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Abstract

We consider the localization problem for a wunicy-
cle robot equipped with range finders and moving in
environments with nonsmooth geometry, i.e., whose
obstacle-free region has a piecewise-linear boundary.
Using the Multi-Hypothesis Density Filter, a novel
multi-modal estimator based on the bayesian frame-
work, an innovative localization system is devised and
implemented on the ATRV-Jr robot. Ezperiments il-
lustrate the superior performance of the new filter with
respect to the classical Extended Kalman filter.

1 Introduction

The subject of this paper is the localization problem
for a mobile robot with unicycle kinematics, moving
in a known 2D environment. The robot is assumed
to be equipped with an exteroceptive sensory system
consisting of a set of range finders, each measuring the
distance along its direction between the robot and the
obstacle region, made of walls and other objects. -
Under the hypothesis that the boundary of the
obstacle-free region can be described by piecewise-
linear functions, the measurement model inherits the
same non-smoothness property. To account for this pe-
culiar (but realistic) circumstance, ignored by most lo-
calization systems, we introduce the Multi-Hypothesis
Density Filter (MHDF), a nonlinear filter whose per-
formance is improved over conventional unimodal es-
timators, such as the Extended Kalman Filter (EKF).
The structure of the MHDF is presented in Sect. 2.
Assuming that a heading sensor is available, state and
measurement models are derived in Sect. 3 and shown
to satisfy the conditions required by the MHDF. In
Sect. 4, we describe an implementation of the MHDF
localization system on the ATRV-Jr mobile robot, and
present comparative experiments w.r.t. an EKF-based
system. These show that the MHDF provides remark-
ably better localization performance than the EKF.
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2 Multiple-Hypothesis Density Filter

A short description is now given of the MHDF, which
provides recursive suboptimal approximations of the
minimum mean square error (MMSE) estimates. A
detailed presentation of the filter can be found in [1].

Consider the class of stochastic discrete-time sys-
tems defined by the following models

(state)
(measurement)

Tp+1 = Apzr + vk + Wy
Yk = hy(zk) + wp

with z,v,w* € R™ and y,w™ € IRY; vy, is a determin-
istic input, while the noises wg, wj* respectively affect
the state transition and the measurement process at
step k. Assume the following hypotheses are satisfied:
(H1) hy is bounded and piecewise-linear, i.e., there ex-
ists a partition Zx = {Zk ;};=1..n, of R" con-
sisting of convex subsets (with nonzero lebesgue
measure), such that for all j and = € Zy ;

he(z) = Hijz + Gy Cryj € IRY,

with Hy ; a ¢xn matrix (null on unbounded sets);

(H2) wi, w} are gaussian random variables with zero
mean and covariances Si, My, respectively;

(H3) =z is a gaussian random variable with mean value
o and covariance Cl;

H4) z0, wi, w]™ are mutually independent for any k, .
K Wy

The MHDF algorithm consists in the iterated appli-
cation of the prediction (PRy) and updating (UPy) en-
domorphisms, defined over the set of gaussian mixture
densities. For the considered systems, the analytical
description of such operators is derived as follows.

Denote by ®;(-, C) the generic gaussian density over
IR’ with zero mean value and [ x [ covariance matrix C.
Let Uy, be the gaussian mixture! representing the con-

1An upper bound on the number 7y of components of the
mixture is given by Ny, i.e., the number of measurement hy-
potheses induced by the partition Zj, of the state space IR™.



ditional density of the state z;, given the information
Yy = {v1,...,yx} at time step k:

Z/\Icz

with Ag; > 0 and ZZ 1

;U/k iy Ck l)

)\;;,i = 1. The operator

Z)\kz

with figt1,s = Agpe,i + ve and Py = ApCr i AL + Sk,
predicts the conditional density of the state x4 given
Yy = {y1,...,yx}, after the application of input vg.
Given the new measurement yj4+1, operator UPy is
used to update the conditional density Wy = PRy (¥),
resulting in an approximation of the conditional den-

