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Abstract— We consider the problem of extracting a complete
set of numerical parameters that characterize the robot dynam-
ics, starting from the identified values of dynamic coefficients
that linearly parametrize the robot dynamic equations. This
information is relevant when realistic dynamic simulations have
to be performed using standard packages, or when addressing
the efficient numerical implementation of model-based control
laws using recursive Newton-Euler algorithms. The formulated
problem is highly nonlinear and is solved through the use of
global optimization techniques, while imposing also physical
bounds on the dynamic parameters. The identification and
parameter extraction process is illustrated and experimentally
validated on the link dynamics of a KUKA LWR IV+ robot.

I. INTRODUCTION

Complete and accurate dynamic models of robot manip-
ulators are necessary in order to design advanced motion
control laws [1], perform realistic simulations [2], or im-
plement sensorless strategies for collision detection [3] and
environment interaction [4].

Identification of the dynamic model of a robot is a long
standing problem that has been addressed with a variety of
estimation techniques [5]. All of them exploit the funda-
mental property of linear dependence of the robot dynamic
equations in terms of a set of ρ dynamic coefficients, also
known as base parameters [6], denoted here by π ∈ Rρ.
These coefficients are suitable combinations of geometric
and inertial data of the robot bodies, namely of the 10
dynamic parameters specifying the mass, the position of the
center of mass, and the symmetric inertia matrix for each
robot link. For a robot with N links, there are 10N such
parameters, denoted here by p ∈ R10N .

The dynamic parameters p can be redefined (keeping
their total number constant) so that they appear linearly
in the kinetic and potential energy of the robot, and thus
also in its dynamic equations (the standard parameters
mentioned in [6]). The regrouping of the 10N parameters
into ρ dynamic coefficients, typically with ρ < 10N , can
be expressed as defining a vector relation π = f(p), see
Fig. 1, and is a necessary step for guaranteeing a full rank
regressor matrix in the identification problem [7]. When
deriving the Lagrangian model of a robot in symbolic form,
the regrouping of dynamic parameters can be performed in
different ways [8], [9], so as to yield a (possibly) minimal
number of dynamic coefficients —the quantities that can be
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Roma, Italy ({gaz,fflacco,deluca}@diag.uniroma1.it). This work is sup-
ported by the European Commission, within the FP7 ICT-287513 SAPHARI
project (www.saphari.eu).

p1 

p2 

p3 

p! 

p! 

p! 

Dynamic parameters 

"g#

"m#

Dynamic coefficients 

1 

2 

3 

Fig. 1. Dynamic coefficients π are being generated as a nonlinear function
π = f(p) of robot dynamic parameters p. Parameters are divided in
three groups according to their nature (see Sec. II-B). Coefficients can be
organized in two vectors πg and πm, and only a subset p′i of parameters
pi, i = 1, 2, 3, contribute actually to them (see Sec. II-C). The inverse
function f−1, which should provide dynamic parameters from dynamic
coefficients, does not exist in general.

identified with motion experiments (on sufficiently exciting
trajectories) and that really matter in the robot dynamics.
However, only a subset p′ ⊆ p of the original dynamic pa-
rameters will appear in the equations, whereas the remaining
p\p′ cannot be observed through any motion experiments.
Moreover, the majority of the dynamic parameters p′ can be
identified only in groups. Only a very small number of them
will appear as singletons in the coefficients π, being thus
separately identifiable.

In many cases, the experimental identification (or an a
priori knowledge) of a complete set of dynamic coefficients
π will be sufficient for robot control and planning purposes.
However, being able to extract from the identified dynamic
coefficients some feasible numerical values for the original
dynamic parameters p is a relevant objective, at least in the
following two operative situations:
• If we wish to perform dynamic simulations with stan-

dard CAD-based systems like V-REP [10]. The user
needs to specify explicitly the 10 dynamic parameters of
each rigid body (viz., link) in some associated reference
frame. Indeed, one can use (don’t care) values for all
those parameters p\p′ not involved in robot motion.

