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Abstract. The problem of controlling the dynamic behavior of
robots with rigid links but in presence of joint elasticity is much
more complex than the one in which the manipulator is
assumed to be rigid in both the links and the transmission
elements. When the full nonlinear and interacting dynamics is
taken into account in the model, it is known that the resulting
system may not be feedback linearizable using nonlinear static
state-feedback. It is shown here that use of the more general
class of dynamic nonlinear state-feedback allows to solve both
the feedback linearization and the input-output decoupling
problems. A constructive procedure for the decoupling and
linearizing feedback is given which is based on generalized
system inversion and on the properties of the so-called zero-
dynamics of the system. A case study of a planar two-link robot
with elastic joints is included. The role of dynamic feedback for
this class of robots is discussed.

1. Introduction

In the process of modeling the dynamic behavior of robot
manipulators, some physical phenomena like backlash, stiction,
link flexibility and joint elasticity are usually neglected. In
general, when a reliable mode! of such disturbances is
available, one can reduce the control effort and achieve better
performances. Various experimental and simulation studies
[1,2,3] have shown that elasticity of the transmission elements
between actuators and links may have a relevant influence on
robot dynamics. In particular, robots using transmission belts,
long shafts or harmonic drives show a typical resonant behavior
in the same range of frequencies used for contro!; this effect can
be reconducted to the presence of elasticity at the joints
between the rigid links of the arm.

From the 'modeling point of view, joint elasticity implies
that the position of the actuator (i.e. the angle of the motor shaft)
is not uniquely related to the position of the driven link. This
internal deflection is taken into account by inserting a linear
torsional spring at each joint. As a consequence, the rigid arm
dynamic model has to be modified in order to describe
completely the relation between applied torques and links
motion. For quasi-static applications, simplified models which
consider only the dynamics of the drive system have been used
widely, see e.g. [4]. Models including the full nonlinear dynamic
interactions among joint elasticities and inertial properties of
links and actuators have been first introduced in [5]. There exist
programs that generate automatically the dynamic equations for
these arms, using symbolic manipulation languages [6].

Contro! of robot arms with joint elasticity has recently
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become an active area of research. Several advanced control
approaches have been proposed using singular perturbation
techniques [7], integral manifold design [8,9], sliding mode [10],
pseudo-linearization [11], and model reference adaptive control
[12]. It is worth to point out that none of these methods achieves
an exact design, in the sense that is able to mimic the results
obtained in the nominal case for fully rigid manipulators.

The reason for such an outgrow of methods stands in the
peculiar control theoretic feature that distinguishes robots with
joint elasticity from rigid manipulators: in fact, this class of
nonlinear systems does not satisfy the necessary conditions for
obtaining linearization and noninteraction using nonlinear static
state-feedback [13,14]. In general, the so-called inverse
dynamics or computed torque method, which is the standard
nominal trajectory control for rigid arms, cannot be extended
directly. There are however simple types of robots with elastic
joints, like the single-link [15] and the two-link cylindric arm {16,
where use of nonlinear static feedback still leads to a linear
system; in these cases, the closed-loop equivalent behavior is
that of, respectively, one or two independent chains of four
integrators each.

A detailed analysis of several kinematic types of arms
with elastic joints is contained in [17,18]. The resulting picture is
quite intriguing. Feedback linearization may or may not be
achieved, depending on the specific kinematic arrangement
(i.e. the set of Denavit-Hartenberg parameters) of the robot. In
particular, it is never possible for structures in which two or
more elastic joints have parallel axes of rotation, like for the
common case of a two-link planar arm. As an effort to achieve
feedback linearization properties, a simplified model which
neglects the inertial couplings between actuators and links has
been investigated in [19].

Only recently a unifying perspective has been found for
extending exact methods of nonlinear control to the full model
of robots with joint elasticity. The keypoint is to enlarge the class
of allowed feedback rules to the use of dynamic nonlinear
state-feedback. Exploiting this concept, input-output decoupling
and exact state linearization have been obtained in the closed-
loop control of two arms with joint elasticity, a two-link arm with
gravity [20] and a three-link anthropomorphic one [21], both of
which cannot be linearized using only static feedback.

