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Abstract--In this paper a PD control with on-line gravity 
compensation is proposed for robot manipulators with elastic 
joints. The work extends the existing PD control with constant 
gravity compensation, where only the gravity torque needed at 
the desired configuration is used throughout motion. The control 
law requires measuring only position and velocity on the motor 
side of the elastic joints, and the on-line compensation scheme 
estimates the actual gravity torque using a biased measure of the 
motor position. It is proved via a Lyapunov argument that the 
control law globally stabilizes the desired robot configuration. 

Experimental results on an 8-d.o.f. robot manipulator with 
elastic joints show that this control scheme improves the transient 
behavior with respect to a PD controller with constant gravity 
compensation. In addition, it can be usefully applied in combi- 
nation with a point-to-point interpolating trajectory leading to a 
reduction of final steady-state errors due to static friction and/or 
uncertainty in the gravity compensation. 

I. INTRODUCTION 

Control algorithms conceived for completely rigid robots 
may guarantee a stable behavior even if a certain degree of 
elasticity in the actuation system or in the link structure is 
present [ 1 ], [2]. The price to pay, however, is a typical degra- 
dation of robot performance. In fact, elasticity of mechanical 
transmissions may generate lightly damped vibrational modes, 
which reduce robot accuracy in tracking tasks [ 1 ]. Yet, it may 
become a source of instability in case of interaction between 
the robot and the environment [3]. 

When negative effects of mechanical elasticity are non- 
negligible, the control design has to be revisited in order to 
account for the elastic phenomena. In this paper, the case 
of elasticity at the joints is taken into account. This means 
that flexibility is assumed to be concentrated at the n robot 
joints and the number of Lagrangian configuration variables in 
the robot dynamics is doubled with respect to the rigid case, 
leading to a set of n motor and n link second-order nonlinear 
equations. 

For robot manipulators with elastic joints, different control 
solutions are available for trajectory tracking as well as for 
regulation tasks [4]. For trajectory tracking tasks, one can 
resort to high-performing but complex control strategies, such 
as the linearizing and decoupling nonlinear feedback [5], [6] or 
an integral manifold approach based on a singular perturbation 
model of the robot dynamics [7], [8]. For regulation tasks, 

instead, it has been proved in [9] that a simple PD controller 
suffices to globally stabilize a robot with elastic joints about 
any desired configuration. The control law includes a constant 
gravity compensation term, which is evaluated at the desired 
reference position, and needs to feed back only position and 
velocity of the motors. 

In the case of rigid robots, it is well known that global 
regulation to a desired configuration qd can be achieved by a 
PD control law, either with a constant gravity compensation 
term 9(qa) (and sufficiently large positional gains) [10] or 
with a nonlinear gravity compensation term 9(q) evaluated at 
the current configuration (or, on-line) [11]. In the presence of 
joint elasticity, putting to work an on-line gravity compensa- 
tion is more complex than in the rigid case. On one hand, the 
gravity torque depends on the robot link positions whereas 
quite often only the motor positions are measurable. On the 
other hand, a PD control with on-line gravity compensation 
based on the motor positions 0 (i.e., with 9(0)) does not 
lead to the desired final equilibrium configuration. In addition, 
the stability analysis is complicated by the non-collocation 
between the available control torque (on the motor side) and 
the gravity torque to be compensated (acting on the link side 
of joint elasticity). 

The contribution of this paper is a PD control law with 
on-line gravity compensation for robot manipulators with 
elastic joints, which requires only motor measurements and 
has guaranteed global stabilization properties. The main idea is 
to use a new variable, named 'gravity-biased' motor position, 
for evaluating (an estimate of) the gravity torque at each 
configuration. The typical feature of this controller is to 
improve the transient behavior of the original control law 
in [9]. In addition, using lower positional gains, and applying 
the scheme in combination with a point-to-point interpolating 
trajectory allows preventing motor saturation (typically occur- 
ring during the first instants of motion) and reduces the steady- 
state error due to unmodeled static friction and/or uncertainty 
in the gravity compensation term. 

After recalling the dynamic modelling of robot manipulators 
with elastic joints in Section II, the PD control law with on-line 
gravity compensation is introduced in Section III. The analysis 
of the closed-loop equilibria and the proof of asymptotic 



stability via a Lyapunov argument are presented in Section IV 
and Section V, respectively. Finally, some experimental results 
obtained on the Dexter robot, an 8-dof cable-driven articulated 
arm, are reported in the Section V, where a comparison with 
the approach in [9] is carried out. 