• When implementing model-based control laws, e.g.,
feedback linearization, under hard real-time constraints.
The standard solution for robots with many dofs is based
on the recursive Newton-Euler (N-E) algorithm [11].
Usual N-E routines require the knowledge of the dy-
namic parameters of each link in the kinematic chain.
Notably, the same holds true in the generalization of the
N-E algorithm to robots with joint elasticity [12].
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In this paper, we address the problem of recovering a
complete set of values for the original robot parameters,
starting from the identified dynamic coefficients. This is a
nonlinear problem with infinitely many solutions, but not
all having a physical significance. In order to discard such
unfeasible solutions, we consider upper and lower bounds on
the single components of p as well as on the total sum of
the link masses. Because of the ill-conditioned nature of the
space of solutions, we use global optimization techniques,
such as simulated annealing [13].

While the proposed approach is general, we will illustrate
the identification and extraction procedure with reference to a
specific manipulator largely used in research, the 7R KUKA
LWR IV+ robot, taking advantage of some features of this
system. The problem of obtaining a complete and accurately
identified dynamic model of this robot has generated much
interest recently1. A few alternative approaches [9], [14],
[15] to identification of the dynamic coefficients have been
proposed, which may or may not exploit the numerical values
of the gravity vector and of the inertia matrix returned by the
KUKA Fast Research Interface (FRI) [16]. In particular, we
will use our data from [9] as a starting point, recalling briefly
the main aspects of the procedure for obtaining the dynamic
coefficients (Sec. II). The dynamic parameter extraction
problem is formulated and numerically solved in Sec. III,
and the obtained results are validated with experimental data
in Sec. IV. More details can be found in [17].

We finally remark that we work here only on the link-
side dynamics of the KUKA LWR, neglecting therefore the
presence of joint elasticity and motor inertias (as opposed,
e.g., to [18]). Still, the outcome is what is actually needed
by users who rely on the low-level KUKA torque control
mode, which allows to bypass the motor dynamics thanks to
joint torque sensing, for their dynamic simulations and for
model-based control design and implementation.

II. PRELIMINARIES

A. KUKA LWR robot and its link dynamics

Figure 2 shows the KUKA LWR IV+ with N = 7 revolute
joints in the zero position, together with its link frames
and associated parameters chosen with the classical Denavit-
Hartenberg convention. The origin of the base frame 0 and
of the end-effector frame 7 are taken coincident, respectively,
with the origin of the frame of link 1 and of link 6. Thus,
the two lengths d1 and d2 as the only non-zero kinematic
parameters. These frames are important in order to interpret
the numerical results of the following sections.

The robot is driven by the controller unit KR C2 lr, which
is able to provide, through the FRI, the link position q and
joint torque τ J measurements at a maximum of 1 msec
sampling rate, as well as the numerical values of the link
inertia matrix Mnum(q) and of the gravity vector gnum(q)
at the current configuration q. The controller works in two
modes, generating the correct motor torque τ in response to

1KUKA has never released a public version of the dynamic model of its
lightweight robots.

i ai αi di θi
1 0 π/2 0 q1
2 0 −π/2 0 q2
3 0 −π/2 d1 q3
4 0 π/2 0 q4
5 0 π/2 d2 q5
6 0 −π/2 0 q6
7 0 0 0 q7

Fig. 2. Denavit-Hartenberg frames and table of parameters for the KUKA
LWR IV+. All x-axes point toward the viewer (frames are displaced
sideways for better clarity).

the user command, which can be either a desired link position
qd or velocity q̇d (position control mode), or a joint torque
τ user (torque control mode) to be applied to the links.

Although the LWR robot is equipped with harmonic drives
and displays non-negligible joint elasticity, thanks to the
torque control mode of the KUKA controller, it is possible
to by-pass the elasticity in the dynamic model and consider
only the link dynamics. This is described by

M(q)q̈ + c(q, q̇) + g(q) = τ J , (1)

where M(q) is the inertia matrix, c(q, q̇) is the Coriolis and
centrifugal vector, g(q) is the gravity vector, and τ J is the
vector of joint torques downstream the elasticity.