PR ( ‘I'k e = (z — fik+1,5 Pr)

sity of 41 given Yiy1 = {y1,- -, Yks1
Net1
UPL(T0)|oes =D Aty (@t ks, i )
=1

with the mixture parameters Ay11,5, ot1,; and Cry1,
obtained as

G
N
Z k“ Tp

HE+1,5 ; ’Y_
Ck+1,y—z

Akt1,=

2@ (z—ni 5, D4,5)dz

Zyya,j

T T
22" Q20 g, Dij)dz—pirsr ik,

Zr41,5

with

7

V=) Vi ®n(z = mij, Dij) dz

i=1 Zht1,5
and
Viji = Mei®q(ynr — Hi1,kt1, — Corig Big)
Nij = Bkt + KigWeer — Heva e — Cerg)
Dij = Pui—Ki;E; ;KT
Kij = PeHl B
Ei; = HuprjPeiHE 1+ My
fori=1,...,7rpand j=1,..., Ngy1.

The above integral evaluations can be approximated
via a Monte Carlo technique [2]. For example, consider
the third integral

227 B (2

/Zk+1,j

— piyj, Dig) dz.
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A sequence of samples zp,...,zx drawn from the
gaussian random variable ®,(-, I} is needed. Letting

=1L (z + ps,5), where L; ; is the Cholesky factor
of Dmv we obtain the sequence of draws Zi,...,Zk
with distribution ®,(- — p;j, D;,;). For any measur-
able function.z — F(z) , such that the integral

/ F(Z) (Pn(z—/,bi;j,Dijj)dZ
IRd

exists, the Kolmogorov law of large numbers implies
L
dm e D) = | @0z s D)

almost surely [3]. Hence, for a sufficiently large K, we
can use the following approximation

K

1 s s _

I D aE o, (2) “/ 22" &g (2= 3, Dij) dz,
t=1

Zg+1,5
being Y z,., ,;(-) the characteristic function of Zy1 ;:

1 Zt S Zlc+1,j

T zi114(8) = 0 else.

For the considered discrete-time systems satisfying
(H1-H4), the operator UP, provides a suboptimal ap-
proximation of MMSE estimates (see {1] for the proof).

3 Application to localization

Consider a robot with the kinematics of a unicycle.
The generalized coordinate vector is = € IR® x SO(1),
with (x1,x2) the cartesian coordinates of the wheel
axle midpoint and zs the robot orientation w.r.t. the
horizontal axis of the world frame, as shown in Fig. 1.
The kinematic model is

.’i‘l = U1 COSZX3
.’i’g = Ui Sin.’L‘3 (1)
i‘g = U,

with u1, us the driving and steering velocities.

3.1 State and measurement models

To derive an exact discrete-time system representing
the sampled dynamics of egs. (1), it is convenient to
consider the following change of coordinates

& = =3
& = wicosxy+ xsinzg (2)
{3 = mpcosxy— xysinzy



Figure 1: Environment and unicycle-like mobile robot

and input transformation

= uy + (xpcosx3 — 21 sinx3)ug

UL

V2 .

Coordinate £, is the robot orientation, while (£3,&3)
measure its position in a moving frame rotated by the
angle 3 w.r.t. the world frame, so as to align the &;
axis with the robot forward direction (see Fig. 1). In
the ¢ coordinates, the system is in chained form [4]:

3

U1
€:2 ) (3)
& = L.

Under the assumption of digital control implemen-
tation, u; and up assume constant values u; & and ug i,
respectively, in the sampling interval [kT, (k + 1)T7].
Letting &, = £(kT), integration of egs. (3) yields the
following exact sampled dynamics [5]:

Erp1 = Aplp + vg, 4)

with

1 0
0 cos(Tugk)
0 —sin(Tugk)

0
Sil’l(T'U,Q,k)
COS(TUng)

Ag

Tugk

sin ug

u2,k

Vg U1,k

cos ug k—1

LT
Equation (4) is a linear (in the state £) discrete-time
system that, given the control inputs u;x and wug,
allows to compute the robot coordinates & + 1 at the
next sampling instant. By inverting egs. (2) it is then

possible to obtain the world coordinates x.

