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Abstract

We present a method based on the use of generalized
momenta for detecting and isolating actuator faulls in
robot manipulators. The FDI scheme does not need ac-
celeration estimates or simulation of the nominal robot
dynamics and covers a general class of input faults.
Numerical results for a 2R robot undergoing also con-
current actuater faults are reported. The method is
extended to robots with joint elasticity and to the in-
clusion of actuator dynamics.

1 Introduction

For complex dynamic plants, the problems of fault de-
tection and isolation {FDI) and of fault tolerant con-
trol (FTC) are of considerable interest. Detection con-
sists in generating diagnostic signals (residuals) in cor-
respondence to potential faults that may affect the sys-
tem. Fault identification occurs when a residual allows
discriminating a specific fault from other faults or dis-
turbances. Once a FDI scheme is available, the control
architecture and feedback laws can be reconfigured in
order to obtain a reliable, fault tolerant performance.
Lately, FDI techniques developed for linear systems [1]
have been extended in several ways to systems with
nonlinear dynamics [2, 3]. In most approaches, resid-
uals are generated by comparing the output of a dy-
namic observer with the measured system output.

In particular, FDI schemes have been proposed for
robot manipulators, a class of nonlinear systems with
a well-defined analytical model. The faults of interest
are in this case the failure of joint position or velocity
sensors and that of joint force/torque actuators [4], the
latter having received much more attention in the liter-
ature. In [5], a nonlinear observer is built for the robot
system state while actuator fault isolation is achieved
by weighting the residual vector with the inertia ma-
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trix. In [6], a discrete-time observer is designed for
both sensor and actuator fault detection. These ap-
proaches require the inversion of the inertia matrix,
since they include the on-line simulation of the robot
dynamics. A different class of FDI schemes is based
on dynamic parameter estimation. In [7], failure is de-
tected by comparing the current parameter estimates
with their nominal values, while in [8] an adaptive
scheme is used to identify a constant degradation of
the commanded actuator torque. These approaches
were shown to be effective only for specific types of
fault. Note also that actuator FDI for robot manip-
ulators would be trivial if joint acceleration measures
were available. An approach that avoids the estima-
tion of joint acceleration as well as the inversion of the
inertia matrix, while covering a general class of actu-
ator faults, has been recently proposed in [9]. It is
based on the comparison of the nominal input torque
and of the full nonlinear dynamic robot model, both
passed through a stable linear first-order filter.

In this paper, we present an actuator FDI method
for robot manipulators having the same nice proper-
ties of [9], but explicitly based on the use of the robot
generalized momenta. This allows several interesting
outcomes: i) the actual computations involved in the
actuator FDI scheme can be reduced; #) the same FDI
concept can be extended in a straightforward way also
to other classes of electro-mechanical robotic systems;
#i) the equivalent structure of nonlinear observer is
easily recovered for the proposed FDI scheme. In ad-
dition, no assumption is made on the availability of a
reference robot motion and on the presence of a stabi-
lizing feedback controller.

The paper is organized as follows. Modeling of
robot dynamics with actuation faults and a classifi-
cation of typical faults are described in Sect. 2. The
basic FDI scheme is presented in Sect. 3. Simulation
results are reported in Sect. 4 for a 2R planar robot
under gravity. Further extensions are given in Sect. 5



and a discussion, including issues on an adaptive ver-
sion of FDI schemes, concludes the paper.

2 Modeling

We consider rigid robot manipulators having n joints
(with associated generalized coordinates g} that may
undergo input faults. Using a Lagrangian approach,
the standard robot dynamic model is

M{g)i+clg, 4) +9(q) + Fug+ Fesign(q) = u—wuy, (1)

where M({g) > 0 is the (symunetric) inertia matrix,
¢(q,¢) is the Corlolis and centrifugal vector, g(g) is the
gravity vector, F, > 0 and F; > 0 are, respectively,
the viscous and static friction (diagonal) matrices, u
are the commanded (nominal) torques, and uy are the
{unknown) fault torques.

Each component of vector ¢(g, §) is quadratic in the
velocities ¢

1

T v .
54 Cilg)g,

(2)

where the (symmetric) matrices C;(g) are computed
through the Christoffel symbols as

ami(q)} N {ami(Q) M(q)

C'i(qzq.): i=11"')n:

34 34 ]T - [T] 9

being m;{g) the i-th column of the inertia matrix
Miq).