I I .  D Y N A M I C  M O D E L  OF ROBOTS WITH ELASTIC  JOINTS 

The following two assumptions are made in describing the 
dynamics of robots with elastic joints: 

A1. The robot manipulator is an open kinematic chain of 
rigid bodies, driven by electrical actuators through 
elastic joints. 

A2. Rotors of motors are uniform bodies balanced around 
their rotation axes. 

The robot dynamic model can be written as follows [9]: 

B(q)b]c + C(qc,(lc)(lc + e(q) + Keqc = m (1) 

where qc = [qT oT] T is the (2n × 1) vector of configuration 
variables, being q and 0 the (n × 1) vectors of link positions 
and motor positions (reflected through the gears), respectively. 
In view of Assumptions A1 and A2, the (2n × 2n) robot inertia 
matrix B(q) and the (2n × 1) gravitational torque vector e(q) 
are independent of 0. Moreover, 

1 60 . r  • 
C(qc, 0~)0~ - B(q)O~ - -~ -5-~q (qc B(q)qc) 

is the (2n x 1) vector of centrifugal and Coriolis torques, K~qc 
represents the (2n × 1) vector of elastic torques and, on the 
right-hand side of (1), m is the (2n × 1) vector of external 
torques producing work on qc. 

Equation (1) can be rearranged into two equations, one for 
the link side and the other for the motor side, if the contribu- 
tions to the robot dynamics are decomposed as follows. The 
(2n x 2n) robot inertia matrix B(q) can be partitioned in four 
(n x n) block matrices 

[ Bl(q) B2(q) (2) ~(q)= B~(q) B~ 

of which B1 takes into account the inertial properties of 
rigid links, B: considers the coupling between each spinning 
actuator and the previous links, and B3 is a constant diagonal 
matrix including the motor inertia (scaled through the squared 
gear ratios). 

The (2n × 2n) matrix C (q~, 0~), by resorting to the so-called 
decomposition in Christoffel symbols, can be expressed as 

C(qc,(lc) = CA(q,O) + CB(q,(1) (3) 

where 

CA(q,O) -- CAIo (q' O) O0 ] 

[ CBl(q,q) 
CB(q, (t) -- CB3(q, dl) 

CB2(q,(I) 

b e i n g  CA1, CB1, CB2, CB3 suitable (n x n) matrices. 
The gravitational torque takes on the form 

e(q) = 9(q) 

w h e r e  q ( q ) ( ° o q ( q )  ) T = , being Ua(q) the potential energy 
due to gravity. 

The (2n x 2n) matrix Ke in the elastic torque can be written 
in terms of the (n x n) diagonal and positive definite matrix 
K of joint stiffness coefficients as follows: 

K~ = -K K 

and, finally, the vector of generalized forces acting on qc can 
be expressed as 

where u is the torque vector produced by the n motors. 
Note finally that, under the assumptions in [5], the dynamic 

model in (1) simplifies to: 

t31(q)!~ + CB1 (q, 0)(t + g(q) + K(q  - O) = 0 
(4) 

B3~ + K ( O - q )  = u, 

that is the so-called reduced dynamic model for robots with 
elastic joints. 

It can be seen that, for the model (1), the following four 
properties hold [4]: 

P1. The inertia matrix B(q) is symmetric and positive 
definite for all qc. 

P2. The matrix B~(q) is strictly upper triangular. 
P3. If a representation in Christoffel symbols is chosen 

for the elements of C(qc, qc), the matrix/3 - 2C is 
skew-symmetric. 

P4. A positive constant a exists such that 

II O9(q) 02Ug(q) < oz (5) 
oq = Oq 2 - 

where the matrix norm of a symmetric matrix A(q) 
is given by Amax(A(q)), i.e., its largest (real) eigen- 
value at q.l Inequality (5) holds for all q and implies 

11 9(ql) - g(q2)[[ <_ a [[ql - q211, (6) 

for any q~, q2. It should be explicitly remarked that 
this inequality holds whatever argument is used for 
evaluating the gravity vector. 

These properties obviously hold also for the reduced dynamic 
model. 

It should also be noted that, with the chosen generalized 
coordinates, the direct kinematics of the robot, i.e. the relation 
between the robot configuration variables and the Cartesian 
end-effector pose, depends only on the link position vari- 
ables q. 

