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Abstract— Performing precise, repetitive motions is essential
in many robotic and automation systems. Iterative learning con-
trol (ILC) allows determining the necessary control command
by using a very rough system model to speed up the process.
Functional iterative learning control is a novel technique that
promises to solve several limitations of classic ILC. It operates
by merging the input space into a large functional space,
resulting in an over-determined control task in the iteration
domain. In this way, it can deal with systems having more
outputs than inputs and accelerate the learning process without
resorting to model discretizations. However, the framework
lacks so far a validation in experiments. This paper aims to
provide such experimental validation in the context of robotics.
To this end, we designed and built a one-link flexible arm that is
actuated by a stepper motor, which makes the development of
an accurate model more challenging and the validation closer
to the industrial practice. We provide multiple experimental
results across several conditions, proving the feasibility of the
method in practice.

I. INTRODUCTION

Iterative Learning Control (ILC) is a control strategy for

systems that work in a repetitive mode [1], [2]. By perform-

ing consecutive trials of the same task, ILC methods learn

a feedforward action that progressively improves the control

performance from previous experience. At the cost of little

system knowledge and data, these approaches produce simple

and robust controllers characterized by quantifiable proper-

ties and performance. In addition, ILC can improve feedback

controllers by modifying the reference signal only [3]. Thus,

it applies also to closed-loop systems, such as industrial

robots, without affecting their stability features. For these

reasons, the ILC framework has been proposed to control

several complex systems, e.g., batch processes [4], [5],

robots [6]–[8], and biological systems [9].

The functional approach to ILC has been pioneered in

the discrete-time domain in [10]–[12]. These works aim

to improve the extrapolation properties of ILC controllers

w.r.t. exogenous signals, such as set-point variations, and

non-repeating disturbances. More recently, [13] proposes a

framework called fILC that leverages functional expansions

directly in the continuous-time domain. Among other things,

this strategy allows learning continuous control action to
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Fig. 1. Schematic representation of the fILC. At every iteration, the con-
troller samples the system output at the desired time instants {T 1, . . . , T o},
and computes the output error ϵj . Then, ϵj is scaled by a suitable gain
matrix L, and αj is updated. Finally, the combination of αj with the basis
functions π(t) provides the control action uj .

perform trajectory tracking for non-square linear systems,

i.e., dynamical systems with fewer inputs than outputs.

Remarkably, many processes of practical interest, including

flexible and soft robots, satellites and aircrafts, fall in this

category. The goal of fILC is to learn a feedforward action

that annihilates the tracking error at prescribed time instants.

In this work, we present the first experimental validation

of the fILC framework. We test the control law on a one-

link flexible arm that we designed and built on purpose.

Flexible link robots represent an ideal testbed for fILC. In

fact, due to their continuum nature, these robotic systems are

intrinsically underactuated [14], [15]. Their control, either in

configuration or task space, is challenging and has been the

subject of extensive studies over the last forty years [16]–

[20]. Notably, several references [21]–[25] proposed ILC

for position control and vibration suppression of flexible

robots. To render the control more challenging while getting

closer to systems commonly used in industry, actuation is

performed by a stepper motor. We propose then a strategy

for deriving a simple system model to be used as base for

control derivations. We first close a loop on the system with

a linear quadratic Gaussian (LQG) regulator, and then use

fILC to learn a reference for the low-level controller. The

control objective is to follow arbitrary motor trajectories

while keeping small tip oscillations. This task defines a non-

square control problem between one-dimensional input to

the motor and the two-dimensional controlled output. The

experimental results demonstrate that the fILC is a valid

strategy for controlling flexible link robots.

In summary, this paper contributes to the state of the art

in ILC and control of flexible link robots by:

• designing and fabricating a new robotic testbed made

of a flexible link actuated via a stepper motor;

• proposing a simple yet effective model for such system;
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• providing extensive experimental validation to the fILC

framework.

II. FUNCTIONAL ITERATIVE LEARNING CONTROL

This section briefly reviews fILC (see Fig. 1). Please

refer to [13] for an in-depth introduction to the framework.

Consider the continuous-time linear dynamics

ẋj = Axj +Buj , yj = Cxj , (1)

with j ∈ N+ as iteration index, and matrices A ∈ R
n×n,

B ∈ R
n×l, and C ∈ R

m×n. Assume that the system is

non-square, i.e., l < m. Given a finite set of o time instants

{T 1, . . . , T o}, the fILC calculates uj so that the sampled

output yj(T
k) tracks a desired value ȳk, ∀k ∈ {1, . . . , o},

as j goes to infinity. This is accomplished by regarding uj

as an element of a functional space F , i.e., uj = π(t)αj ,

where π(t) ∈ R
l×mo is a matrix whose columns are a basis

of F , and αj ∈ R
mo collects the coefficients representing

uj in F . Then, αj is updated through the law

αj+1 = αj +Lϵj , (2)

where L ∈ R
mo×mo is a suitable gain matrix that guarantees

contraction of the tracking error

ϵj =
(

ȳ1⊤−y⊤

j (T
1), . . . ȳo⊤−y⊤

j (T
o)
)⊤

∈ R
mo.

