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Abstract

We consider the plate-ball system as a typical exam-
ple of manipulation by rolling contacts. While there
exist techniques for planning motions of this nonholo-
nomic mechanism in nominal conditions, our objective
wn this paper is the robust execution of maneuvers in
the presence of model perturbations. To this end, we
adopt an iterative steering paradigm based on the use
of a nilpotent approzimation of the system. Simulation
results are reported to confirm the robustness achieved
with the proposed feedback controller.

1 Introduction

Rolling manipulation has recently attracted the in-
terest of robotic researchers as a convenient way to
achieve dexterity with a relatively simple mechanical
design (see [1-3] and the references therein). In fact,
the nonholonomic nature of rolling contacts between
rigid bodies can guarantee the controllability of the
manipulation system (hand+manipulated object) with
a reduced number of actuators. More in general, this
is another example of the minimalistic trend in the
field of robotics, aimed at designing devices of reduced
complexity for performing complex tasks.

The archetypal example of rolling manipulation is
the plate-ball system [4-7]: the ball (the manipulated
object) can be brought to any contact configuration by
maneuvering the upper plate (the first finger), while
the lower plate (the second finger) is fixed. Despite its
mechanical simplicity, the planning and control prob-
lems for this device already raise challenging theoreti-
cal issues. In fact, in addition to the well-known limi-
tations coming from its nonholonomic nature (e.g., the
lack of smooth stabilizability), the plate-ball system is
neither flat nor nilpotentizable; therefore the classical
techniques (e.g., see [8]) for planning and stabilization
of nonholonomic systems cannot be applied.

To this date, only the planning problem has been
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attacked with some success; e.g., see the symbolic algo-
rithm of [5] (which contains an error but admits a suit-
able modification) and the numerical algorithm of [3].
Like for any planner based on open-loop control, how-
ever, the successful execution of maneuvers is not pre-
served in the presence of perturbations — some sort of
feedback is necessary to induce a degree of robustness.
In this paper, we prove that robust stabilization
of the plate-ball mechanism can be simply achieved
through iterative application of an appropriate open-
loop control law designed for the nilpotent approxima-
tion of the system. This paradigm, based on the theo-
retical results in [9], has already been effectively used
for the stabilization of general (i.e., non-flat) nonholo-
nomic systems, such as off-hooked trailer vehicles |10}
or underactuated robots in the absence of gravity [11].
The paper is organized as follows. In Sect. 2, the
model of the plate-ball system is given together with
its nilpotent approximation. Section 3 describes our
stabilization strategy, which makes use of a contract-
ing open-loop control (Sect. 3.1) within an iterative
scheme (Sect. 3.2). The robust performance of the
method is confirmed by simulation in Sect. 4.

2 The plate-ball system

Consider the system shown in Fig. 1, consisting of a
spheric ball of radius p rolling between two horizontal
plates. The lower plate is fixed, while the upper is
actuated and can translate horizontally.

2.1 Kinematic model

Denote by u and v the coordinates (latitude and longi-
tude, respectively) of the contact point on the sphere,
by x, y the cartesian coordinates of the contact point
on the lower plane, and by ¢ the angle between the z
axis and the plane of the meridian through the contact
point (see Fig. 1). We assume —7/2 < u < /2 and
—7 < v < 7, so-that the contact point belongs always



Figure 1: The plate-ball systera. The upper plate is
not shown in the figure for the sake of clarity.

to the same coordinate patch fcr the sphere.

The manipulation system is completely described
by the kinematics of contact between the sphere and
the lower plate [4]:
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where w; and w, are the cartesian components of the
translational velocity of the sphere, which we assume
to be directly controlled?.

In view of the nilpotent approximation procedure,
it is convenient to perform the input transformation
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obtaining the triangular system
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Note that the input transformation (2) is always de-
fined, except for u = +m/2 which is however outside
our coordinate patch.