1This is the matrix norm naturally induced by the Euclidean norm on 
n "" 2 vectors, e.g., [Iq [ --- V/~-'~i=l qi" 



III. PD CONTROL WITH ON-LINE GRAVITY COMPENSATION 

In this section, a control law is proposed which is aimed 
at regulating the robot link positions to a desired constant 
configuration qd. It is a proportional-derivative action in the 
space of motor variables, as in [9]. The assumption is made 
that only the motor variables 0 and t) are measurable or, at 
least, 0 is measurable and t) is obtained by accurate numerical 
differentiation. An on-line gravity compensation in lieu of a 
constant gravity compensation is proposed as an improvement 
of the control law in [9]. 

The PD control with constant gravity compensation in [9] 
is expressed as: 

u -- I f p  (Od -- O) -- KDO + 9(qd),  (7) 

w i t h / ( p  > O, K D  > 0 (both symmetric), and 

Od = qd + K - 1 9 ( q d )  • (8) 

Via Lyapunov argument and La Salle's theorem, global asymp- 
totic stability of the (unique) closed-loop equilibrium state 
(q, O, (1, O) = (qd, Oct, 0, 0) was proved, under the assumption 
that the stiffness matrix / (  and the proportional gain matrix 
K p  comply with the following condition: 

• ~min ( / ( )  :-- /~min - - g  K q- K p  > a. (9) 

The PD control law with on-line gravity compensation is 
addressed to improve transient behavior by performing some 
kind of gravity compensation at any configuration during 
motion. A gravity estimate based on the link variables cannot 
be considered, since the link variables q are assumed not to be 
measurable. In addition, it is easy to show that using 9(0),  with 
the measured motor positions in place of the link positions, 
leads to an incorrect closed-loop equilibrium. 

Thus, a new variable 0 is introduced, i.e. 

0 = 0 -  K - l g ( q d ) ,  (10) 

that is a gravity-biased modification of the measured motor 
position 0. The PD control with on-line gravity compensation 
is subsequently defined as 

u = K p  (Oct - O) - KDO + O(0), (11) 

where K p  > 0 and K D  > 0 are both symmetric (and typically 
diagonal) matrices. The variable 0 shall provide the correct 
gravity compensation at steady state, even without a direct 
measure of q. As a matter of fact, the control law (11) can be 
implemented using only motor variables. 

IV. CLOSED-LOOP EQUILIBRIA 

The equilibrium configurations of the closed-loop s.ystem 
(1), (11) are computed by setting q = ~) = 0 and ~ = 0 = 0. 
This yields 

g(q) + K ( q - O )  -- 0 (12) 

K(O - q) = K p  (Od -- O) + 9(O). (13) 

From (12) it follows that, at any equilibrium, 0 = q q - K - l g ( q ) .  
Taking this into account and adding (12) to (13) leads to 

K p  (Od -- O) + g(O) - 9(q) = O. 

Indeed (q, 0) - -  (qd, Od) is a closed-loop equilibrium configu- 
ration, since Od := Od -- K - X g ( q d )  = qd from (8) and (10) so 
that 9(Od) = 9(qd). 

The uniqueness of such an equilibrium has to be demon- 
strated. Thus, adding K ( O d - - q d ) - - g ( q d )  = 0 to both (12) and 
(13) yields 

K ( q  - qd) - K (O  - Oct) = 9(qd) -- g(q) 

- K ( q  - qd) + (Ix2 + K p ) ( O  - Od) = g(O) -- g(qd), 

or 
- -qd ]__ 9(q~) - g(q)  

9(0)  - g(q~) 

if the ma t r ix / (  defined in (9) is used. 
Assuming that condition (9) holds true implies 

II 
2 IE 

qo -- odqd ~ ~Sin (/~) ~ Od 
= A2m~ ( K )  ( l l q -  qdll 2 + [10 -  0dl[2),  

(14) 

II 2 
(15) 

while, using inequality (6) and the identity 0 -  qd = 0 -  Oa 
yields 

g ( q d ) - - 9 ( q )  I] 2 
g(O) - 9 (qa )  = I[g(qa) - g(q)ll 2 + IIg(0) - 9(qa)ll 2 

_< a2 (llq - qdll 2 + II0 - 0dl12) • (16) 

By comparing (15) with (16) it follows that, when/~min(K) > 
a, the equality (14) holds only for (q,O) = (qd,Od), which is 
thus the unique equilibrium configuration of the closed-loop 
system (1), (11 ). 