III. EXPERIMENTAL DESIGN

To experimentally validate the fILC, a non-square linear

system is required. Flexible link robots lie in this class

of systems. Indeed, they are usually modeled as linear

systems [26] and present a single input to control their whole

state. For these reasons, we designed and built the one-link

flexible arm shown in Fig. 2. The platform consists of a

carbon fiber beam clamped to a stepper motor, whose model

is 17HS24-2104D-E1000. A DRV8825 driver is used to drive

the stepper motor. A MPU9250 gyroscope measures the tip

angular velocity on 3 axes with a frequency of 1 [MHz].
Lightweight 3D printed parts fix in place the arm and the

gyroscope. Finally, thin copper wires connect the gyroscope

to a ESP32 microprocessor which sends sensor and motor

data to a workstation running Simulink. The workstation

computes the control law and sends the command back

to the microprocessor for execution. The control loop runs

at 500 [Hz]. We built the link to be thin and slender,

(H × W × L) = (10 × 0.5 × 320) · 10−3[m], so as to

result in large oscillations. The hub radius and its weight

are 25 · 10−3[m] and 2.6 · 10−3[kg], respectively. A slender

profile, in combination with the low material damping ratio,

produces structural vibrations with large amplitude in the

plane of motion. Figure 3 shows the evolution of the motor

position and tip angular velocity in response to an open-

loop step input of 0.5 [rad]. The robot end oscillates for

more than 10 [s] and, because of the coupling effects, also

the motor vibrates around the commanded position. Figure 4

shows a photo sequence of the robot motion in the time

window t ∈ [2; 2.5] [s].

IV. DYNAMIC MODEL AND LOW LEVEL CONTROL

A. Beam dynamics

Consider a one-link flexible robot with length L moving

on a horizontal plane, i.e., without gravity. Under the hy-

pothesis of small deformations, the transverse position y of

Fig. 2. The one-link flexible arm designed and built in this work. The
platform consists of a stepper motor, a slender and flexible carbon fiber link,
and a gyroscope measuring the angular velocity of its tip. A microprocessor
in the orange box exchanges sensor and motor data with a workstation.
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Fig. 3. Open-loop time evolution of motor position and tip angular velocity
for a step command of 0.5 [rad] applied at t = 1 [s]. The motor and the
tip oscillate for more than 10 [s] without a proper control action. Note also
that the robot traces two cycles every second.

a point at a distance x ∈ [0;L] from the base along the

neutral axis is y(t, x) = xθ(t) + w(t, x), where θ(t) is the

motor angle and w(t, x) the lateral beam deflection [26].

To cope with the distributed nature of the above equation,

we approximate w(t, x) following the finite element method

of [26]. The beam is partitioned in two segments with mass

concentrated at the end of each segment, as illustrated in

Fig. 5. Each element has only two degrees of freedom, and

its configuration variables are the elastic deflection wi(t) and

the angle φi(t) at its distal end; i ∈ {1, 2}. Defining the

normalized variable s ∈ [0; 1], the longitudinal position of a

point belonging to the i-th element is

xi(s) = xi−1(1) + lis; x0(1) = 0, (3)

being li its length. Then, the deflection at x1(s) and x2(s)
takes, respectively, the expression

w(t, x1(s)) = (λ1(t) λ2(t))
⊤
σ1(s), (4)

and

w(t, x2(s)) = (λ1(t) λ2(t) λ3(t) λ4(t))
⊤
σ2(s), (5)

where λ := (w1 φ1 w2 φ2)
⊤ and σi(s); i ∈ {1, 2} are

vectors of Hermite polynomials 1. Thus, the robot kinematics

is described by the configuration q =
(

θ λ⊤
)⊤

∈ R
5.

Standard steps in Lagrangian formulation yield the equations

1See [26] for more details.

5292



Fig. 4. Photo sequence of the open-loop evolution for a step input of 0.5 [rad] in the time window t ∈ [2; 2.5] [s]. In accordance with Fig. 3, this time
window corresponds to a complete oscillation period of the robot tip. As expected, due to its slender profile, the beam undergoes large deflections.