2.2 Nilpotent approximation

Nilpotént approximations [12, 13] of nonlinear systems
are high-order local approximations that are useful

'Recall that the translational velocity of the sphere is half
the translational velocity of the upper plane.
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when tangent linearization does not retain controlla-
bility, as in nonholonomic systems. In particular, the
computation of (approximate) steering controls can be
performed symbolically, thanks to the closed-form in-
tegrability of the nilpotent system, which is polyno-
mial and triangular by construction.

Thanks to the particular structure of our iterative
steering strategy (see Sect. 3), it is sufficient to com-
pute the nilpotent approximation at configurations of
the form ¢ = (0,0,0,Z,7). Applying the procedure
in [13] to system (3), one obtains the so-called privi-
leged coordinates by the following change of variables

21 = pv
zo = pu

z3 = Py (4)
24 = —pPu+p*(z —T)

z = pPu+ptly — 7).

This transformation is globally valid due to the fact
that the degree of nonholonomy is 3 everywhere.

The approximate system is then computed by dif-
ferentiating egs. (4) and expanding the input vector
fields in Taylor series up to a suitably defined order:

Z1 = w1

?:’2 = W2

?:’3 = -—22'{1}1 (5)
24 = —fgwl

5 1., 5

5 = 522101 — Z3W3.

The approximation is polynomial and triangular; in
particular, the dynamics of z; and 25 is exact.

Another nilpotent approximation for the plate-ball
system is given in [14].

3 The stabilization strategy

Assume that we wish to transfer the plate-ball sys-
tem from ¢° to g%, respectively the initial and de-
sired contact configuration. Without loss of generality,
we assume that ¢% = (0,0,0,0,0); this can always be
achieved by properly defining the reference frames on
the sphere and the lower plane.

Our objective is to devise a stabilization strategy
which is robust w.r.t. the presence of model pertur-
bations (e.g., on the sphere radius p). To this end, it
is necessary to embed some form of feedback in the
scheme. A natural way to realize this is represented -
by the iterative steering (IS) paradigm [9].

The essential tool of this method is a contract-
ing open-loop control law, which can steer the system



closer to the desired state ¢¢ in a finite time. If such
control is Hélder-continuous w.r.t. the desired recon-
figuration, its iterated application (i.e., from the state
reached at the end of the previous iteration), guaran-
tees exponential convergence of the state to ¢%. The
resulting control is a time-varying law which depends
on a sampled feedback action. A certain degree of
robustness is also achieved: a class of non-persistent
perturbations is rejected, and the error is ultimately
bounded in the presence of persistent perturbations.

3.1 A contracting open-loop control

To comply with the IS paradigm outlined above, we
must design an open-loop control which steers sys-
tem (1) (or system (3)) from ¢° to a point closer in
norm to ¢¢ = (0,0,0,0,0). Since the plate-ball ma-
nipulation system is controllable [5], such an open-
loop control certainly exists. However, the necessary
and sufficient condition for flatness [15] are not satis-
fied; equivalently, the system cannot be put in chained
form, as already noticed in [3]. Therefore, we cannot
use conventional techniques for generating the required
open-loop control.

A possibility is to use the planning method of [3];
however, such numerical method is computationally
intensive and therefore unsuitable for the real-time it-
eration of the open-loop control. Moreover, a symbolic
expression of the control would be needed for guaran-
teeing the continuity properties required by the IS ap-

proach. We therefore settle for an approximate (but.

symbolic) solution; this is on the other hand consistent
with the IS framework, which only requires the error
to contract at each iteration.

Our open-loop controller requires two phases:

I. Drive the first three variables u, v and 1 to zero.
This amounts to steering the ball to the desired
contact configuration regardless of the variables x
and v, i.e., of the cartesian position of the contact
point. Denote by ¢f = (0,0,0,z7,y’) the contact
configuration at the end of this phase.

II. Bring z and y closer to 2¢ and y¢ (in norm), while
guaranteeing that w, v and % return to their de-
sired zero value.

