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Abstract— In physical human-robot interaction (pHRI) it is
essential to reliably estimate and localize contact forces between
the robot and the environment. In this paper, a complete
contact detection, isolation, and reaction scheme is presented
and tested on a new 6-dof industrial collaborative robot. We
combine two popular methods, based on monitoring energy
and generalized momentum, to detect and isolate collisions on
the whole robot body in a more robust way. The experimental
results show the effectiveness of our implementation on the
LARA 5 cobot, that only relies on motor current and joint
encoder measurements. For validation purposes, contact forces
are also measured using an external GTE CoboSafe sensor.
After a successful collision detection, the contact point location
is isolated using a combination of the residual method based on
the generalized momentum with a contact particle filter (CPF)
scheme. We show for the first time a successful implementation
of such combination on a real robot, without relying on joint
torque sensor measurements.

I. INTRODUCTION

Collaborative robots (cobots) are robots that can be op-
erated in the vicinity of human workers without additional
safety installations, such as fences or light barriers. Since
cobots can be employed in very dynamic, unstructured and
partially unknown environments, where the relative motions
between robot and human may be very fast or hardly
predictable, it is not always possible to avoid collisions
through the usage of external sensors and collision-aware
motion planning, as done in [1]. In some cases, the contact
is even part of the physical human robot interaction (pHRI).
In order to guarantee the safety of the operator, it is essential
to be able to detect and isolate contacts with the environment
precisely and to be able to react accordingly.

A comprehensive overview of existing techniques is given
in [2]. In [3], the authors use contact point and force
information in an impedance control scheme. Additionally,
precise contact information can be used in grasping scenarios
in order to verify the success of the operation. While there
exists a variety of methods to estimate the contact forces,
most of these methods employ additional sensors. A tactile
skin mounted on the robot allows to directly detect contact
forces and the contact location, see [4]. Joint torque sensors
allow the direct measurement of the mechanical torque acting
on each joint without the friction disturbances typically
encountered in motor current measurements. Using these
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Fig. 1: LARA 5 cobot and proposed collision handling scheme.

sensors with the popular residual method based on the
generalized momentum of the robot presented in [5] and [6],
it is possible to estimate the contact forces on the robot.
This method in combination with joint torque sensors has
been successfully applied and experimentally validated on
a 7-dof DLR-III robot in [6]. The advantages of using an
additional 6-dof force/torque sensor in the robot base are
discussed in [7]. Here, the authors show simulatively that
it is possible to identify the contact point using only joint
torque and encoder measurements via the method of the
generalized momentum and a pseudo-inversion of the skew-
symmetric matrix that describes the cross product between
contact point and contact forces. In [8], the authors show an
experimental evaluation of the same method to estimate the
contact forces and the contact point on the DLR 7-dof robot
SARA using joint torque sensors and two additional 6-dof
force/torque sensors, one in the base and one in the wrist.
Another popular method for collision detection is based on
the energy of the system, see [2].

Instead of computing the contact force and point using
the pseudo-inverse method, it is possible to use a contact
particle filter (CPF), as presented in [9]. The authors employ
the CPF and the residual method on an Atlas humanoid robot
in simulation and are able to estimate up to 3 simultaneous
contact points accurately. In [10], experimental results of the
application of the CPF without the residual method on a
KUKA LBR iiwa 7-dof robot are shown, relying only on
joint torque sensors and position measurements.

The main contribution of this paper is twofold. First,
we combine two existing collision detection methods and

2023 IEEE International Conference on Robotics and Automation (ICRA 2023)
May 29 - June 2, 2023. London, UK

979-8-3503-2365-8/23/$31.00 ©2023 IEEE 7533



validate our approach experimentally; second, we propose
an adapted CPF scheme for the contact point localization.
According to the literature, the contact point estimation
based on the residuals of the generalized momentum method
without joint torque or any other additional sensors has
not yet been realized experimentally. This work shows the
experimental application of both the pseudo-inverse and the
contact particle filter methods on a 6-dof LARA 5 cobot,
relying only on motor current and joint encoder measure-
ments. Further, this work suggests the combination of the
two methods by initializing the CPF with the solution of the
classical pseudo-inverse method when a contact is detected
on link 6.