These results can be applied to the whole class of robots
with elasticity at the joints [17} and were obtained by extensive
use of nonlinear differential-geometric concepts such as the
properties of the maximal controlled invariant distribution [22]
associated to the system. The complexity of the techniques and
of the computations involved has limited to a certain extent the
understanding of the generality of such a design.



in this paper, the introduction of dynamic compensation
in the control scheme follows from a more natural approach.
The control design is based on the capability of properly
recovering the inputs to the system from the knowledge of the
outputs and of their time derivatives, an issue which is related to
system inversion. In particular, a full linearizing controller can
be obtained if the system has no zero-dynamics [23], that is if

there is no dynamics left in the system once the output is forced

to be zero. This concept is a quite useful extension to nonlinear
systems of the notion of transfer function zeros for linear
systems. The generalized inverse dynamics approach that is
presented here incorporates the use of either static or dynamic
state-feedback. In the multi-input multi-output case, the need of
the latter arises only if the so-called decoupling matrix [22] of
the system is singular.

Dynamic modeling of robot arms is briefly reviewed next.
Section 3 outlines how to construct a full linearizing controller
for nonlinear systems without zero-dynamics [24,25), a result
which is used in Section 4 for a planar two-link robot with joint
elasticity. Discussion of the obtained results and comparison
with other approaches completes the paper.

2. Dynamic model of robots with Joint elasticity

As a whole, a robot arm with N elastic joints can be seen
as a set of 2N elastically coupled rigid bodies, the N actuators
and the N links. In face of 2N mechanical degrees of freedom,
only N independent control inputs are available, the motor
torques acting on the actuator side of the elastic joints.

The dynamic equations of motion are obtained following
a Lagrangian approach. Two variables are associated to the
generic i-th elastic joint (see Figure 1): qa.1, the rigid position of
the i-th actuator with respect to the (i-1)-th link, and qy;, the
elastic position of the i-th link with respect to the previous one.
The 2N-dimensional vector q of generalized coordinates is
partitioned into two N-vectors q, and q, containing respectively
the odd and the even components.

The potential energy U(q) and the kinetic energy T(q.q')
are computed in the usual way, considering the arm as an open
chain of 2N rigid bodies, links and actuators (see the example
in Appendix). Beside the gravitational contribution Uy(q), U(q)
contains also the elastic energy stored in the joints:

N
U, (@) = i Uy, (9110 G ) =|21,15Ki[qz-%1 2
- 1

i=t
K; is the elastic constant and N; 21 is the transmission ratio of
the i-th drive. No damping is given to the springs modeling joint
elasticity. The Euler-Lagrange equations particularize as:
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with i =1,...,N. 1, is the torque supplied by the actuator at the i-th
joint. Rhs zeros in the even equations mean lack of local control
action at the link side of elasticity.

The dynamic model for robot arms with joint elasticity can
be rewritten as:

B(@) G + Ce(Q.G) + eg() + rgla) = ¢
In vector form the model looks simitar to the one of a rigid arm
but there are twice the number of second order nonlinear
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differential equations. The 2N-vector forcing term ¢ has even
components equal to zero and odd components equal to the
motor torques 1. The 2Nx2N generalized inertia matrix Bg(q) is
still symmetric and positive definite for all q. cg(q.q") collects the
centrifugal and Coriolis terms and is related to the elements of
the matrix Bg(q) by the same relations holding for the rigid
model [6]. ex(q) contains gravitational forces while the elastic
terms are grouped in rg(q).

Assume now a symmetric mass distribution of the motor
around its rotation axis (this implies also that its center of mass

is located on the motor shaft). Under this mild assumption it can
be shown that Bg, cg and eg depend only on link variables:

BE = BE(Q,,). CE = cE(qe’qe)' SE = eE(qe)

The motor joint variables q, enter the nonlinear equations only
through rg, that is in a linear way like the input motor torques T;.