B. Dynamic parameters

For a rigid robot with N links, the link masses, the position
of their centers of mass, and the elements of the inertia
matrices of the links build up a vector of dynamic parameters
p ∈ R10N . Let N = 7 and denote by mi be the mass of link
i, for i = 1, . . . , 7. The position of the center of mass of link
i with respect to the ith link frame is

iri,ci =
(
cix ciy ciz

)T
, i = 1, . . . , 7. (2)

Similarly, the link inertia matrix relative to the center of mass
of link i is the (possibly full) symmetric matrix

iI`i =

 Iixx Iixy Iixz
Iixy Iiyy Iiyz
Iixz Iiyz Iizz

 , i = 1, . . . , 7. (3)

We can arrange all dynamic parameters into three vectors

p1 =
(
m1 . . . m7

)T ∈ R7,

p2 =
(
c1x c1y c1z . . . c7x c7y c7z

)T ∈ R21,

p3 =
(
IT1 . . . IT7

)T ∈ R42,

(4)

where

Ii =
(
Iixx Iixy Iixz Iiyy Iiyz Iizz

)T ∈ R6. (5)
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In (4), we can use in an equivalent way the alternative vector
p2 ∈ R21 of standard parameters

p2 =
(
c1xm1 c1ym1 c1zm1 . . . c7xm7 c7ym7 c7zm7

)T
.

(6)

C. Dynamic coefficients

In our previous work [9], we have separately identified
the terms g(q) and M(q) in the dynamic equation (1),
by inserting the known symbolic terms in two regressor
matrices, respectively Y g(q) and Y m(q), and the unknown
dynamic coefficients in two vectors, respectively πg and
πm. With the symbolic expression of the inertia matrix, the
term c(q, q̇) is then computed by analytic differentiation [1].
Being N = 7 the number of joints, the symmetric inertia
matrix has been reshaped into a stack vector m̃(q) of
N(N + 1)/2 = 28 scalar elements. Therefore, we have:

g(q) = Y g(q)πg, m̃(q) = Y m(q)πm. (7)

At this stage, a double pruning procedure, described in
part in [9] and in full detail in [17], was applied in order
to obtain full (column) rank for each regressor in (7). At
the end, the dimensions of πg and πm dropped to 12 and
52, respectively. With no end-effector tool mounted and the
robot on a horizontal base, the resulting symbolic vector of
dynamic coefficients related to gravity is [9]

πg =



c7ym7

c7xm7

c6xm6

c6zm6 + c7zm7

c5zm5 − c6ym6

c5xm5

c5ym5 + c4zm4 + d2(m5 + m6 + m7)

c4xm4

c4ym4 + c3zm3

c2xm2

c3xm3

c2zm2 − c3ym3 + d1(m3 + m4 + m5 + m6 + m7)


.

(8)
We see that πg = πg(p′1,p

′
2), with p′1 ⊂ p1 and p′2 ⊂ p2,

since some parameters of the first and second links are
not excited by gravity. In particular, using the parametriza-
tion (4), m1 is missing in p′1, and c1x, c1y , c1z , and c2y are
missing in p′2.

In a similar way, we obtained a vector of dynamic coef-
ficients πm = πm(p′1,p

′
2,p
′
3) for the inertia matrix, where

p′3 ⊂ p3. Also in this case, some dynamic parameters will
never be excited no matter which motion is performed. We
obtained a vector p′3 ∈ R37, since the following elements do
not appear in the symbolic expressions of the robot inertia
matrix: I1xx, I1xy , I1xz , I1yz , and I1zz .