The paper is organized as follows. Section II introduces
the basics of the collision detection method using the energy
and generalized momentum of the robot. Section III shows
how the classical pseudoinverse method and the CPF can be
combined for localizing the contact point. Finally, experi-
mental results are presented in Sec. IV.

II. COLLISION DETECTION

In this section, we introduce the underlying dynamical
model of the robot used in this paper, as well as the collision
detection method based on the energy of the system [2] and
the method based on the generalized momentum [7].

A. Dynamical Model of the Robot

The dynamics of an open-chain serial robot manipulator
with n actuated joints are governed by

M(q)q̈ +C(q, q̇)q̇ + g(q) = τm − τfric + τext, (1)

where q ∈ Rn are the generalized (joint) coordinates,
M(q) ∈ Rn×n is the positive definite inertia matrix of
the multi-body system, C(q, q̇)q̇ ∈ Rn collects Coriolis
and centrifugal forces (quadratic in q̇), and g(q) ∈ Rn

contains the gravitational terms. The motor torques as system
inputs are denoted by τm = Kiim ∈ Rn, where Ki is
a diagonal matrix containing the motor constants, which
scale the measured motor currents im to obtain torques.
Friction on the motors is denoted by τfric ∈ Rn. The vector
τext ∈ Rn are the external joint torques, resulting from
external forces and moments, summarized in the wrench
vector Fext = (fx, fy, fz,mx,my,mz)

T , that acts at the
contact point pc = k(q) ∈ R3 on the robot. The relation
between wrench and external joint torques is characterized
by

τext = JT
pc
(q)Fext, (2)

where Jpc(q) ∈ R6×n is the geometric Jacobian associated
with a link frame at the contact point pc. For this work, it
is essential to have well identified dynamic parameters, as
well as a precise friction model. In the following, estimates
of all dynamic terms are denoted by the hat symbol (̂). A
more detailed explanation on the topic of dynamic model
identification for robot manipulators can be found in [11]
and [12].

B. Sensorless Collision Detection

We introduce two popular observers for the detection of an
external force on the robot. The energy-based method, see
[2], and the method based on the generalized momentum,
see [7].

1) Energy-based Method: The first collision detection
method is based on the system’s energy. The key idea behind
this method is that a collision will change the energy level
of the system, and the residual energy σ(t) will then be non-
zero. In all other cases, it is always equal to zero, even if
the robot is moving. According to [2], the residual energy of
the system is defined as

σ(t)=ko

(
T̂ (t)−

∫ t

0

(q̇T (τm − ĝ(q)− τ̂fric) + σ)ds− T̂ (0)

)
(3)

where σ(0) = 0, ko > 0 is a constant gain and T̂ (t) is the
estimation of the kinetic energy at time t ≥ 0 defined as

T̂ (t) =
1

2
q̇TM̂(q)q̇. (4)

The method only relies on the available joint position q, its
filtered joint velocity q̇, and the measured motor torques τm.
One can show that σ(t) ≈ q̇T τext for high filter gains and
ideal conditions [2]. A drawback of this method is that no
collisions can be detected when the robot is stationary.

2) Method based on the Generalized Momentum: The
second approach followed in this work for the detection of
a collision is based on the estimated generalized momentum

p = M̂(q)q̇ (5)

of the robot. Based on (5), the momentum-based residual
vector can be defined as follows [6]

r(t) = Ko

(
p(t)−

∫ t

0

(τm−β̂(q, q̇) + r)ds− p(0)

)
, (6)

β̂(q, q̇) = ĝ(q) + Ĉ(q, q̇)q̇ − ˆ̇M(q)q̇ + τ̂fric. (7)

The residuals are initialized with r(0) = 0. The diagonal
matrix Ko > 0 contains the gains of the observer. The
residuals r(t) can be computed solely based on the motor
torques τm, the load-side encoder position q as well as its
filtered velocity q̇. In [2], it is shown that for high filter gains
the residual approximates the external torques

Ko → ∞ =⇒ r ≈ τext. (8)

Thus, ideally Ko is chosen as high as possible. However,
in practice this also amplifies all unmodeled effects and
the noise, which limits the choice of Ko. The residual
technique is theoretically able to detect collisions even
when q̇ = 0. In practice however, there are unmodeled
effects, such as hysteresis effects in the drive train, or
imperfect model knowledge, that lead to non-zero residuals.
Therefore, thresholds for each residual are required to detect
a contact robustly.