To obtain state and output equations, define the state as
X = (X4,X2) = (q,q") and the input as u = 1. For compactness set
ne(q,q’) = ce(q,a’) + eg(q) + re(q) and define a 2NxN odd-
columns selection matrix Bg = block diag { [1 0]7} and a Nx2N
even-rows selection matrix Cg = block diag { [0 1] }. Then

X, 0
X = P + 1 lu
Belx,) e | [Betx) Bs
which is of the form

X = f(x) +g(x) u xeR" ,ueR"

with n = 4N and m = N, where N is the number of elastic joints.
Limiting ourself to joint space strategies, the outputs will be

y =h(x) = Csx,
or, in a scalar notation, y;= X4 5 = dg;, i = 1,...,N. The proper
“joint” variables to be set under control are indeed the ones that
specify the link positions. Notice that a nonlinear system of the
square type (p = m = N) is obtained.

ye IRP. p=N

3. Linearization of systems without zero-dynamics

Consider a nonlinear system described by the equations:

m
x=f(x)+29i(x) u;
im1

with state x in R0, input u and output y in R™. All the functions
are assumed to be smooth. The problem of transforming a
nonlinear system into a linear one by means of state-feedback
and change of coordinates has been studied by several
authors; necessary and sufficient conditions exist when static
state-feedback is used [26,27]. If dynamic state-feedback laws
are considered, the necessary conditions for linearization may
be relaxed. In particular, the problem of full linearization for
systems with outputs is of special interest, like in the present
robotic application. It will be briefly described how constructive
conditions for full linearization and input-output decoupling can
be derived in the generalized case of dynamic state-feedback.
Further details can be found in [24,25].

Some notation is needed first. Given a scalar function
A(x) and a vector function f(x), the Lie derivative of A(x) along
f(x), denoted by L;A(x), is a new scalar function defined as:

LY oA

(a_X; g one ,aTn) . f(X)
L¢kA(x) is defined iteratively as L;(L; k1 A(x)), with L0 A(x) =
A(x). This operation can be applied repeatedly and is used to

y|=hi(x), i=1,...,m

L A(x) =%¢— - f(x) =



define the relative degrees associated to the outputs of the
system. An outputy; is said to have relative degree r; (at x°) if:

Lg L,‘hi(x) om and k=0,..5-2
i
x in a neighborhood of x°, and if for at least an index j:

"hi(xo)xo.

The relative degree of an output is connected to the integration
structure of the given system; r; is exactly the number of times
one has to differentiate y; (t) at t = t° in order to let some of the
input values u; (t°) appear explicitly. Moreover, the set of relative
degrees is used also to define the elements a; (x) of the so-
called decoupling matrix A(x) associated to the system:

aﬂ(x)=LglL,r'

Another relevant control concept which is intrinsic to a
given nonlinear system with outputs is the so-called zero-
dynamics {23]. This is the internal dynamics of the system
obtained using as input a state-feedback law u = u*(x) which
forces the output y to be constantly zero.

For SISO systems it is easy to see that, in order to have
y(t) =0 for all times, it is required that:

h(x(t)) = Lyh(x{t)) = Li2h(x(t) = ...

forj=1,...
for all

n
Lgl Ly

-1
(%)

=L T h(x(t) =0

and

L sh(x(t)
s =UTX(t)
L gL, h(x(t))

The first set of conditions defines an hypersurface M*(x) of
dimension n-r in the state space which is an invariant set of the
closed-loop system obtained using u(t) = u*(x(t)). The zero-
dynamics is exactly the dynamical behavior of this particular
closed-loop system on M*(x). Note that the control u*(x(t)) is
defined also outside M*.

For a description of the problem of "zeroing the output" in
a multivariable nonlinear system the reader is referred to
[23,25]. However, the essential steps of the zero-dynamics
algorithm can be easily recovered directly from the robot
application described in the next section. Roughly speaking, it
will be shown how it is possible to recover the input u(t)=u*(x(t))
from the output functions of the system and from other properly
chosen functions which are x-dependent combinations of the
output derivatives. If the algorithm terminates successfully, the
system is said to be invertible. The set M* is then found directly
by zeroing the above functions.