V. PROOF OF ASYMPTOTIC STABILITY 

To demonstrate asymptotic stability of the closed-loop sys- 
tem, a candidate Lyapunov function is defined in terms of 
an auxiliary configuration-dependent function P(q ,  0). This is 
expressed as: 

1 1 
P(q ,  O) - -~ (q - O)T K (q -- O) + -~ (Od -- O)Z K p  (Od -- O) 

+ Ug(q) - Uo(O ). (17) 

Under the assumption (9), this function has a unique minimum 
in (qd, Od). In fact, the necessary condition for a minimum of 

- I -I  - lI 
V o P  - K  K q~, 

g(q) = 0  (18) 
+ K p ( O  - 0~) - g (~ )  " 

Equation (18) is exactly in the form (12), (13), which in turn 
is equivalent to (14). As in Section IV, it can be demonstrated 

P ( q ,  e) is 



that V P ( q , O )  = 0 only at (qd,Od). Moreover, the sufficient 
condition for a minimum 

- 0 _ o g _ ~  > 0  
O0 q'--qd,O--Od 

is satisfied, using again assumption (9). 
By setting Pct := P(qct, Oct) - 9T(qct)K-19(qct) ,  the 

candidate Lyapunov function can be written as 

1 .  T 
V(q,O,(1,0)  - -~q~ B(q)(t~ + P(q,O)  - Pa > O. (19) 

Indeed, V is zero only at the desired equilibrium state q = qct, 
o=oa, o - O - o .  

Along the trajectories of the closed-loop system (1), (11), 
the time derivative of V becomes 

: (0 0) ( l [ B ( q ) ~  + ~qc B(q)qc  + - I f  (q - O) 

- -  - -  O q  - -  O 0  / 

( 1 ) = Ore -C(qc, 4c)qc - e(q) - Keqc + m + 5B(q)4c  

+(1T ( K ( q  - O) + g(q))  - O T K ( q  - O) 

- o ) +  

= (1T ( - K ( q -  O) - 9(q) + K ( q  - O) + 9(q)) 

+ b T ( K ( q  - O) - K ( q  - O) + K p  (Oct - 0)) 

0 ( - K . O  + - - o) - 9 ( 0 ) )  + 

= --{)TKDO ~ O, 
(20) 

where the identity ~ - 0 and the skew-symmetry of matrix 
/3 - 2C have been used. 

Since V = 0 if and only if 0 - 0, substituting 0(t) - 0 
into the closed-loop equations yields 

B1 (q)i] + CB1 (q,q)(l + 9(q) + K q  = KO = const (21) 

B f  (q)~ + CB3(q,(I)(I -- K q  

- -  - K O  + I ( p  (Od - -  O) "4- 9 ( 0 )  --- const. (22) 

By virtue of Property P2 and the expression of CB3 (q, (t), 
from (22) it follows that q(t) = 0. This in turn simplifies (21) 
to 

9(q) + K ( q -  0) = 0. (23) 

It has already been shown that the system (22), (23) has the 
unique solution (q, 0) = (qct, Oa), provided that condition (9) 
holds true. Therefore, q - qd, 0 = Oct, q = 0 -- 0 is the 
largest invariant subset contained in the set of states such that 
V = 0. By La Salle's Theorem, global asymptotic stability of 
the desired set point can be concluded. 

The PD control law with on-line gravity compensation can 
be applied also to the reduced dynamic model (4). In the 
demonstration of global asymptotic stability in correspondence 
of the unique equilibrium point (q, 0, q, 0) = (qd, Oct, 0, 0), the 
sole difference with respect to the case of dynamic model (1) 
is that the analysis through La Salle's Theorem is simplified. 
Invoking Property P2 is not required. 

I ~' :iii!~, ~, ~<i, i~i !~ 

Fig. 1. The  Dexter  a rm 
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Fig. 2. A cable-driven joint/link pair 

VI. EXPERIMENTAL RESULTS 

As a first attempt to verify global asymptotic stability of 
the PD control with on-line gravity compensation, the same 
simulation tests reported in [9] were repeated, in order to 
make a comparison with the PD control with constant gravity 
compensation. The results have shown that the PD gains 
used in [9] wipe out the differences between the two control 
schemes by overcoming the action of gravity estimate. In 
addition, the torque values generated at the motion starting 
point are so high (due to the initial error) that they could be 
one cause of motor saturation. Indeed, the stability analysis 
does not take into account this situation. 