3) Combined Collision Detection: To reliably detect a
collision, the energy-based and the momentum-based resid-
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ual methods are combined. An outlier in any of the observer
signals is only considered a collision if at least one of
the components of r(t) and the energy-based residual σ(t)
exceed at the same time their time-varying thresholds.

III. SENSORLESS CONTACT POINT ISOLATION

The residual r(t) from (6) can be used as a virtual joint
torque sensor. In the ideal case, if a contact occurs on link i,
an external joint torque acts on joint i, such that ri ̸= 0.
While there may be an external joint torque acting on any
joint l < i, there are no external joint torques acting on all
joints l > i, such that ri+1 = ... = rn = 0. In this way, it
is possible to isolate the link on which the contact occurs.
Further, when the contact occurs at a link i ≥ 6, it is possible
to estimate the contact point pc,i in link frame i without the
need of any additional sensors [7]. In this work, no additional
sensors are used other than the available encoder and current
measurements. We combine two methods, the method based
on the pseudoinversion applied in [7] and the CPF method
from [9].

A. Contact Point Estimation via Pseudoinversion

The first approach is based on two pseudoinversions. First,
the external joint torques τext ≈ r, approximated by the
residuals, are projected onto the frame of link i, where the
contact is detected, by the pseudoinverse of the Jacobian of
link i (

fi

mi

)
= (JT

i (q))#r. (9)

Here fi and mi are the estimates of the force and moments
acting on link frame i due to the external joint torques. This
projection suffers in the proximity of kinematic singularities,
where even small residuals may cause a large contact wrench.
Also, for a contact on any link i < 6, the Jacobian will not
have full row rank and the pseudo-inversion suffers from
the same numerical issues as in the presence of kinematic
singularities. Following [7], we assume a contact where only
contact forces and no moments (mext = 0) occur, an assump-
tion that is valid for most impulsive collision situations in
practice. Thus, one can formulate the equilibrium of forces
and moments around the origin of link frame i as follows(

fi

mi

)
=

(
I

S(pc,i)

)
fext, (10)

where S(·) is a skew-symmetric matrix, that can be used
to express the cross product between the contact point
and contact force vectors, i.e., pc,i × fext = S(pc,i)fext.
From (10) one can see that fi = fext. To get the contact
point pc,i, the second row of (10) should be inverted, taking
into account that the skew-symmetric matrix S is always
singular with rank(S(·)) = 2. Thus, the solution space has
dimension 1. The pseudoinversion provides the minimum
norm solution for the contact point

pc,d = (−S(fext))
#mi. (11)

The contact point pc,d found in this way is not constrained to
lie on the surface of the link. However, the space of feasible

solutions can be written in terms of a particular solution, e.g.,
(11), and a term in the null space of ST (fext) as follows

p(λ) = pc,d + λ
fext

||fext||
, λ ∈ R. (12)

By choosing the intersection between this line of action
and the link surface, it is possible to estimate the contact
point pc,i. In this work, we exploit the cylindrical shape
of link 6, and choose the “pushing” solution in case two
solutions exist. Further, we only consider solutions on the
side of the cylindrical flange, not on the top.

B. Contact Point Particle Filter

We employ an adapted version of the contact particle filter
presented in [9] and [13]. Instead of solving a quadratic
program for the observation model, our work relies on a com-
putationally simpler pseudoinversion, essentially combining
the classical method described in Sec. III-A with the CPF.
We only focus on link 6 of the robot due to the limitations
of the least-squares method. However, it is easy to extend
the method to any link i > 6.

Generally, a particle filter is a discrete, non-parametric
Bayesian filter that can be applied to a variety of applications.
It uses a set of discrete N samples, the particles, to approx-
imate the posterior distribution of a system, and is thus not
based on a specific parametric form like other filters [14].