By eq. (1), we capture any type of actuator fault
and in particular all the following potential faults on
the generic é-th input channel:

e - |

s total actualor fault: uj;; = w;, ke, there is no
more actuation at the joint ¢ which becomes free

swinging;
partial actuator foult: uy; = euy, with e € (0,1),

representing a ‘weakening’ of the actuator torque
capability;

locked actuator fault: u;; = u;—7;, where 7 equals
the left-hand side of eq. (1) (see also [9]);

actuator bias: uy; — b;, with constant polariza-
tion b;;

actuotfor saturafion: wuy; — u; ~ Sign{u;) Ui max,
where 1; ., > 0 is the maximum absolute torque
allowed (symmetric w.r.t. the origin};

collision fault: us; = jI(q)F, where F is the
force/torque due to collision with the environment
at a generic location along the robot and ji(¢) is
the i-th column of the associated Jacobian J{q).
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3 Failure detection and isolation

In the following, we shall make some standing assump-
tions for our FDI design.

1. Only the (nominal) input torque u is available to
the FDI scheme {obviously, not ug}.

. No specific input u(t) is considered, i.e., it may be
generated as a pure feedforward command or as a
(stabilizing) feedback control law.

. No specified motion g4(t) is prescribed; in partic-
ular, ¢(t} may also grow unbounded over time.

. Input faults may be permanent ({uz:(t} # 0 for
t > T) or intermittent (ug;(t) # 0for t € [T}, Te));
also, concurrent faults (uys;(t) - ug;(t) # 0,1 # j,
for some ¢) are included.

Measurement of the full state (g, ¢) is available;
indeed, velocity ¢ may be estimated by numer-
ical differentiation of ¢, as measured by high-
resolution encoders.

. A correctly identified robot dynamic model is
available (see, however, Sect. 6 for a discussion
on an adaptive version of the FDI scheme).

7. No other disturbance is present.

These assumptions deserve some comments. As-
sumptions 2 and 3 are very convenient because they
separate the behavior and performance of the FDI sys-
tem from the specific required tagk and the used sta-
bilizing controller. Assumption 4, which reflects the
most general situation, requires the FDI system to gen-
erate an asyruptotically stable residual vector signal, in
order to determine that fault recover is occurring, and
that each scalar residual associated to an input chan-
nel is decoupled from the others. As for the strength of
assumption 7, it is possible to show that, for mechan-
icla systems modeled by eq. (1), a general necessary
condition for being able to achieve FDI on an input
channel [3] is always violated in the presence of un-
structured disturbances acting on the same channel.
However, the proposed FDI scheme for input channel
t will also work in the presence of disturbances on dif-
ferent channels j # i.

The FDI design is based on the simple but powerful
idea of generalized momenta p = M{g)4. In fact, one
can write the following first-order dynamic equation

p=u—u;—algq), {4)



where, using egs. {1-3), the components of a{q, ¢) are
given, foré =1,...,n, by

__1 7 9M(q)

3(].;

= =3 d+gila)+Fy 16: + Fy ssign(di). {5)

Note that in a only part of the Coriolis and centrifugal

terms ¢ are present. It is also evident from eq. {4) that

each fault (and nominal input torque) affects one and

only one component of p. In particular, this decoupling

allows identifying separately concurent actuator faults.
Let the residual vector r be defined by

,.:KU(u-a_r)dt_p, (6)

with (diagonal} K > 0. In order to be implemented,
eq. (6) requires (g, q) and the nominal input u but no
acceleration § nor inversion of the inertia matrix M (g).
The residual dynamics satisfies
f=—Kr+ Kuy, (7)
namely that of a linear exponentially stable system
driven by the fault us. Actually, for every compo-
nent of the residual dynamics we can write a transfer
function
K;

.S+K1"

i=1,...,n

having unitary gain. In principle, for very large values
of K; the evolution of r;(¢) reproduces accurately the
evolution of the fault ug.(2).

For the sake of analysis, the structure of a nonlinear
dynamic observer (with linear error dynamics) [3] can
be casily recognized by formally rewriting a copy of
eq. (4), with state , driven by the state error p— 7 in
place of uy, and having r as output, i.e,,

p u—a(g, ¢} + K(p— )
r = K@-p.
Note that this is a standard observer for a class of
nonlinear systems, where nonlinear terms are functions
of measurable outputs only [10, p. 203].