Fig. 5. Schematic representation of the flexible robot. The beam is
discretized by introducing two nodes, at its middle point and distal end:
thus, the beam is divided into two elements with mass concentrated at the
nodes. Being the motion planar, the transverse deflections wi and the angles
φi, i = 1, 2, uniquely locate each node w.r.t. the motor angle θ.

of motion

Mq̈ +Dq̇ +Kq = fa, (6)

where

M =

(

Im m⊤

λθ

mλθ Mλλ

)

≻ 0, (7)

is the constant symmetric mass tensor with mλθ ∈ R
4,

including the motor inertia Im and link mass, and the

matrices

D =

(

0 01×4

04×1 Dλλ

)

, K =

(

0 01×4

04×1 Kλλ

)

, (8)

with Kλλ,Dλλ ≻ 0, model elastic and dissipative effects,

respectively. Finally, fa = (1 01×4)
⊤τ is the generalized

force, being τ the motor torque.

B. Motor dynamics and identification

Stepper motors, such as the one used in our experimental

setup, result in complex models when using first princi-

ples. For control design, we approximate the drive as a

second-order mechanical system. In fact, being the electrical

dynamics usually much faster than the mechanical one,

it is reasonable to neglect it and assume that the motor

state is (θ, θ̇)⊤. Furthermore, we assume the motor internal

dynamics to be dominant and not affected by link vibrations.

This yields the following motor model

θ̈ + dmθ̇ + kmθ = gmv, (9)

where km, dm, gm > 0 are constants to be identified and v
is the drive input. This model has to be combined with the

link dynamics. We do so by replacing the first row of (6)

with (9). Furthermore, to keep the inertia tensor symmetric,

we substitute the new expression of θ̈ in the beam dynamics

leading to the following grey box model
(

1 01×4

04×1 Mλλ

)(

θ̈

λ̈

)

+

(

dm 01×4

−mλθdm Dλλ

)(

φ̇

λ̇

)

+

(

km 01×4

−mλθkm Kλλ

)(

θ
λ

)

=

(

gm

−mλθgm

)

v.

(10)

Thus, the system input is v and the output (measured)

variables are the motor position and tip angular velocity, i.e.,

y = (θ φ̇2)
⊤. Note that stiffness and damping forces now

couple rigid and flexible dynamics. Also, it can be shown that

the origin is an asymptotically stable equilibrium of (10).

The motor constants am = (km dm gm)
⊤

have been

estimated through a least squares identification experiment

by applying a step input of amplitude π/2[rad]. With the

sampled evolution of θ, also θ̇ and θ̈ can be computed. Then,

(9) yields the regressor

Amam=











θ(t0) θ̇(t0) π/2

θ(t1) θ̇(t1) π/2
...

...
...

θ(tn) θ̇(tn) π/2











(

km

dm

gm

)

=











θ̈(t0)

θ̈(t1)
...

θ̈(tn)











=bm,

which provides the parameters estimate âm = A#
m bm, where

A#
m is the Moore-Penrose pseudoinverse of Am.

C. LQG controller

We design the fILC on top of a LQG regulator. In this

way, we can implicitly evaluate the performance of the fILC

w.r.t. an optimal controller. Indeed, at the first iteration, the

fILC does not provide any contribution since α1 = 0. We

design the LQG by minimizing the functional cost

J(z, v) = E

[∫ T

0

z
⊤(τ)Qz(τ) + rv2(τ)dτ

]

, (11)

where z =
(

q⊤ q̇⊤

)⊤

is the system state, and T > 0,

Q ∈ R
10×10 ≥ 0, and r > 0 are design parameters. Note

that the system remains stable under the LQG since (10) is

asymptotically stable at the origin.

V. EXPERIMENTAL RESULTS

In this section, we introduce the main result of this

work: an experimental validation of the fILC framework in

controlling the experimental setup presented in Sec. III. The

objective is to control the motor position to an arbitrary

reference θ̄k while keeping the tip angular velocity as close

as possible to zero, i.e.,
¯̇
φk
2 = 0 [rad/s], so as to minimize

arm vibrations.
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Fig. 6. Experiment 1 (Varying reference angle). Time evolution of the
motor position, tip angular velocity, and control input for θ̄k = θ̄ ∈
{0.3, 0.5, 0.7} [rad]. The reference is represented with a black dot, whereas
solid and dashed lines illustrate each variable at the first (LQG only) and
10−th iteration, respectively.

We design the Kalman filter of the LQG regulator assum-

ing zero mean state and measurement noise with covariance,

respectively,
(

4.8 · 10−5
01×9

09×1 3 · 10−2
· I9

)

,

(

8.88 · 10−5 0
0 1.77 · 10−1

)

.