Each particle x
[m]
t , with m = 1, ..., N , is a hypothesis as

to what the true state of the system, in this case, the contact
point coordinates in link frame, may be at time t. The set of
particles at time t is given as

χt =
{
x
[1]
t ,x

[2]
t , ...,x

[N ]
t

}
. (13)

At each time step, all particles are propagated through a
motion model that describes the expected system behaviour.
The weight w

[m]
t associated to particle m is then updated

based on the observation of the system, i.e., the residuals r(t)
in our case. Based on the weighted distribution of the old
particles, a new set of particles is generated that has a larger
likelihood to estimate the state correctly. The particle filter
consists of several steps that are described in the following.

1) Initialization: Once a collision on link 6 is detected, the
CPF is initialized. The initialization of the particles considers
the estimated contact point pc,i from the least-squares based
algorithm described in Sec. III-A. The contact particles
are initialized using a Gaussian multivariate distribution
around pc,i. This locates the particles closer to the true
contact point and avoids that the particle filter converges to
an incorrect solution, e.g., a contact point with a pulling force
on the opposite side of link 6 that would result in the same
residuals. All particles are initialized to have equal weight.
The initialization of the particles is visualized in Fig. 5(a).

2) Motion Model: The motion model describes the system
dynamics, e.g., the probability of transition from one state to
the subsequent state. This work uses a random walk model,
similar to [13]

p(xt|xt−1) ∝ N (xt;xt−1,Σmotion), (14)
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where Σmotion is the standard deviation of the normal distri-
bution centered around xt−1. When a particle is propagated
with this model, it results in a particle that is most likely
no longer on the surface of the link, because the random
motion is performed in all three Cartesian directions. For
this reason, after the motion, the particle is projected back
onto the nearest point on the link surface. However, to avoid
projecting back the particles, polar coordinates can be used.

3) Measurement Model: The measurement or observation
model captures the likelihood of the measurement r(t)

assuming that particle x
[m]
t correctly describes the contact

point coordinates. This can be expressed by the posterior
probability p(r(t)|x[m]

t ). Based on this, the weight of each
particle is updated. The measurements, in this case the
residuals r(t), are a good, but noisy estimate of the external
joint torques τext. They can be assumed to follow a Gaussian
model

r(t) = τext + η with η ∼ N (0,Σmeas), (15)

where Σmeas is the standard deviation of the measurements.
Following the line of ideas from [9], one can formulate an
optimization problem that reflects how well the particle x

[m]
t

can explain the measured residuals

cost(r(t)|x[m]
t ) =min

fext
∥(r(t)− JT

c (q,x
[m]
t )fext)∥Σ−1

meas
.

(16)

This optimization problem is solved for each particle at every
time step. Since the contact point is fixed for each particle,
this optimization problem is quadratic and convex, and thus
easy to solve. Also, compared to the formulation of [9], we
remove the friction cone constraint on the external force,
since this constraint has not shown significant influence on
our results. On the contrary, the removal of the constraints
allows the usage of the weighted pseudo-inverse to solve (16)
in a computationally more efficient manner

fext = (JT
c (q,x

[m]
t ))#

Σ−1
meas

r(t). (17)

Thus, the importance weight can be updated based on

p(r(t)|x[m]
t ) ∝ e

− 1
2 cost

(
r(t)|x[m]

t

)
. (18)

This has to be done for all N particles in every time step.

4) Importance Sampling: After the propagation of the
samples through the dynamical model and the updating of the
weights as a measure of the quality of each particle, a new
set of particles χt is generated based on the old set χ̄t. The
underlying idea is to draw a new set of particles based on the
cumulative distribution of the old data set, where the impor-
tance weights equal the probability of drawing each particle
from the old distribution. This will change the distribution
of the new particles, favouring the generation of particles
that resemble the best particles of the old set. The estimated
external force fext and contact point pc,i are computed by
a weighted sum of all particles and associated forces. The
contact particle filter is summarized in Algorithm 1.