1t should be noted that the obtained result is similar
to the FDI proposed in [9], but requires less computa-
tions (the integral of o instead of the filtering of the
whole lefi-hand side of eq. (1)). In addition, the idea of
using generalized momenta for designing an input FDI
scheme is rather general and can be extended to other
mechanical and electro-mechanical robotic systems as
well (see Sect. 5).
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4 Simulation results

For testing the proposed actuator FDI scheme, we
have considered a 2R planar robot moving in the verti-
cal plane {under gravity) and neglecting joint friction.
The dynamic model (1) takes the form

¢ }

[ H{[@H'T%%W
— | ¥ U

te — Uy

where (g1, g2) = 0 is the horizontal straight configura-
tion, the expression of the dynamic coefficients a; can
be found, e.g., in [11, pp. 152], and we have used a
shorthand notation for sine/cosine. The robot links
are assumed to be uniform rods of length 0.5 m and
masses 20 and 10 kg, respectively.

In this case, the evaluation of a from egs. {5) yields

a3 + 2az¢s ag + axce
as + aoe2 az

ascy +ascia
asciz

oy = gilg) = aser +ascrn
_ 1 .8M(qg) .
a = —5d g i 92(q)

asd1 (g1 + d2)sz + ascya,

being M (g} independent of g; (cyclic coordinate).

We assume that the robot starts at rest in the down-
ward equilibrium configuration and is subject for 25 s
to sinusoidal (joint 1) and square wave (joint 2) nom-
inal open-loop torque inputs, as shown in Fig. 1. The
two actuators undergo an intermittent total failure
during the time intervals

(733, Tsa] = [15,20], [Ty, Tyo] = [12,18],

so that there are concurrent faults for ¢ € [15,18] s.
The actual (unknown) torques driving the mechanical
structure are shown in Fig. 2. The (faulted) evolutions
of the joints in Fig. 3 provide no evidence neither of the
faults occurrence nor of their localization and recover.
On the other hand, the residual evolutions in Fig. 4
{(obtained with K = diag {50, 50}) shows the practical
recostruction of the faults, which equal the ‘missing’
nominal torques, and a totally decoupled behavior.

A second set of simulations refer to the addition of a
(bandwidth-limited) white noise disturbance torque on
the first input channel. T'wo situations are considered:
non-colocated fault of the second actuator (Figs. 5-6)
and colocated fault of the first actuator (Figs. 7-8).
In the first case, the second residual is unaffected by
the non-colocated disturbance while the first residual
returns a filtered version of the disturbance. A simi-
lar behavior is obtained in the colocated case. Since
it is theoretically not possible to decouple an unstruc-
tured disturbance from a fault when they act on the



Figure 1: Nominal applied torques (without fault):
joint 1 (red/- -}, joint 2 (blue/—)

Figure 2: Intermittent total fault of both actuators:
actual torque 1 (red/- -) and torque 2 (blue/—)

same input channel, fault detection relies in this case
on the relative amplitudes of the disturbance and of
the actuator fault. In general, a pricri information on
the potential faults and on the nature of unmodeled
disturbances can be used to set constant or adaptive
thresholds for fault detection {see, e.g., [9]). For sim-
ulation resuits with other types of fault, see [12].

5 Some extensions

We present here the extension of our FDI design to
two other model classes of robot manipulators, one
in the presence of transmission elasticity concentrated
at the joints, the other including the dynamics of DC
electrical motors. For ease of illustration, we neglect
the presence of friction and other dissipative effects.
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Figure 3: Joint evolution in the presence of actuator
fault: joint 1 (red/- -), joint 2 (blue/—)

FDI residuals
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Figure 4: Residuals: joint 1 {red/- -}, joint 2 (blue/—)

actual lorques.