Assume now that the obstacle-free region is a com-
pact connected set M ¢ IR?, whose boundary oM is
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a finite collection of segments, as shown for example
in Fig. 1. The robot is equipped with ¢ range finders,
oriented at angles 0y, ...,6, w.r.t. the &£ axis; w.l.o.g.,
the sensors are supposed to be pointwise and placed
exactly at the wheel axle midpoint. Let

&

denote the positional part of vectors z and &, respec-
tively. From egs. (2) we have

&
&3

zp = R(1)&p,
with R(&;) the rotation matrix

cos &y
sin fl

—sin&;
cos &y

R = ( ).

In the world frame coordinates z, the i-th compo-
nent of the measurement function h® € IRY, which
models the ¢-th range finder, is defined as

hile) = min |z, —dqll,

where
Qi(z) =r(zy, 3+ 0;) NOM

is the set of points where the boundary M intersects
the range finder axis, i.e., the half-line r(zp, 3 + 6;)
with origin z, and orientation x3+6;. As M consists
of segments, h” is piecewise-linear w.r.t. xp.

In the € coordinates, the i-th component of the mea-
surement function hf € IRY takes the form

hi(R(£1)€p,61)
deo

if R(§1)§p e M

otherwise.

e ={ ®)
Note that the domain of ¢ has been extended to the
whole ¢ space (including configurations that do not
map back to collision-free robot positions) by means of
a suitable constant do, < 0. Since the transformation
between z, and &, is linear, also function A% (including
the extension) is piecewise-linear w.r.t. &; however,
due to the presence of the rotation matrix R(¢1), A% is
not piecewise-linear w.r.t &;.

An unfortunate consequence of the essential nonlin-
earity of the measurement model (5) in &; is that the
MHDF algorithm cannot be used for state estimation,
because its working hypothesis (H1) is violated. To
overcome this difficulty, we suppose here that the robot
is also equipped with a heading sensory system, which
provides an accurate estimate of the orientation angle.
This is exactly the case of our experimental platform,



the ATRV-Jr mobile robot (see Sect. 4). Techniques
for orientation estimation are presented?® in [6] and [7].

Wrapping up, our state and (augmented) measure-
ment model are respectively represented by eq. (4) and

- (3)-(

Y1,k )
with y1 x € IR and ypx € IRY.

Yn.k

h& (&)

3.2 Perturbed models

As usual, perturbed versions of the state and mea-
surement model are considered to account for system
perturbations as well as measuring uncertainties.

The kinematic model (4) is derived under the as-
sumption of rolling without slipping. This ideal con-
dition is often violated in practical operation, so that
it is necessary to consider the perturbed state model

(7)

with w}, the state transition ncise. Using the partition
of ¢, and letting A, = RT (Tuay), eq. (7) becomes

(8r)=( ) (§0)+ () (28).

with similar partitions for v, and wj. The perturbed
measurement model is derived from (6) as

w-(30)- () )

h&(€x)

being wffk and Wh'y the noises affecting the measures
of orientation and distances, respectively.

If the heading measure y, ;. is sufficiently accurate
(ie., if w; ~ 0), we can obtain a reduced state and
measurement model (including perturbations) as

Er1 = Apbp + vk + Wi,

s
W1k

&1,k

§p,k

U1,k
Up,k

&1k
Ep e+l

$
Wp,k

m
Y1,k Wy &

m
Yh Kk Whty

(8)
(9)

Apbp i + Upk + Wp g
hg(yl,ka ‘gp,k) + whm,k7

in which y; x = § & acts as an input vector.
It is clear that system (8-9) belongs to the
class of stochastic discrete-time systems considered

ép,k-ﬁ—l

Yh,k

in Sect. 2. Moreover, the measurement function
hi(§p i) = hi(yl’k,gp,k) is piecewise-linear in the
state £, . Hence, if also hypotheses (H2-H4) on

the stochastic nature of the models are satisfied, the
MHDF can be applied to the state estimation problem
for system (8-9).