The LQG gain is computed by taking T = 5 [s], r = 1, and

Q = diag (1, 0, 0, 0, 5, 1, 0, 0, 0, 1). For the fILC, we choose

the damped pseudo-inverse as learning factor with damping

S = 10−2 · I , and the base functions of Lemma 1 in [13].

In the first set of experiments, the time instants T k linked to

the reference θ̄k are spaced 0.2 [s] apart. We did not observe

relevant improvements in choosing smaller values of T k.

A. Experiment 1 (Varying reference angle)

In this experiment, we command three constant motor

angles, i.e., θ̄k = θ̄ ∈ {0.3, 0.5, 0.7} [rad]. The fILC acts

from T 1 = 0.8 [s] on. Figure 6 shows the time evolution

of the motor position, tip angular, and control action. At

the 10−th iteration, the performance improves significantly

with respect to the first iteration (LQG only). Transients

dramatically reduce as well as tracking errors. Figure 7

reports the root mean square error (RMSE) with respect to

the iteration number. As expected, the error annihilates at

the desired time instants. It is important to note that the total

velocity of the tip was already low at the first iteration. The

goal of the controller is to improve tracking of the angle

while keeping the oscillations small. Furthermore, the fILC

compensates for model uncertainties by learning a suitable

anticipatory action that cancels the steady state error of the

1 2 3 4 5 6 7 8 9 10

Iteration number

0

0.2

0.4

0.6

P
o
si
ti
o
n

er
ro

r
[r
a
d
]

73k = 0:3 [rad]
73k = 0:5 [rad]
73k = 0:7 [rad]

1 2 3 4 5 6 7 8 9 10

Iteration number

1

2

3

4

5

6

V
el
o
ci
ty

er
ro

r
[r
ad

/s
]

Fig. 7. Experiment 1 (Varying reference angle). Motor and tip RMSE of the

closed-loop system for θ̄k = θ̄ ∈ {0.3, 0.5, 0.7} [rad] and
¯̇
φ2 = 0 [rad/s].

LQG. Note also that, after the training phase, the fILC

dampens tip vibrations by injecting a suitable oscillatory

command.

B. Experiment 2 (Varying start time)

In this second experiment, we evaluate the closed-loop

performance by turning on the fILC at different time instants,

i.e., T 1 ∈ {0.4, 0.6, 0.8, 1} [s]. The reference motor angle is

θ̄k = θ̄ = 0.5 [rad]. Figures 8 and 9 show, respectively, the

closed-loop motor angle and tip velocity as T 1 varies. The

controller exhibits performance consistent with the previous

experiment. When T 1 increases, the fILC modifies less the

optimal trajectory resulting from the LQG because a less

aggressive motion is asked. This fact also results from the

evolution of the control action in Fig. 10. Furthermore, the

response has smaller overshoots, reflecting shorter settling

times, as clear also from the RMSE in Fig. 11.

C. Experiment 3 (Repeatability)

We verify the reliability of the fILC by repeating the

same experiment twenty times and without updating the

fILC control law. We again command θ̄k = θ̄ = 0.5 [rad]
and set T 1 = 0.8 [s]. Figure 12 reports the output and

input variables over the twenty iterations. The closed-loop

evolution is consistent through all the experiment repetitions

with small variations due to measurement noise.

D. Experiment 4 (Less aggressive LQG)

This experiment evaluates the insensitivity of the closed-

loop w.r.t. different choices of the LQG gain. Indeed, the

fILC should learn a feedforward action that yields simi-

lar performance independently of the LQG controller. In

particular, we compare the LQG gain used up to now

with a less aggressive gain derived by considering Q =
diag (10, 0, 0, 0, 10, 15, 0, 0, 0, 1) in (11), i.e., by weighting