20

Figure 5: Fault at second joint and disturbance at first
joint {non-collocated case): actual torque 1 {red/- -)
and torque 2 (blue/—)



FDI residuals
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Figure 6: Residuals for fault at second joint and dis-
turbance at first joint (non-collocated case): joint 1
(red/- -}, joint 2 (blue/—)

actual torques

25

Figure 7: Fault and disturbance collocated at first
joint: actual torque 1 {red/- -) and torque 2 (blue/—)

FDI residuals

25

Figure 8: Residuals for fault and disturbance collo-
cated at first joint: joint 1 (red/- -), joint 2 (blue/—)
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5.1 Robots with elastic joints

The dynamic model of robots with joint elasticity is
given in terms of link coordinates ¢ and motor coordi-
nates § and consists of the 2n second-order differential
equations [13] (including the actuator fault torque wuy)

M(g)§+clg,4) + 9(g) + Kelg —6) = 0 {8}
JO+ K (0—q) = u—uy. (9

Equation (8) refers to the dynamics of the links and
contains the same terms defined in eq. (1), plus the
elastic torque transmitted through the joints with (di-
agonal) stiffness matrix K, > 0. Equation (9) ex-
presses the motor dynamics, with the effective actua-
tor inertia (diagonal) matrix J > 0.

The generalized momenta p and vector & are parti-

tioned as )
- ) 1)
and
e [aq] _ [—%col{q'T%—*;fq}+g(q)+Ke(q—9)] _
7 Ko(6—q) .

Since faults occurr on the motor dynamics, we are in-
terested only in the behavior of pg, namely

Dg=1u—ur— Qg

The residual ry is defined as {with diagonal K > 0)
ro =K [/[u — K.(0 — q) —rgldt — Jé] . (10)

and satisfies the same linear equation (7). Interest-
ingly enough, the FDI implementation requires in this
case knowledge of the partial state (8,6, g) (not of the
link velocity ¢) and only of the matrices J and K. (but
not of the full link dynamics!). In addition, due to the
diagonality of the matrices involved in eq. (10), a fully
decentralized FDI scheme is obtained.

5.2 Including actuator dynamics

Consider again the robot dynamic model (1) and in-
clude the presence of DC electrical motors driven by
the input voltage » on the armature. The overall dy-
namic equations (including input voltage faults vy ;)
are

M(q)d +c(q,4) + g(q) = Kri (11)
di; . . .
L; d; + Rji; + Kp gy = vy — vy, F=1,...,n,{(12)

where the scalar eqs. (12) refer to the armature equiv-
alent electrical motor loops (with inductances L; > 0,



resistances 12; > 0, and back emf constants K ; > 0),
i is the vector of armature currents, and K7 > 0 is the
current-to-torque {diagonal) matrix.

Following our approach (and notation of Sect. 3),
we generate the following set of decoupled residuals

r}“’l = K;[,'m] [/(Uj — Rji; — rg.”i])dt — L;i; — Kp ;45

with K}U’] >0, for j = 1,...,n. The residuals satisfy
linear dynamic equations of the form
dvi] _ (v [v; (3] o
TjJ—"KjJT;J]‘%KjJ‘Uf.J‘, i=1...,n
Note that the FDI of vy is decentralized since it needs
only the values of the electrical parameters local to the
faulted actuator and the local measures of ¢; and g,.

6 Discussion

The use of generalized mornenta provides a natural
and efficient method for detecting and isolating actu-
ator faults in robot manipulators, without the need of
inverting the robot inertia matrix. This method is gen-
eral encugh to handle also the inclusion of joint elas-
ticity or of motor dynamics in the robot plant model.
In these cases, the method allows to exploit the intu-
itive fact that generalized momenta are ‘closer’ to the
input fault locations, leading to intrisically decentral-
ized FDI schemes.

Ounce a total actuator fault has been detected, a
FTC strategy should reconfigure the controller to one
designed for the resulting underactuated mechanical
system (see, e.g., [14] for the case of a planar 2R robot
without actuation at the second joint).

In order to remove the assumption on the availabil-
ity of an accurate dynamic model, an adaptive version
of the proposed FDI scheme can be developed, follow-
ing similar guidelines as in [9]. Adaptation modifies
the dynamic parameters in eq. {6) (or in eq. (1}) until
the residual vanishes for a given motion task.

We should note, however, that such adaptive FDI
schemes require that parameter adaptation preceeds
the occurrence of faults; moreover, in the absence of
convergence of dynamic parameter estimates to their
true values, there is no guarantee that the residual
remains zero at the beginning of a new motion task,
even in the absence of faults. We are currently working
in order to overcome these two limitations.

Finally, we have performed a preliminary experi-
mental validation of our approach on the Quanser Pen-
dubot and have extended it to the sensor FDI problem,
in particular for failures of a force/torque sensor [12].
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