Thus, both control laws have been implemented on a robot 
manipulator with elastic joints and the experimental results 
have been compared. 

The robot used for the experiments is an 8-d.o.f. cable- 
driven robot manipulator, named Dexter (Fig. 1). It has a 
mechanical transmission system realized by pulleys and steel 
cables. As an example, Fig. 2 shows one of the Dexter joints. 

The cable actuation permits a decreasing distribution of 
the link masses from the robot base up to the end effector, 
by lightening the robot mechanical structure. The values of 
the Dexter link masses and centers of gravity are reported in 
Table I. 

r~ [mm] 
Link 0 0 
Link 1 -139.35 
Link 2 0 
Link 3 90.72 
Link 4 0.01 
Link 5 -24.01 
Link 6 -0.05 
Link 7 20.35 

ry [mm] r~ [mm] m [Kg] 
6.92 27.72 9.43 

174.49 46.08 12.05 
-6.11 34,59 1.63 
133.77 -0.24 2.49 
-3.72 i 20.30 0.82 
141.05 0.11 0.54 

2.36 6.78 0.27 
1.81 33.26 0.09 

T A B L E  I 

COORDINATES OF THE LINK CENTERS OF GRAVITY IN THE COORDINATE 

SYSTEM FIXED ON EACH LINK AND VALUES OF THE MASSES (COURTESY 

OF SCIENZIA MACHINALE S.R.L. )  



The robot dynamics model is expressed in terms of 16 
position variables, of which eight variables define the motor 
positions, and the remaining ones define the link positions. 
Eight incremental encoders allow measuring motor positions 
during motion. 

The cable stiffness coefficients for the Dexter arm are 
reported in Tables II and III. As one can observe, joints 1 
and 2 have higher stiffness values with respect to the other 
joints. This indicates that joints 1 and 2 have a low level of 
elasticity which can be neglected, in general. 

The effect of the elasticity is not negligible in joints 3-8. 

Joint 1 Joint 2 Joint 3 
Stiffness 

coefficient 105 105 6.34.10 a 

Joint 4 

3.60.10 a 

TABLE II 
STIFFNESS COEFFICIENTS FOR THE JOINTS 1 - 4  OF THE DEXTER ARM, 

EXPRESSED IN Nm/rad 

Stiffness 
coefficient 

Joint 5 

2.69.10 3 

Joint 6 

1.69. i0 a 1.23 • 102 

,.---, 
"o 

2.06.102 

TABLE III 

STIFFNESS COEFFICIENTS FOR JOINTS 5 - 8  OF THE DEXTER ARM, 

E X P R E S S E D  I N  N m / r a d  

The PD control law is written in C ++ programming lan- 
guage and runs on a PC Pentium II under DOS Operating 
System. The motor commands are sent to the actuation system 
each 10 ms, by means of two MEI 104/DSP-400 board 
controllers. 

The issue of motor saturation becomes evident in the 
experiments on the Dexter arm. The regulation tasks to a 
constant desired configuration cannot be accomplished if a 
constant gravity compensation is used. The initial error is so 
high that the motor actuators saturate. 

In the case of on-line gravity compensation the task can 
be performed, but only for short distances (nearby 3-4 cm in 
the Cartesian space) between the initial configuration and the 
constant desired configuration. 

Thus, in order to overcome the critical point of motor 
saturation, a point-to-point quintic polynomial trajectory (with 
zero velocity and acceleration boundary conditions) has been 
planned that guides the robot manipulator from an initial joint 
configuration qi to the desired reference configuration qd in a 
given time interval. 

Now, both controllers can perform the motion and ensure 
asymptotic stability of the closed-loop system. 