D. Identification of dynamic coefficients

We collected M = 1000 sets of (numerical) gravity
vectors and inertia matrix data, bringing the robot in M
different static configurations. For a robot configuration qk
in the list (1 ≤ k ≤M ), we have

gk = Y gkπg, mk = Y mkπm, (9)

where Y gk = Y g(qk), Y mk = Y m(qk), and the gravity
vector gk and the inertia stack vector mk are both retrieved
numerically from the FRI. All these quantities can be stacked
in vectors and matrices with M ×N rows, obtaining

g = Y gπg, m = Y mπm. (10)

Finally, the two equations in (10) were solved in the least
squares sense as

π̂g = Y
#

g g, π̂m = Y
#

mm, (11)

where # denotes pseudoinversion.
With this identification procedure, we obtained from (11)

the following numerical values for the gravity coefficients:

π̂g =



9.5457× 10−4

−2.9826× 10−4

8.3524× 10−4

0.0286
−0.0407

−6.5637× 10−4

1.334
−0.0035

−4.7258× 10−4

0.0014

9.4532× 10−4

3.4568


[m·kg]. (12)

The values π̂m of the inertial coefficients are found in [17].

III. EXTRACTION OF DYNAMIC PARAMETERS

With the symbolic form of the dynamic coefficients πg
in (8) and their numerical values π̂g given in (12), it is
possible to extract values for the dynamic parameters p′1 and
p′2 by solving the nonlinear system

πg(p′1,p
′
2) = π̂g, (13)

yielding 12 equations in 23 unknowns, with the given kine-
matic data d1 = 0.4 m and d2 = 0.39 m. Similarly, for the
dynamic coefficients of the inertia matrix we have

πm(p′1,p
′
2,p
′
3) = π̂m, (14)

namely a system of 52 equations in 64 unknowns2.
Indeed, one could try to solve both (13) and (14) at the

same time, but we preferred instead to attack the problem in
two subsequent steps, namely: extracting first the numerical
values of the dynamic parameters in the gravity vector,
and computing then the extra dynamic parameters in the
inertia matrix using the solution already found for parameters
that are in common. Beside the reduction in complexity,
there are also two other features suggesting a partitioned
approach. During the identification performed in [9], the
best results were obtained when the gravity vector and the
inertia matrix were identified separately. Since for this robot
the gravity terms have a large influence on the total joint

2Four out of the 5 parameters missing from p′1 in the gravity equation (13)
appear back in the inertia equation (14): the only scalar parameter from p1
which is missing in (14) is in fact c1y . Thus, the two p′1 used in the gravity
and inertia equations are different, but we preferred to overload the notation.
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torque, one is interested in having a more reliable estimation
of this vector. Moreover, working separately on (13) and (14)
allows introducing different possible simplifications in each
subproblems. Based on the experimental data, we have in
fact forced the identities

I7xz = c7xc7zm7, I7yz = c7yc7zm7, (15)

reducing by 2 the number of unknowns in (14) down to 62.
For the extraction of dynamic parameters from the gravity

vector equation (13), let x =
(
p′1
T
p′2
T )T ∈ R23 be the

vector of unknowns. In order to select among the infinite so-
lutions to the underdetermined system (13), we can formulate
an optimization problem, minimizing an objective function
that shapes the solution and imposing constraints so as to
guarantee a physical meaning to the obtained solution.

In particular, we forced a non-negative mass for each link
and assumed for simplicity a common upper limit (say, 6 kg).
Moreover, for each link, we easily inferred that the center
of mass is located inside the smallest parallel box which
includes the link geometry. In this ways, we generated the
lower bounds (LB) and upper bounds (UB) in Tab. I. For
comparison, we report also the numerical values assumed
in the V-REP module, as described in [19]. Note that the
position of the center of mass of link i is referred to the ith
DH frame of Fig. 2.