It is well-known [22] that any system for which:
- the decoupling matrix A(x) is nonsingular at x°,
- the sum of the relative degrees equals the dimension of x,
can be transformed, locally near x°, into a linear system by
means of a suitable change of coordinates and of the feedback:

x)—-A(x
L'“ By (X)

The first is a necessary and sufficient condition for the existence
of noninteracting control via static state-feedback. From the
previous discussion, the second condition (i.e. ry + ...+ ry, = n)
can be interpreted as the condition that the system has no zero-
dynamics ; the hypersurface M*(x) degenerates into a single
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point, x°. The above result can be rephrased by saying that a
system "without zeros” for which noninteracting control exists
can always be transformed into a linear system via static state-
feedback. This is the classic case of rigid manipulators.

In this perspective, milder sufficient conditions for full
linearization can be obtained when dynamic state-feedback is
allowed. More specifically, the assumption on the existence of
noninteracting contro! can be relaxed; assuming only that the
system is without zeros, it is possible to obtain linearity via
feedback. The constructive technique that makes this possible
follows the philosophy of adding a suitable number of
integrators on the input channels until a system is obtained
which has a nonsingular decoupling matrix (see [24]). Note that
the input u*(x) that displays the zero-dynamics can always be
written as a product where the inverse of a matrix Q(x) appears:

u(x) = - Q'(x) b(x)
(compare with the equation above for the linearizing controller).
Whenever the system has a nonsingular decoupling matrix
A(x), then Q(x) = A(x).
Consider the following pre-processing of the system:
- apply the static state feedback

u=utx) + Q’i(x) w
i.e. the control displaying the zero-dynamics of the system, with
an additional external input w;

- perform a dynamic extension, i.e. add to each of the inputs w a
proper number of integrators, or

where the integer u; is the difference between the highest and
the lowest order of derivation of the output y;, which appears in
the computation of u*(x).

Under the invertibility hypothesis on the original system,
itis possible to show that the extended system obtained with
the above pre-processing has a nonsingular decoupling matrix.
Moreover, its zero-dynamics is left unchanged. Thus, if the
original system had no zero-dynamics, then the extended
system can be transformed into a fully linear one by means of
static-state feedback and change of coordinates. In other words,
denoting by z the states of the added integrators, the extended
system will have relative degrees (with overbars) such that

X
T 4Ty . 4T, =N wheren=dim§=dim[ ]
m z

Therefore, the standard static noninteracting feedback will also
be a linearizing one for the extended system. By composing this
feedback from the extended state with the pre-processing, the
full linearizing dynamic controller is obtained.

4. Controlier design for a two-link arm

To illustrate the above methodology, the contro! problem
for a two-link planar robot arm with the two rotary joints being
elastic (see Figure 2) is considered here as a case study. The
derivation of the dynamic mode! and the state-equations are
reported in Appendix.

For this arm, which has a kinematic structure of two
rotational joints with parallel axes of rotation, neither the
conditions for exact linearization nor the ones for input-output
decoupling are satisfied [7,17], if static state-feedback is used.
In the following it will be shown how to construct a linearizing



and decoupling dynamic state-feedback law for this example.
From the output and state equations, since Ljh(x) =

one gets
Xz . Xg
y =h(x) = y=Lhx)=
X, Xg

. ) 0 Ggalxy
y=L;h(x) + L9 L ¢h(x) u A(X) =

0 UgalXy)
and hence ry = r = 2. The decoupling matrix A(x) is singular
and so input-output decoupling is not possible using static
state-feedback. The input u cannot be recovered only from the
knowledge of y, y' and y". To proceed further, one has to avoid
the introduction of the time derivative of the second input u, at

the next step of the algorithm. This is done as follows. Find the
coefficient of linear dependence (on the field of smooth analytic
functions) of the rows of A(x)

[ 1] 0 UgnlXy) [ ]