Algorithm 1 Contact Particle Filter (χt−1, r(t))

if χt−1 = ∅ then
χt−1 = χinit

wt = winit

else
χ̄t = ∅
for m = 1, 2, ..., N do

sample x
[m]
t ∼ p(xt|x[m]

t−1)

w
[m]
t ∼ p(r(t)|x[m]

t ) ∝ e
− 1

2
cost

(
r(t)|x[m]

t

)
χ̄t = χ̄t+ < x

[m]
t , w

[m]
t >

end for
χt = Importance Sampling(χ̄t)

end if
return χt

IV. EXPERIMENTS

In this section we realize the proposed collision detec-
tion, isolation and identification pipeline and validate our
proposed approach in a set of three experiments. First, we
show the experimental validation of a combination of the
energy-based and the generalized momentum-based collision
detection algorithm. The contact forces are then measured
using an external sensor. Last, we compare the classical
method for the contact point estimation from Sec. III-A with
our proposed, adapted CPF implementation experimentally.

A. Experimental Setup

Figure 1 shows the experimental setup of LARA 5, a 6-
axis cobot by NEURA Robotics. The robot uses strain-wave
gear boxes and achieves a maximum joint velocity of 180◦/s
and a maximum end-effector velocity of 3 m/s. The singu-
larities of an anthropomorphic arm with a spherical wrist are
described in detail in [15]. The high-level control software
runs at a rate of 1000 Hz. LARA 5 is equipped with 24-bit
dual encoders on each joint. For the estimation of the motor
torques τm, only the motor current measurements are avail-
able, such that τm = Kiim. Experiments were conducted in
the laboratory facilities of NEURA Robotics GmbH.

B. Experimental Results for Collision Detection

First, we show two experiments that combine the energy-
based and the generalized momentum-based methods for
collision detection. By combining the two methods, we are
able to reduce the number of false positives making use of
the advantages of both approaches.

1) Robust Collision Detection: The first testing scenario is
designed to show the robustness of our combined approach.
Up to t = 2.5 s, the robot is stationary and then executes a
point-to-point motion with a maximum end-effector velocity
of 250 mm/s during which link 3 collides with a human
arm. Figure 2 shows the residuals during the trajectory for
both the energy-based and the generalized momentum-based
methods. At the beginning of the trajectory, there are spikes
in the residual r1 of the generalized momentum, although
there was no collision. These spikes possibly result from
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Fig. 2: Residuals of the generalized momentum-based and the energy-based
method. The grey areas show the threshold tubes for each residual. The red
vertical line marks the detected collision during the motion.

unmodeled effects, like static friction or hysteresis effects.
Since the residual of the energy-based method is driven by
the work performed by the external torque σ(t) ≈ q̇T τext,
it is more difficult to excite it when the joint velocities are
low. From a safety point of view, collisions with a stationary
robot, however, are unproblematic.

At t = 9.56 s of the trajectory, the moving robot collides
with a human arm. Both methods exceed their respective
thresholds at the same time and a collision is detected. In the
shown example, the residual of the generalized momentum of
link 3 shows a spike, from which one can conclude that the
contact occurs indeed on link 3. Different types of trajectories
with varying velocities have been tested in this work, yielding
similarly robust results. Combining both methods allows thus
to robustly detect collisions during the motion of the robot,
and eliminates the number of false positives, e.g., at the
beginning of a trajectory.

2) Maximum Contact Force Validation: In order to val-
idate the contact force at which a collision is detected,
we are using the CoboSafe-CBSF-75 sensor by GTE In-
dustrieelektronik. This device is a force-pressure measuring
system that is specifically designed to measure the quasi-
static and transient contact forces in pHRI [16]. The ex-
perimental setup can be seen in Fig. 3. The scenario is
designed to simulate a pick and place application where
the robot collides with a stationary, rigid object, located
approximately 0.78m from the robot’s base. The experiment
is repeated for different velocities that are representative for
typical pHRI scenarios. Figure 4 shows the measured contact
forces using the CoboSafe-CBSF-75 sensor, as well as the
permitted collision forces for a human hand. The contact
force is separated into two regions: First the transient phase,

GTE CoboSafe
sensor

Fig. 3: Experimental setup of LARA 5 colliding with a GTE CoboSafe
sensor.
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Fig. 4: Measurements of the realized contact forces using the GTE CoboSafe
sensor for different end-effector velocities. In each of the phases of the
contact, the measured contact forces lie below the maximum allowed limit
force ( ) according to ISO 10218.

that describes the time between beginning of the contact
until 0.5 s after the beginning of the contact, which is when
the static phase of the collision starts. As can be seen from
Fig. 4, the proposed collision detection method fulfills the
requirements regarding the maximum allowed contact forces
for the described scenario according to ISO 10218.

