — q1)4% + madafs sin(gs — 02)d5

(22)

where m; and ¢ are mass and length of link ¢, I; is its
moment of inertia w.r.t. the center of mass, and d; is
the distance of the center of mass of link ¢ from the
axis of joint i. Apart from the link length, the rest of
these quantities is unknown.

The Jacobian of the arm kinematics in absolute coor-
dinates is

| —fisingy —{zsinga —{3sinqs
Ia) = ficosqr  fpcosqz  €3cosgs (23)
A

Fig. 4 - 3R planar robot arm

The first design step is the selection of the gain ma-
trices in the stabilizing controller (18). Any choice
Kp >0, Ky >0, Kp > 0 is feasible. When using
rotation matrices R as in Fig. 3, diagonal Kp and Ky
will affect separately the dynamic behavior along the
tangent and along the normal of the cartesian trajec-
tory. On the other hand, a diagonal damping matrix
Kp in joint coordinates  results in

D+ D, —Ds 0
Kp= —Ds Dy+Ds —-Ds3|, (24)
0 —Ds Ds

when absolute coordinates q are used.

The actual synthesis of learning filters will be made
using the linearized model of the robot arm around a
fixed point (q,q) = (q,0), u = 0. Define J = J(q),
B = B(q), and let the linear feedback controller (in-
cluding task rotation R = R(k(q))) be

Au=JTRT[KpR Ae + KyRAe] — KpAq, (25)



with an obvious meaning of the incremental vectors.
The closed-loop transfer matrix from Ap, to Ap is
the full 2x 2 matrix

W(s) = J[s*B+ s(ITRvI + Kp) + ITKpJ3] 13T
. (Sﬁv + ﬁp),

(26)
with Kp = RTKpR, Ky = RTKyR. For j=1,2,
the scalar filters @;(s) and Ej(s), will be designed con-
sidering only the diagonal elements of W(s), evaluated

using nominal data. The following simple parametric
forms will be assumed:

) 1487,
a:(s) = e’? NN AL2 §
G0 = ke T 27)
~ ) 1 e~ 3T _*_esTc
Bi(s) = WJ‘,WCAM(S) =3 + - 4

It should be stressed that the above system lineariza-
tion acts only as a convenient support in the synthesis
of the learning filters, but it is not strictly necessary.

5. Simulation Results
The following robot data have been used in simulation:

4 =05m,
m; = IOkg,

d; = 0.25m,
I; = 0.2083 kgm?,

1,...,3. (28)

The feedback controller (5) was designed with:

kp; =200N/m, ky;=40Nsec/m, j=1,2; (29)
Dy = Dy = 30Nmsec, D3 = 20Nmsec.

Finally, the learning algorithm is implemented using:

koj = 0.5,

7.,; = 0.1sec,

7p,; = 0.0083 sec,

ji=1,2.
A; = 0.025sec,

(30)

The sampling time is T, = 0.025 sec.

The learning control was tested on two types of carte-
sian trajectories with different timings. The first one is
a straight line joining (0.5,0) to (0.1,0.4) in 1 sec, with
a bang-coast-bang acceleration law and zero initial and
final velocity:

Pe(s) = 0.5~ E py(s) = ﬁ s€00,04v7)
25V2, te[0,0.2]

HOERN) t€1[0.2,0.8] (31)
-25v2, t€[0.8,1]

The robot arm starts at rest from the configuration
q = (-n/2,0,7/2). The sequence of executed end-
effector paths during successive trials is shown in Fig. 5

for a 1 sec time interval, while RMS values of the nor-
mal and tangential errors versus trials are presented
in Fig. 6, showing an improvement of two orders of
magnitude. The proposed control algorithm learns the
required input torque in about 10 iterations, starting
with vo = 0. The motion of the whole robot arm
at the first and tenth trials are displayed in Figs. 7
and 8, where the obtained smooth behavior is a result
of the inclusion of joint velocity damping. The trans-
fer of control effort from feedback control to feedfor-
ward learning is quite evident when comparing Fig. 9
with 11, and Fig. 10 with 12, representing respectively
the tangential and the normal force components in the
task space. Final non-zero values in Figs. 9-10 corre-
spond to the presence of a residual end-effector position
error at time ¢ = 1 sec. On the other hand, the learned
signals build up the missing feedforward contribution,
even at the initial and final instants. Smoothing effects
of the learning algorithm can be clearly appreciated
in the obtained signals. Figure 13 shows the actual
torques ug = TTu that are applied at each joint in the
final trial, with u given by (18). Note that, once the
end-effector has reached the terminal point, the arm
may still have some internal self-motion but this will
soon be damped out by the term —Kpq.

The second test trajectory is a parabolic path joining
(0,0.5) to (0.5,1) in 1 sec, with sinusoidal velocity:

Pz(s) = 0.5s, py(s) = 0.5+ 0.5s%,
5(t) = 0.5msinmt, te€[0,1]

s €[0,1] (32)

The arm starts at rest from q = (0, 7/2, 7). Ten trials
are enough to reduce the tracking error to zero, even
in this more demanding case (Figs. 14-16). Cartesian
forces computed at the tenth iteration behave as ex-
pected, with an initial push in the z-direction, followed
by a much steeper increase in the y-direction. In the fi-
nal part, with the lowering of the desired speed on the
path, also the amount of force needed for trajectory
tracking is reduced.

As a final example, the problem of singularity avoid-
ance has been considered. The inclusion of a local
strategy based only on kinematic variables is quite sim-
ple. The joint torques (18) can be modified as

us =u+Ks(q)VqH(q), Ks(q)>0,  (33)
where H(q) is any convenient manipulability measure
to be maximized. A third trajectory is chosen, joining
the two points (—0.25,0.567) and (0.15,0.567) with a
straight line and bang-coast-bang acceleration profile.
Starting from q = (—2x/3,7/2,7/2), the manipulator
is forced to approach a folded singular configuration



and a disastrous motion occurs without a prevention
scheme (Fig. 17). Use of (33) with

H(q) = /det 3()37(a), Ks(q>=%

recovers the nice behavior of Fig. 18, where the large
motion of the first joint avoids the lining up of links.

I (34)

6. Conclusions

A new controller for redundant manipulators has been
proposed, that iteratively learns the input torques re-
quired to execute repetitive end-effector trajectories.
The learning algorithm generates a feedforward term
for the next trial, combining both the feedback con-
trol signal and the feedforward used at the current
trial. Peculiar to the redundant case, the feedback
stabilization part, which is model-independent, should
definitely include a joint velocity damping action.

Digital processing of signals, intended to obtain low-
pass filtering without introducing phase lags, prevents
oscillatory behavior during the learning process and
enforces convergence. The convergence speed and the
final tracking accuracy are both improved, in face of
the simplicity of the control law. The same learning
structure allows the straightforward inclusion of a sin-
gularity avoidance scheme.

Finally, it was found that torques obtained with the
present learning method are smaller in norm than those
computed using the nominal dynamic model along
joint trajectories derived through a kinematic resolu-
tion scheme which minimizes joint displacements. Such
a comparison deserves further investigation, in order
to understand intrinsic properties of torques acquired
through the learning process.
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