X) ={0 O = =-
« 0 Ogalxy) v
and define a function A(x) as

1(x)
Mx) = [Y(X) 1][ L 2( ] [

or, using the system expressuons in the Appendix,

=

ggz(x4)

GgalXy)
AMx) = fg(x) + (1 +—

fs(%)
] f (x)
A,

K2 A,
= Az N Ny x, - Xa) —2x6 sin X, = A(Xy,X4,X5)
This function A(x) of the state will be treated as a new "output" of

the system. Note that, dropping x-dependence this function can
be alternatively rewritten as A = yy"; + y",. At the next step, its

time derivative is
A=LA+ me u, + ngx u,=

ggg(x,g)
Gsa(Xq)

€0s x,) f5(x) =

oA A
=[§— aax Xg+ ax s]+[01“1+['—962]u2

Since the input uy still does not appear, the above reasoning
has to be repeated. Solving

TR i S 1] - |- o
for 8(x) gives
5(,()_--8761 x 2 Xg SIN X, = 8(X,Xg)

Another function p(x) is built as

wx) =[50 1][ ]

= --——(N2 Xg - X7) -—x6 Xq COS X, = R(x,, 6,x7,xe)
AN A,

Again, u can be given an alternative expression in terms of x-
dependent combinations of time derivatives of the original
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outputs, and in which the control u does not appear. Taking the
time derivative of this function

p=Lp+ L91u u, +Lg pu, =

a“f1+

ou 8u Jau op o
=[‘a';' R A l""gsz"ax 972* %, 932] Uz

ax 6 ax
gives again no mformatlon on uy. The coefficient g(x) of linear

dependence between the rows of the matrix multiplying u at this
step is found by solving

0
1
e 1]}
that gives

&(x) =

L n
o 0] = exe—2
962

92 972

A 9
3 82
N (N, % e —=)+ A Xg (2%g+ 9 Xg) COS X,

2

so that g(x) = &(x4,Xg,Xg) SinCe
Jg2 Aq Og2
282 _  (14—2coS X —=—(Aacosx+A) 1.
962 ( A, 9 962 4

The coefficient e(x) is used for defmmg a third function v(x) as

fs(x)
v(x) = [e(x) L (x)

ou 9 ) g
"ol b v 4 gy
Ay 2 K, Ay
===(x;Xg) sin x (N X~ == (N, x,-X,}(1+=—=C08X )
[ 4t AzN N 1% X N, 2% Xl IHg €O

)N

Ay 2
-Agsinx, (A_2 Xg €OS X, + (X5+Xg)

2
K, +A, X, COS X K, A
273 % 4

Az [AZNZ (N2x4-x3) e

2.,
Xg sinx,]=

= V(X,,X5,X5,X4,Xg:Xg)
Note that this "output" function does not depend on xs ; this
implies that its time derivative

ngv u, =

\3=L'v+Lg1v U, +
v v oV av
=[§(TXS+E’%+Q_,%’7+§E"9*3XG 6+ ax a]"[ax Ogat ax 932] u
is still independent from input u,. An x-dependent coefficient
{(x) is found as
Lg v
Lo ==

= {(X3.%4 1% %)

where the functional dependencnes follow from the expression
of Lg, v. A fourth function &(x) is computed as

()
g =[co0 1] o
f

where ¢(x) contains all terms which do not depend on xs. From
the expression of v(x) KK,

a2 0
A2N1N2

] - L) & (0 + Ly(x) =§Vg X5 + (%)

e



so that x5 appears linearly in §(x). The time derivative of the
function &(x) yields

§ L'§+L § U+l § u2—L'§+ 8§

where finally the control input u, is exphcntly present. The full
input u can be recovered from the equation

i1 [ua (x) Lo Lty Lo Ly
i -

where Q(x) is a nonsmgular (here, tnangular) matrix. Since this
equation is solvable in u, then the robotic system is invertible.
As already mentioned, all functions introduced in the algorithm
may be expressed in terms of y4, y, and of their time derivatives.

In particular, &' contains combinations of derivatives of the first
output, from y4(2 to y,(6), but only the sixth derivative of the
second one (i.e. y,(®)).