C. Contact Point Isolation

Finally, we experimentally validate our adapted CPF for
the contact point estimation and compare our results with
the results obtained with the pseudoinverse based method
from Sec. III-A. In the experiment, the robot executes a
point-to-point motion while we press against link 6 in the
positive y-direction. The CPF runs at a rate of 50 ms,
while N = 150 particles are being used. The distribution
of the particles at different times during the experiment and
the estimated contact force direction are shown in Fig. 5.
Figure 6 shows the residuals r(t), as well as the estimated
contact point and the contact forces for both methods during
the trajectory. Since we do not use any additional sensor, the
true contact force is unknown. One can see, however, that
both methods show similar estimates for the contact forces.
Regarding the estimated contact point, one can state that
the suggested CPF scheme yields more robust results than
the classical pseudo-inverse method. While the pseudoinverse
method shows an error of 10 cm with the contact point no
longer lying on the link cylinder, our adapted CPF has an
error of only 2.5 cm. When comparing our work to the results
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(b) particle convergence
(t = 2.0 s, 6 iterations)

(c) particles at end of trajectory
(t = 11.0 s, 186 iterations)

(a) particle initialization
(t = 1.7 s, 0 iterations)

Fig. 5: Experimental results of the proposed CPF approach. Contact particles are shown in red at three different time instants. The green point is the
ground truth contact point, the blue arrow indicates the estimated force applied at the estimated contact point. The three time instants of the experiment
are marked with (a), (b), and (c) in Fig. 6.
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Fig. 6: Estimated residuals r(t), and estimated contact position pc,i
and force fext in the frame of link 6 during the experiment for the
CPF and the classical method. The contact is located at pc,true =
(0,−0.04,−0.025)T m in link 6 frame. The grey areas show the times
where no collision is detected and the CPF is not running.

presented in the literature, we can state that we achieve a
comparable accuracy. In [10], a CPF is applied on a KUKA
LBR iiwa experimentally, where a contact point accuracy
below 2 cm is achieved on link 6, using 10000 particles.

D. Discussion

1) Model Accuracy: In theory, after a short transient, the
residuals r(t) of the generalized momentum method equal
the external joint torques τext. However, this only holds when
model and physical robot match each other. All methods used
in this work rely only on motor current and joint encoder
measurements. Motor current measurements are typically
much more influenced by friction, hysteresis and temperature

effects compared to joint torque sensors. This stresses the
need to have a well identified friction and dynamical model
of the robot. Any model discrepancies or unmodeled effects
will result in large residuals, and consequently inaccurately
identified collisions, contact forces and points. At station-
ary configurations, static friction and hysteresis effects are
dominant and large residuals were found in our experiments.
Therefore, we excluded stationary cases from our work,
considering only dynamic situations. These are anyway more
relevant for safety evaluation in pHRI.

2) Limitations: Apart from the just mentioned restriction,
there are other limitations of our approach. Since we use the
pseudoinversion of the Jacobian, see (9), the contact force
estimation suffers from numerical issues for links i < 6
and in the proximity of kinematic singularities. As described
earlier, in both cases, the Jacobian will not have full rank,
and the obtained contact forces from the pseudoinversion will
only be a poor estimate.

V. CONCLUSION

In summary, this paper shows the experimental validation
of a contact detection, isolation and reaction scenario on a
LARA 5 cobot. First, we combine the energy-based and the
generalized momentum-based methods to reliably detect a
contact and to reduce the number of false positives. The
experiments are conducted using only motor current and
joint encoder readings and are verified using an external
GTE CoboSafe measurement system. For the contact point
isolation, both the classical method relying on the inversion
of the contact Jacobian, and an adapted contact particle
filter are used to isolate the contact point. Here, our pro-
posed contact particle filter outperforms the classical method.
Both methods are based on the residuals of the generalized
momentum to estimate the external joint torques. We have
shown for the first time the application of the contact point
estimation without relying on joint torque sensors. This
eliminates the need for expensive hardware.
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