Based on (13) and on the bounds in Tab. I, we define the

TABLE I
LOWER AND UPPER BOUNDS FOR MASSES AND CENTERS OF MASS OF

THE KUKA LWR IV+ AND CORRESPONDING DATA IN V-REP

parameter LB UB V-REP value units
m1 0 6 2.7 kg
m2 0 6 2.7 kg
m3 0 6 2.7 kg
m4 0 6 2.7 kg
m5 0 6 1.7 kg
m6 0 6 1.6 kg
m7 0 6 0.3 kg
c1x -0.05 0.05 0.001340 m
c1y -0.2 0.05 -0.087777 m
c1z -0.1 0.1 -0.026220 m
c2x -0.05 0.05 0.001340 m
c2y -0.1 0.1 -0.026220 m
c2z -0.05 0.2 0.087777 m
c3x -0.05 0.05 -0.001340 m
c3y -0.05 0.2 0.087777 m
c3z -0.1 0.1 -0.026220 m
c4x -0.05 0.05 -0.001340 m
c4y -0.1 0.1 0.026220 m
c4z -0.05 0.2 0.087777 m
c5x -0.05 0.05 -0.000993 m
c5y -0.2 0.05 -0.111650 m
c5z -0.1 0.1 -0.026958 m
c6x -0.05 0.05 -0.000259 m
c6y -0.1 0.1 -0.005956 m
c6z -0.1 0.1 -0.005328 m
c7x -0.05 0.05 0 m
c7y -0.05 0.05 0 m
c7z 0.05 0.1 0.063 m

following constrained nonlinear optimization problem:

min
x

f1(x) = ‖πg(x)− π̂g‖2

s.t. LB ≤ x ≤ UB.
(16)

Since the manifold generated by the cost function f1(x)
contains multiple local minima [17], a global optimization
method, like genetic algorithms (GA) [20] or simulated
annealing (SA) [13], is mandatory to address problem (16).
We have used a SA optimization algorithm [21], which finds
a good approximation to the global optimum by randomly
restarting the search in a different point of the feasible set.
In any event, the algorithm stops when a given threshold
is reached. We launched the algorithm K = 1000 times,
applying a more sophisticated interior-point (IP) Nelder-
Mead local optimization algorithm [22] at the end of each
completed SA iteration, and using the solution found by SA
as starting point. In order to cover the largest surface of
f1(x) within the feasible set, the starting point xsκ at each
search iteration κ (with 0 ≤ κ ≤ K) is randomly selected as

xsκ = LB + (UB − LB)u, u ∼ U(0, 1). (17)

The final solution is obtained in a Matlab environment
using the routines simulannealbnd and fmincon, and
is reported in Tab. II, where a ∗ denotes don’t care values.
In general, the reported solution cannot be qualified as the
‘optimal’ one, providing namely the true dynamic parameters
related to gravity for our robot. Nonetheless, it satisfies
all dynamic model equations, and as such can be safely
adopted, e.g., to compute the inverse dynamics by means of
a Newton-Euler algorithm. With reference to Fig. 1, we have
obtained one possible inverse map going from the generated
coefficients to the generating dynamic parameters.

Next, we turn to the extraction of dynamic parameters
from the stacked inertia vector equation (14). Let y =(
p′1
T
p′2
T
p′3
T )T ∈ R62 be the unknown vector of parame-

ters, taking into account (15). The procedure is very similar
to what was done for the gravity vector. In this case, however,

TABLE II
FINAL SOLUTION FOR GRAVITY PARAMETERS

(COST = 3.2073× 10−04)

parameter final solution
m1 ∗
m2 4.2996847737
m3 3.658530333
m4 2.3846673548
m5 1.7035567183
m6 0.4000713156
m7 0.6501439811
c1x ∗
c1y ∗
c1z ∗
c2x 0.0003284751
c2y ∗
c2z 0.0823647642

parameter final solution
c3x 0.0002593328
c3y 0.1137431845
c3z -0.000100257
c4x -0.0014648843
c4y -0.0000461
c4z 0.148580959
c5x -0.0003791484
c5y -0.0553526131
c5z -0.0101255137
c6x 0.0020739022
c6y 0.0586184696
c6z -0.044799983
c7x -0.0004601303
c7y 0.0014789221
c7z 0.0715608282
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TABLE III
LOWER AND UPPER BOUNDS FOR THE INERTIA MATRIX ELEMENTS OF