Setting the Ihs of the above equation to zero yields the
input u = - Q"'(x) b(x) = u*(x) which displays the zero-dynamics
of the system. It is easy to see that the given robot with joint
elasticity has no zero-dynamics: the hypersurface M*(x) is
reduced to a single point, x° = 0. In fact, M* is defined by
imposing a zero-constrained output behavior. This is equivalent
to find all x's which solve the following set of eight equations:

[0 00 200 w0 v t0]-0 = me=o

The above implication is checked by looking at the triangular
structure of these equations. Using the unique solution of the
first four (x; = x4 = Xg = xg = 0) into the fifth equation (A=0) yields
X3 = 0; using these values into the sixth one (1=0) gives x; = 0,
and so on.

In order to construct the linearizing and decoupling
control for the given two-link robot arm, first apply the static
state-feedback law u = Q-¥(x) [w - b(x)] = u*(x) + Q1(x) w, or

g Tz

AN.N
WhICh is the feedback derived directly from the computation of
the zero-dynamics. The obtained system can be represented in
a nice form as in Figure 3. On this graph it is easy to verify that
the system has no zero-dynamics; it is also simple to see which
additional steps have to be taken in order to get decoupling and
linearization.

The system is then extended by adding a proper number
of integrators to the inputs. In this case, 14 = 4 while p, = 0. Note
that for two-input two-output systems, one input is always left
unchanged. So, four integrators have to be added on input w,

gs1]u +L éu

u=b(x)+Q(x)u

X)

Wi=2 Zy=2 Z=3 Z3=% Z,=W,
2=W,
As a result of this preprocessing, a system is obtained with state

T
- T T 12
x=[x z]sR

and described by the following equations (see also Figure 3):
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000000000001

g(’()=oooo§szooooooo
and
L &x) g L, &(x)
9o 51 f
[ (X) = 5(x) + L g( X) % (X) (fs( ) - 21) ng
. 97,00
£,(x) = 1,(x) e {fs(x) -z))
52(X) 951
fa () =1, (x) - (x) (f5(x) - z)) 9s,(%) = L é

It is easy to check that the decoupling matrix of this extended
system is

1 0

Xy 1

which is globally nonsingular. The relative degrees are both
equal to six and their sum gives the dimension of the extended
state. Hence, the standard noninteracting control [22]

v LR 1 =o(®) + BE) v

will also linearize the extended system. The composition of the
preprocessing and of this additional static feedback yields the
linearizing dynamic state-feedback controller.

The input-state-output behavior between the reference
inputs vy, v, and the original outputs y; and y, is decoupled
and linear. This is made evident once a change of coordinates
is performed [22). In the new coordinates 8 specified by

TR0, i=7...

the system takes on the canonical form of two strings of six
integrators each. This set of iinear coordinates is given just by
the system outputs, namely the angular positions of the two
links of the robot, together with their time derivatives up to the
sixth order. As usual, the design of a linear stabilizing feedback
for trajectory control has to be done in terms of this set of
coordinates.

AX) = LaL.fE('i) -

w=Ax)

=

0,=L R (X, i=1..6 12

5. Discussion

It has been shown that a planar two-link robot with joint
elasticity can be fully linearized and input- output decoupled
using dynamic rather than only static feedback. control laws are
allowed. As a matter of fact, this is a more general result; the
whole class of robots with joint elasticity can be linearized once
the larger class of dynamic state-feedback control laws is
considered. The control problem for a series of robots with
different kinematic types, including structures with mixed sets of
rigid and elastic joints, has been solved in [17,18]. Similar
linearization results hold also if the outputs are chosen in the
task space, except for the presence of kinematic singularities.

Like for any rigid manipulator, the resulting closed-loop
system is linear and decoupled. However, the main difference
is in the length of the input-output chains of integrators which,



for each elastic joint, is variable but is never less than four, as
opposed to the constant double-integration structure of the rigid
case. For the two-link planar robot, this length is six and is
obtained with the help of the states of the compensator. Note
that the lower bound of four input-output integrations is intrinsic
to the purely elastic coupling between bodies. This can be
checked by analyzing the simple one-dimensional case of two
rigid masses elastically coupled, with a force acting at one side
while observations are taken on the other.