more the motor velocity. Figure 13 shows the closed-loop

evolution of the drive angle, tip angular velocity, and control

action. As expected, the fILC learns a suitable feedforward

action also when the LQG is less aggressive. However, this

comes at the expense of a longer training phase. In fact,

at 10−th iteration, the two closed-loops’ performance does
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Fig. 8. Experiment 2 (Varying starting time). Time evolution of the motor position for T 1 ∈ {0.4, 0.6, 0.8, 1} [s]. The reference θ̄k = θ̄ = 0.5 [rad] is
represented with a black dot, whereas solid and dashed lines illustrate the motor angle at the first (LQG only) and 10−th iteration, respectively. A vertical
dashed line shows when the fILC is turned on.
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Fig. 9. Experiment 2 (Varying starting time). Time evolution of the tip angular velocity for T 1 ∈ {0.4, 0.6, 0.8, 1} [s], a commanded velocity of 0 [rad/s],
and θ̄k = θ̄ ∈ {0.3, 0.5, 0.7} [rad], organized as in Fig. 8.
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Fig. 10. Experiment 2 (Varying starting time). Time evolution of the control action for T 1 ∈ {0.4, 0.6, 0.8, 1} [s], a commanded velocity of 0 [rad/s],
and θ̄k = θ̄ ∈ {0.3, 0.5, 0.7} [rad], organized as in Fig. 8.
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Fig. 11. Experiment 2 (Varying starting time). Closed-loop motor and tip
RMSE for T 1 ∈ {0.4, 0.6, 0.8, 1} [s], a commanded velocity of 0 [rad/s],
and θ̄k = θ̄ ∈ {0.3, 0.5, 0.7} [rad].

not correspond. Nonetheless, the fILC with a less aggressive

LQG gain still outperforms the LQG alone. At the end

of the training process, the commands of the two loops

become similar. This is consistent with the expectation that,

as the iterations increase, the control action becomes a pure

feedforward independent of the feedback controller used.

E. Experiment 5 (Trajectory tracking)

In this last experiment, we command a time-varying

reference consisting of a sequence of two rectangular pulses,

having each one amplitude 0.6 [rad], duration 1 [s] and cen-

tered in zero, followed by a constant signal of −0.3 [rad], see

the yellow line in Fig. 14. Note that, being discontinuous,

the trajectory is particularly challenging to follow. The time

instants are spaced 0.75 [s] apart and T 1 = 0.75 [s]. Figure 14

depicts the time evolution of the motor position, tip angular

velocity, and motor input. The closed-loop system exhibits

poor performance at the first iteration (LQG only). Indeed,

being a pure feedback regulator, the LQG lags behind the

5295



0 1 2 3 4 5

Time [s]

0

0.2

0.4

0.6
P
o
si
ti
o
n

[r
a
d
]

73k

0 1 2 3 4 5

Time [s]

-1

0

1

2

V
el
o
ci
ty

[r
ad

/s
] 7_?2;k

0 1 2 3 4 5

Time [s]

0

0.2

0.4

0.6

0.8

1

C
on

tr
ol

ac
ti
on

[r
ad

]

T k

Fig. 12. Experiment 3 (Repeatability). Time evolution of the motor
position, tip angular velocity, and control action for θ̄k = θ̄ = 0.5 [rad], a
commanded velocity of 0 [rad/s], and T 1 = 0.8 [s] over twenty repetitions
of the same experiment.
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Fig. 13. Experiment 4 (Less aggressive LQG). Time evolution of the motor
position, tip angular velocity, and control input for different LQG gains. The
motor reference, represented with a black dot, is θ̄k = θ̄ = 0.5 [rad]. Solid
and dashed lines illustrate each variable at the first (LQG only) and 10−th
iteration, respectively.
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Fig. 14. Experiment 5 (Trajectory tracking). Time evolution of the motor
position, tip angular velocity, and control input for the yellow trajectory. In
each plot, the blue and red lines show the evolution of the corresponding
variable at the first (LQG only) and 10−th iteration. The fILC reference is
represented with a black dot.

command. On the contrary, the fILC learns a suitable antic-

ipatory action, which yields exact tracking of the sampled

output in few iterations. Indeed, at the 10-th iteration, the

control input leads the motor position forward the reference.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we proposed the first experimental validation

of functional Iterative Learning Control, i.e., a novel Iterative

Learning Control framework for trajectory tracking of non-

square continuous-time linear systems with sampled outputs.

To this end, we designed and built a one-link flexible robot

actuated through a stepper motor. We proposed a control-

oriented model for the stepper motor, which naturally fits

the dynamic formulation.

Extensive experimental results demonstrate the beneficial

effects of fILC. The proposed method can execute both

regulation (Exp. 1-4) and tracking (Exp. 5) tasks, learning

the suitable control input in a limited number of iterations

(Figs. 7 and 11). In all experiments, the method learns a suit-

able anticipatory action to dampen out the tip oscillations and

compensate for model inaccuracies. The proposed technique

is also robust and reliable, achieving analogous results in 20

repetitions of the same task (Exp. 3).

The fILC input at the first iteration equals zero in each

experiment. This means that the performance of any first

trial corresponds to the performance of the LQG controller

alone. As shown in Figs. 6, 8 and 9, the sole LQG control

law is not sufficient to execute the desired motions. On the

other hand, the primary influence of the LQG on the fILC

stands on the learning rate: reducing the LQG gain leads

to longer learning phases without affecting the actual fILC

performance (Exp. 4).
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