THE KUKA LWR IV+ AND CORRESPONDING DATA IN V-REP

parameter LB UB V-REP value units
I1xx 0 0.05 0.039 kg·m2

I1xy -0.005 0.005 3.206e-04 kg·m2

I1xz -0.005 0.005 9.415e-05 kg·m2

I1yy 0 0.05 6.887e-03 kg·m2

I1yz -0.005 0.005 -2.681e-03 kg·m2

I1zz 0 0.05 0.03698 kg·m2

I2xx 0 0.05 0.039 kg·m2

I2xy -0.005 0.005 9.415e-05 kg·m2

I2xz -0.005 0.005 -3.145e-04 kg·m2

I2yy 0 0.05 0.03698 kg·m2

I2yz -0.005 0.005 9.747e-03 kg·m2

I2zz 0 0.05 6.887e-03 kg·m2

I3xx 0 0.05 6.887e-03 kg·m2

I3xy -0.005 0.005 3.145e-04 kg·m2

I3xz -0.005 0.005 -9.5572e-05 kg·m2

I3yy 0 0.05 6.8872e-03 kg·m2

I3yz -0.005 0.005 2.681e-03 kg·m2

I3zz 0 0.05 0.037 kg·m2

I4xx 0 0.05 0.037 kg·m2

I4xy -0.005 0.005 9.415e-05 kg·m2

I4xz -0.005 0.005 3.1455e-04 kg·m2

I4yy 0 0.05 0.037 kg·m2

I4yz -0.005 0.005 9.747e-03 kg·m2

I4zz 0 0.05 6.887e-03 kg·m2

I5xx 0 0.05 0.032 kg·m2

I5xy -0.005 0.005 -1.898e-04 kg·m2

I5xz -0.005 0.005 -4.474e-05 kg·m2

I5yy 0 0.05 4.945e-03 kg·m2

I5yz -0.005 0.005 -2.023e-03 kg·m2

I5zz 0 0.05 0.03 kg·m2

I6xx 0 0.01 0.003 kg·m2

I6xy -0.002 0.002 -2.463e-06 kg·m2

I6xz -0.002 0.002 -2.323e-06 kg·m2

I6yy 0 0.01 3.068e-03 kg·m2

I6yz -0.002 0.002 -7.008e-05 kg·m2

I6zz 0 0.01 3.47e-03 kg·m2

I7xx 0 0.005 3.47e-03 kg·m2

I7xy -0.0005 0.0005 0 kg·m2

I7xz -0.0005 0.0005 0 kg·m2

I7yy 0 0.005 1.292e-03 kg·m2

I7yz -0.0005 0.0005 0 kg·m2

I7zz 0 0.005 1.584e-04 kg·m2

finding upper and lower bounds to the elements of the link
inertia matrices is a bit more complex. To have reasonable
estimates, the mass distribution and the position of the center
of mass for each link were evaluated first with the aid of
CAD tools, such as 3DS MAX and MeshLab, where a model
of the KUKA LWR was replicated assuming uniform mass
distribution. Trading off between the desire of strict bounds,
so as to limit the feasible set when searching for a candidate
solution, and the need of larger bounds, not to cut off any
potential good candidate, we eventually selected the bounds
in Tab. III. The table reports also the nominal data assumed3

in V-REP. Moreover, since the total weight of the KUKA

3In [19], the inertia matrix of link i is computed in a reference frame
placed at the center of mass and oriented like the corresponding DH frame
i in Fig. 2. In our notation, the inertia matrix iI`i is referred to the DH
frame of link i. Thus, we should apply Steiner’s theorem [1] in order to
have a correct correspondence of parameters.