The variability of this integration structure is a rather
surprising aspect [28]. The reason of such behavior is related to
the physics of the problem, namely to the kind of interactions
that arise between the elastic and the rigid degrees of freedom
of a multi-jointed arm. Including joint elasticity in the model
creates two sources of dynamic interaction among links and
actuators: elastic reaction forces reg(q), and inertial couplings
(i.e. the off-diagonal terms of the inertia matrix Bg(q)). The
actuator torques affect the motion of the robot links using both
these dynamic pathways. Usually, the one going through
inertial couplings has lower control authority. In any case, the
paths which are faster, measured in terms of integration
structure, dominate over the others. It may happen that one of
the input torques is “felt" at different links before all of the other
ones. No instantaneous feedback action performed on the
system is capable of uncoupling these interaction effects.
Moreover, the possibility of full compensation of model
nonlinearities is lost. This happens whenever there exist inertial
coupling paths which are faster than the ones due to elastic
forces, as in the examined planar case. There are particular
kinematic structures in which these inertial paths are not
present, already at a mechanical level. This is true, for
example, for pairs of elastic joints having orthogonal axes. This
explains the results obtained for a two-link cylindric [16] and a
polar [11,17] arm. 1t is also evident that the "racing" situation
among torques does not occurr for one-dimensional systems.
This idea is consistent with the result of feedback linearizability
obtained in the single-joint elastic case [15].

The above discussion helps to understand the role of
dynamic feedback in the control of robots with joint elasticity. In
particular, dynamic compensation delays the contributions of
the inertial interacting effects so that each input torque affects
the relative output (the link position) after the same number of
integrations. By slowing down these fast but "weak" actions, the
high authority control paths are brought into ptay and
cancellation of the nonlinearities becomes possible. Of course,
if the inertial interaction paths are neglected as in the
approximate modeling proposed in [19], decoupling and
linearization are again possible using only static feedback,
although a more complex one than in the rigid case. Roughly
speaking, dynamic compensation gives robustness w.r.t. these
parasitic effects. Moreover, the balancing role of dynamic
feedback becomes even clearer when arms with mixed types of
joints are considered (see [18]). In any case, there is essentially
a trade-off between modeling accuracy and use of more
sophisticated control laws.

Some remarks are in order on the choice of reference
trajectories for this class of robot arms. The length of the linear
chains of closed-loop integrators puts obvious smoothness
constraints on the class of desirable time evolutions. If the
outputs have to reproduce exactly a given reference trajectory,
this should possess continuous time derivatives at least up to
the third order. For the two-link planar arm this requirement
increases up to the fifth order; the reference inputs v may be, for
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instance, the piecewise constant sixth derivative of the desired
link motion. If the initial state is properly set, this allows exact
output tracking of the trajectory. Otherwise, only asymptotic
tracking is guaranteed, once the system has been externally
stabilized. As intuition suggests, robots with joint elasticity have
to be driven with very smooth reference commands.

Finally, it should be mentioned that the whole approach
requires availability of the full state of the system. The measure
of position and velocity at both sides of the elastic joint is
tecnically feasible, although additional instrumentation is
needed. Except for [12], full-state availability is a common
request of all the proposed control methods [7-11]. Some work
is in progress also on the design of exact linear observer for this
class of robots [29].
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Appendix. A two-link robot with joint elasticity

Figure 1

The kinetic energy T of the arm in Figure 2 is the sum of the
terms:

1 -2 1
Tott =5 9B G4 Tnnk1=§

’ actuator i
2.2 .2
m,d; 0, + 54,9,

1
Troe =75 MM ' JRz(qz+%)

1
T|,,1(2 [l qg *d (qz*q“) +2d |1 q2 (qz‘m4) 005q4]+_J q2+q4
The expressions of f(x), g(x) and h(x) are given below:

T
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Figure 3
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