Since the first three equations of (3) can be easily
transformed in chained form (see Appendix), phase I
can be performed in a finite time 73 by choosing one
of many available steering controls (see [8]). However,
the latter should comply with the Hoélder-continuity
requirement w.r.t. the desired reconfiguration; relevant
examples are given in [9].
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For the second phase, a possible choice is to perform
a cyclic motion of period T3 on u, v and ¥, giving final
values z(Th + Tz) = z¥, y(Ty + Tz) = y" closer to
zero than z(T1) = 2!, y(T1) = y'. To design a control
law that produces such a motion, we shall exploit the
nilpotent approximation of the plate-ball system.

Consider the nilpotent approximation (5) at ¢'.
The synthesis of a control law that transfers in a finite
time Th the state 2 from 2! = 0 to 2! (respectively,
the images of ¢/ and ¢ = (0,0,0,z%,yT), computed
through eqgs. (4)) can be done as follows. Choose the
open-loop control inputs as

a1 coswt + as cos 4wt

(6)
(7)

with a1, az2,a3 € IR and w = 27/T;. The integration
of egs. (5) gives

wy =

we = agcos2wt,

21(Ta) = z(T2) = z3(T) = 0
24(T2) = klaf% (8>
25(T2> = kgllga%,

having set k; = —T%5/3272 and ky = T /12872,
In order to obtain zy(Ty) = 2§ and 2z5(Ty) = =¥,
coefficients a; and ap in (6-7) must be chosen as

20 oy
a); = 2 = (9)
]Cl as k2a3

Substitution of eq. (9) in eq. (8) proves that the value
of ag is immaterial as long as (i) a3 # 0 when 2§/ #0
or z # 0, and (i) sign(as) = —sign(z]7). Therefore,
denoting by || - || denotes the euclidean norm, we let

1/2r

: a 2
a3 = —sign(zy') - H( A ) r>1, (10)

This choice, guarantees for ay, as and az the Hoélder-
continuity property required by the IS paradigm.
The other condition to be met by our two-phase
open-loop control is contraction from ¢° to ¢”. It is
easy to show that, with a suitable definition of norm,
such condition is satisfied. This is true in spite of fact
that the use of the nilpotent dynamics (5) for comput-
ing 2z4(T») and z5(T,) induces an approximation error?
on z and y, which increases with the required recon-
figuration. In fact, the contraction property can be
preserved by requiring a sufficiently small contraction.

2Note that u, v and 1 return to zero, as verified by integra-
tion of the first three equations of the original system (3). Thus,
the open-loop controls (6-7) are exactly cyclic in u, v and .



3.2 Iterative steering

We now clarify the use of the proposed open-loop con-
troller within the iterative steering framework.

Starting from the initial contact configuration, ap-
ply the open-loop control of phase I for the required
time 77. Using the values z!, y/ at the end of this
phase, the desired z/ and 2z are generated as

2l = B2¢ 2l = B8, (11)
where 57 < 1, B2 < 1 are the chosen contraction rates
and 2%, 2¢ are the images of 2¢ = 0, y¢ = 0 computed
inverting eqs. (4), in which z = 27, § = ¢'.

At this point, egs. (9-10) are used to compute co-
efficients a;, and the phase II open-loop controls (6-7)
are applied to system (3). After T1 + T5 seconds from
the initial time, the system state is sampled and the
two-phase control procedure is repeated.

The values of zff and z{ are updated at each iter-
ation using eq. (11) (with constant 51, B2). In fact,
as transformation (4) depends on the approximation
point, the same is true for zZ, 2¢. Note also that:

e Since the conditions of the IS paradigm [9] have
been satisfied, it is guaranteed that the manipu-
lation system state ¢ exponentially converges to
the desired contact configuration ¢%.

e In the absence of perturbations, there is no need
to repeat phase I after the first iteration.

e In perturbed conditions, it is necessary to analyze
the structure of the perturbation itself. If certain
requisites (see [9, Th. 2]) are met, the perturba-
tion will be rejected on the simple basis of the
stable behavior of the nominal system.