LWR IV+ is approximately 16 kg [23], we imposed also
two linear inequality constraints on the total robot mass:

13 ≤
7∑
i=1

mi ≤ 19. (18)

Based on (14), on the bounds in Tab. III, and on (18), we
define a second constrained nonlinear optimization problem:

min
y

f2(y) = ‖πm(y)− π̂m‖2 + g(y)

s.t. LB ≤ y ≤ UB,
(19)

with

g(y) =

{
δ if max

{
0,
∑7
i=1 yi − 19, 13−

∑7
i=1 yi

}
> 0,

0 else,

where yi = mi, for i = 1, . . . , 7, and δ = 10 is a (relatively)
large factor in the penalty term g added to the objective
function when one of the constraints in (18) is not satisfied.
Keeping the gravity parameters found in Tab. II as fixed,
we applied again a global numerical optimization algorithm
to solve (19). The parameters extracted from the identified
dynamic coefficients that parametrize the inertia matrix are
given in Tab. IV, where, for compactness, don’t care values
are not reported.

IV. VALIDATION BY MEANS OF NEWTON-EULER
ALGORITHM

In this section we present a validation test of the obtained
dynamic parameters in Tables II and IV. These numerical
values have been inserted in a Newton-Euler routine in
order to compute the joint torques necessary to perform a
desired trajectory in the joint space. Moreover, the following
arbitrary choices have been made for don’t care values:

c1y = 0.01 m

I1xx = I1xy = I1xz = I1yz = I1zz = 0.01 kg·m2
(20)

TABLE IV
FINAL SOLUTION FOR INERTIAL PARAMETERS

(COST = 5.2245× 10−12)

parameter final solution
m1 4.1948152162
c1x -0.0216387515
c1z -0.0376881829
c2y -0.0041132249
I1yy 0.0018932828
I2xx 0.0474108647
I2yy 0.05
I2zz 0.001601901
I2xy -0.00000621
I2xz 0.0001166457
I2yz -0.0009141575
I3xx 0.0469510749
I3yy 0.0008344566
I3zz 0.05
I3xy -0.000271431
I3xz 4.09E-008
I3yz -0.000577228
I4xx 0.0124233226
I4yy 0.0072708907
I4zz 0.0099884782

parameter final solution
I4xz -0.0005187982
I4xy 0.000000225
I4yz -0.0005484476
I5xx 0.006322648
I5yy 0.0012020203
I5zz 0.0070806218
I5xy -0.0002163196
I5xz 0.00000652
I5yz -0.005
I6xx 0.0005278646
I6yy 0
I6zz 0.0034899625
I6xy 0.0000483
I6xz -0.0000375
I6yz -0.0010605344
I7xx 0
I7yy 0.0000323
I7zz 0.0001187527
I7xy -0.000000577
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Since the robot base is fixed and there is no contact at
the end-effector, we have in the N-E forward and backward
initializations [1]

f8
8 = 0, µ8

8 = 0, ω0
0 = ω̇0

0 = 0, a0
0 = 0, (21)

where f8
8 and µ8

8 are the external force and torque at the
end-effector, and ω0

0, ω̇0
0 and a0

0 are, respectively, the angular
velocity, angular acceleration, and linear acceleration of the
robot base.

The desired trajectory in the joint space has been designed
so as to have both low and high joint velocities and accel-
erations. All joints are requested to follow a concatenation
of 7 cubic trajectories interpolating 8 knots, with zero initial
and final velocity at every knots, see Tab. V.

TABLE V
JOINT TRAJECTORIES USED FOR VALIDATION

knot configuration time
1 (start) q1 =

`
π
2
, π

2
, π

2
, π

2
, π

2
, π

2
, π

2

´T
t1 = 0

2 q2 = (0, 0, 0, 0, 0, 0, 0)T t2 = 5

3 q3 =
`
π
2
, π

2
, π

2
, π

2
, π

2
, π

2
, π

2

´T
t3 = 8

4 q4 = −
`
π
2
, π

2
, π

2
, π

2
, π

2
, π

2
, π

2

´T
t4 = 15

5 q5 =
`
π
2
, π

2
, π

2
, π

2
, π

2
, π

2
, π

2

´T
t5 = 22

6 q6 =
`
π
4
,−π

4
, π

4
,−π

4
, π

4
,−π

4
, π

4

´T
t6 = 24

7 q7 =
`
−π

4
, π

4
,−π

4
, π

4
,−π

4
, π

4
,−π

4

´T
t7 = 25.5

8 (end) q8 =
`
π
4
,−π

4
, π

4
,−π

4
, π

4
,−π

4
, π

4

´T
t8 = 28
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Fig. 3. Joint position (top), velocity (center) and acceleration (bottom)
imposed to the KUKA LWR for the torque comparison experiment.