The proportional gains are different for the two 
cases: in the case of PD control with constant gravity 
compensation K p  = diag{80, 80, 30, 20, 16, 8, 2, 2}, while 
K p  = diag{110,110, 50, 35, 26,15, 4, 4} in the PD control 
with on-line gravity compensation. The rationale for the 
different values of proportional gains is that, if the same 
K p  matrix is used for the two controllers, the initial error 
produced by the constant gravity estimate at qd results in a 

MOTOR POSITION ERROR 
0.03 

0.02 

0"010 , 

0 5 10 
[s] 

Fig. 3. Motor error norms with on-line gravity compensation (desired time- 
varying joint trajectory) 

0.01 

0.03 

0.02 

0 --  5 -1-0 
[s] 

.N OT..O..R....PO$!..T..!ON ERROR 

Fig. 4. Motor error norms with constant gravity compensation (desired time- 
varying joint trajectory) 

higher torque value with respect to the case of on-line gravity 
estimate. Thus, for the saturation issue, a reduction of K p  is 
needed. 

The derivative gains are equal and set to K D -- 

diag{10, 10, 9, 3, 2.5, 2, 0.1, 0.1}. 
Figures 3 and 4 report the norm of the motor 

position error for both controllers. They are relative to 
a point-to-point motion from the initial configuration 
qi = [1.57 0.00 10.91 2.82 - 3.90 2.55 2.80 2.92] T 
rad to the desired reference configuration qd = 
[1.57 0.30 12 2.82 - 3.4 2.60 3.42 3.39] T rad (that is 
not an equilibrium configuration) in a time interval of 10 s 
plus 2 s for the adjustment. 

Figures 5 and 6 show motor positions over time, as 
recorded by the encoders on the motor shaft during motion. 
Only motor variables 6, 7, 8 are shown because they are more 
involved than the others in the motion performed and, thus, 
they are meaningful in delineating the differences between 
the two controllers. 

Three main elements emerge from the experimental trials 
as basic differences between the two control schemes. 

The first one is the difference in the time course of the 
error as well as the motor variables, that is smoother in the 
PD control with on-line gravity compensation with respect to 
the PD control with constant gravity compensation. 

The second element is the error magnitude during transients: 
the error in the constant gravity case turns out to be larger than 
in the on-line case. 



JOINT POSITIONS 

3.5 

2.5 

O7 

. . . . . . . . . . . . . . . .  f 

Fig. 5. Motor positions for PD control with on-line gravity compensation 
(desired time-varying joint trajectory) 
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Fig. 6. Motor positions for PD control with constant gravity compensation 
(desired time-varying joint trajectory) 

Finally, the third element is the error magnitude at the steady 
state. Operating with a real system, like a robot manipulator, 
includes the possibility that real effects, such as static friction 

or else inaccurate estimate of gravity torque, can affect robot 
performance in regulation tasks, and determine a steady-state 
error that is different from zero. In particular, in the Dexter arm 
it has been observed that when the gravity is compensated only 
at the desired final configuration qa, the error maintains greater 
also at the steady state with respect to the case of on-line 

gravity compensation. An increase of the K p  matrix aimed 
at reducing the error at the steady state cannot be performed, 
in view of the closeness to the motor saturation, as explained 

above. 

VII .  CONCLUSION 

In this paper elasticity at the robot joints in regulation tasks 
has been taken into account, and a proportional-derivative 
control action is proposed to compensate it. The work has 
resumed the PD control on motor variables with constant 
gravity compensation in [9] and has extended it to an on-line 
gravity compensation. The main purpose is to improve the 

transient behavior thanks to the adoption of a gravity-biased 
motor position variable in the estimate of gravity torque. 

As in [9], the control law requires using only the position 

sensors on the motor shafts. 
The control law has been demonstrated to stabilize robot 

manipulators with elastic joints. In particular, asymptotic sta- 
bility has been proved through the direct Lyapunov method 
and La Salle's Theorem, and the control performance has 
been evaluated by means of experiments on an 8-d.o.f. robot 
manipulator with elastic joints. 

The results have shown that the PD control in [9] can cause 
motor saturation in view of the large error generated by a 

constant gravity compensation. The use of an interpolating 
trajectory guiding the robot to the desired final position has 
been proposed, in order to reduce the maximum torque values 
at the motors. 

A comparison has been carried out between the control 
law in [9] and the proposed PD control with on-line gravity 
compensation. The experimental results have shown a better 
transient behavior and also a reduction of the position error at 
steady state, caused by static friction and/or inaccurate esti- 
mate of gravity torque, when the on-line gravity compensation 
is used. 

Finally, it is worth mentioning that the PD control law 
with on-line gravity compensation has been extended to the 
Cartesian space, in order to regulate robot compliance at the 
end effector [12]. 
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