4 Simulation results

Two simulations are now presented to show the ef-
fectiveness of the proposed stabilization strategy: in
the first, perfect knowledge of the system is assumed
(nominal case), while in the second we have included
a perturbation on the ball radius p (perturbed case).

In the first simulation, the radius p = 1 is ex-
actly known and phase I has already been exe-
cuted. The initial and desired configurations are ¢° =
(0,0,0,0.5,0.5) and ¢¢ = (0,0, 0,0,0), respectively. In
each iteration, the open-loop control (6-7) is applied
with 75 = 1 sec, r = 1.5 in eq. (10), and contraction
rates B = o = 0.4 in eq. (11).

Figures 2 and 3 illustrate the exponential conver-
gence of the state variables along the iterations. The
complete cartesian path of the contact point is shown
in Fig. 4: note how the path of the single iterations
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‘shrinks’ with time. The contraction of the position-
ing error is visible in Fig. 5, which reports the path of
the contact point during iterations 1, 4, 7 and 10.

In the second simulation, ¢°, ¢¢ as well as the con-
trol parameters are the same of the previous simu-
lation, but a 10% perturbation on the value of the
ball radius has been introduced; only its nominal value
p = 1is known and can be used for computing the con-
trol law. The theoretical framework of the IS paradigm
(see [9, Th. 2]) guarantees that this kind of perturba-
tion will be rejected by the iterative steering scheme.

Figures 6 and 7 confirm that exponential conver-
gence is preserved despite the perturbation — only at
a slightly smaller rate. The cartesian path of the con-
tact point is very similar to the nominal case, as shown
in Fig. 8, although Fig. 9 reveals that the paths in the
single iterations are deformed.

evolution of u,v,psi

Figure 2: Nominal system: FEvolution
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Figure 3: Nominal system: Evolution of z (solid) and
y (dotted)



path of the contact point .

Figure 4: Nominal system: Cartesian path of the con-
tact point (the small circle indicates ¢°)
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Figure 5: Nominal system: Cartesian paths of the con-
tact point during the 1st, 4th, 7th and 10th iterations
(the small circle indicates the starting configuration of
each iteration). Notice the different scale in the plots.

evolution of u,v,psi

Figure 6: Perturbed system: Evolution of u (solid), v
(dashed) and ¢ (dotted)
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evolution of x,y

Figure 7: Perturbed system: Evolution of z (solid)
and y (dotted)

path of the contact point

0.5

Figure 8: Perturbed system: Cartesian path of the
contact point (the small circle indicates ¢°)
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Figure 9: Perturbed system: Cartesian paths of the
contact point during the 1st, 4th, 7th and 10th itera-
tions (the small circle indicates the starting configura-
tion of each iteration).



5 Conclusions

We have presented a feedback method for executing ro-
bust maneuvers with a plate-ball manipulation device
in the presence of perturbations. Beside its practical
interest, this problem is challenging from a theoret-
ical viewpoint because the considered nonholonomic
system is outside the class for which well-established
planning and control techniques exist.

The proposed solution is based on an iterative steer-
ing scheme, which makes use of a nilpotent approxi-
mation of the system for desigring the open-loop con-
trol law to be applied repeatedly. The performance of
the algorithm, which can be established relying on the
iterative steering theoretical framework, has been con-
firmed by simulations, both in the nominal case and
in the presence of a perturbation on the ball radius.

Another advantage of the proposed technique,
which could be useful for performing manipulation in
the presence of obstacles, is the possibility of shap-
ing the system trajectory during the generic iteration
through the choice of the open-loop control. Finally,
we point out that the same iserative approach may
be successfully applied to other manipulation systems,
such as the impulsive manipulator based on tapping
described in [16].

Appendix

The first three equations of system (3) can be put in
chained form by the following coordinate change

Xy = —vU
To = Sinu
T3 =

and input transformation

v = —wi/p

vy = Ccosuwsy/p.
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