The obtained position, velocity, and acceleration of all
seven joints are shown in Fig. 3. We have imposed this
desired trajectory to the real robot and have collected the
measured link positions q and joint torque τ J by means
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Fig. 4. Measured joint torques filtered by a low-pass filter (blue lines) and
estimated joint torques (green lines) obtained with a Newton-Euler routine
using the dynamic parameters in Tables II and IV.
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Fig. 5. Residual error torques from Fig. 4.

of the FRI routines GetMeasuredJointPositions and
GetMeasuredJointTorques. Note that, in order to make
the robot reach the high joint velocities toward the trajectory
end, we removed the 80 W power limitation, by plugging
the X15 connector, as described in the manual of the LWR
controller [24]. To evaluate joint velocities and accelerations,
the position data were numerically differentiated off line
twice and then filtered through a 4th order zero-phase
digital Butterworth filter with a cutoff frequency of 1 Hz.
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These were finally substituted, together with the dynamic
parameters from Tables II and IV, in the N-E routine in
order to obtain an estimate τ̂ J of the joint torques.

Figure 4 shows the evolution of the filtered torque τ J
measured by the joint torque sensors, together with the
estimated joint torque τ̂ J , as computed by the N-E algorithm,
for all seven robot joints. While a good estimation was
obtained for joints 2, 3, 4, and 5, the residual errors (always
smaller than maximum 1.5 Nm, see Fig. 5) at the other joints
1, 6, and 7 suggest the presence of unmodeled dynamics,
most likely static and viscous friction on the link side of
the transmissions at the joints. In fact, Figure 6 shows that
the results obtained with the N-E routine (which uses the
extracted dynamic parameters in this paper) are comparable
with those obtained with a Lagrangian approach (which uses
experimentally identified dynamic coefficients) previously
reported in [9]. An estimate of the friction torque at link
side, neglected so far, has been carried out with good results
and will be reported in an expanded version of this paper.

0 5 10 15 20 25
−2

0

2

4

τ
1
 [
N

m
]

0 5 10 15 20 25
−50

0

50

τ
2
 [
N

m
]

0 5 10 15 20 25
−20

0

20

τ
3
 [
N

m
]

0 5 10 15 20 25
−5

0

5

Time [s]

τ
4
 [
N

m
]

0 5 10 15 20 25
−0.5

0

0.5

τ
5
 [
N

m
]

0 5 10 15 20 25
−0.2

0

0.2

τ
6
 [
N

m
]

0 5 10 15 20 25
−5

0

5
x 10

−3

Time [s]

τ
7
 [
N

m
]

 

 

estimated torques with N−E

estimated torques with Lagrange

Fig. 6. Comparison between the estimation of the joint torques with the
N-E routine (blue lines) and with the Lagrangian approach in [9] (green
lines).

V. CONCLUSIONS

We presented a numerical approach to the solution of a
special problem in identification of robot dynamic models.
Namely, given a set of experimentally identified values
for the dynamic coefficients that linearly parametrize the
robot dynamics, find a set of individual dynamic parameters
that i) match in the right combinations the given dynamic
coefficients; ii) satisfy additional user-defined bounds, typi-
cally in the form of box constraints, which guarantee their
physical significance (e.g., positive link masses); iii) allow
their straightforward use in simulation tools and in recursive

numerical implementation of control laws that need the
complete set of robot parameters. The problem has been
formulated as a constrained nonlinear optimization problem
and solved through the use of global optimization techniques.
The dynamic identification process has been validated with
experimental data of a KUKA LWR IV+ robot moving at
fast speeds.
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