2In particular, in [6] it is proposed a method which provides
high-performance heading estimation without recurring to an
interaction model of the robot and the environment. This ap-
proach, based on gyro modeling, combines inertial navigation
with absolute measurements.
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Figure 2: The ATRV-Jr mobile robot

4 Experimental results

Figure 2 shows the ATRV-Jr by Real World Interface,
the mobile robot used in our experiments. This vehi-
cle, mainly designed for outdoor applications and re-
search, has a four-wheel drive, differentially steered lo-
comotion system. Its sensory equipment includes two
optical encoders measuring the wheel rotation, an iner-
tial platform and a 180° degrees laser scanner oriented
in the forward direction. A peculiarity of the ATRV-
Jr is the built-in odometry: although the encoders are
not directly accessible, a low-level module provides the
position estimate as reconstructed from the encoders.
Our localization system considers a sensory model
with 5 range measures (chosen among the set of 181
measures provided by the laser scanner) and a heading
estimate derived by integration of the angular velocity
measure given by the inertial platform. The built-in
odometry allows us to compute directly the ATRV-Jr
kinematics whose perturbed model has the form (8).
Experiments have been carried out in an office-like
indoor environment whose 2D map is shown in Fig. 1.
We have collected the data of a dozen of ATRV-Jr
runs with different initial positions and paths, so as to
explore the obstacle-free region. All runs have been
performed at a velocity of approximately 0.1 m/s, re-
sulting in an average traveling time of 1 min. The
laser data and the (built-in) odometric estimate have
been sampled at a frequency of 1 Hz. To provide our
localization system with a sufficiently accurate head-
ing estimate, the angular velocity has been sampled
instead at 10 Hz; thanks to the low velocity and the
relatively short traveling time, such a frequency has
guaranteed an orientation error lower than 2°.



To assess the localization performance of the MHDF
versus the classical EKF, we have adopted a mixed ap-
proach. The collected experimental data (i.e., control
inputs, laser range measures and heading estimates)
have been used in a Monte Carlo simulation setting
by introducing an artificial uncertainty on the robot
initial position. This uncertainty has been chosen as a
zero mean gaussian noise with RMS deviation of 0.5 m.
For each set of experimental data we have obtained a
set of realizations of EKF and MHDF estimates by
sampling 100 draws from the initial noise. Then, we
have compared these estimates with the true robot
positions using the criteria of root mean square er-
ror (RMSE), maximum error (MaxError) and estimate
dispersion (DISP), defined as follows:

RMSE, = <& —& ] >*
MaxErrory = i:Ierﬁi(M ||§p,k - 5“
i . 1
DISP: = < [[(§r)i— <(&r)i> |l >2.

Here, &, and f;’k are respectively the position and
its estimate at time-step & in the i-th realization, and
the angle brackets indicate the mean value of the con-
sidered sequences w.r.t. the 4 index.

We report here the plots of RMSE;, MaxErrory
and DISP, for one of the experiments. These plots,
shown in Figs. 5, 6 and 7, show that the MHDF esti-
mates rapidly converge to the real robot position with
a very low dispersion. Furthermore, the behavior of
the maximum estimation error shows that the MHDF
estimates are rather robust w.r.t. the a priori position
knowledge. On the contrary, the EKF estimates are
unreliable in terms of both accuracy and dispersion
and, as a consequence, much less robust.

To better illustrate this fact, it is useful to analyze
two realizations taken from two typical experiments.
The results are reported in Figs. 34 in terms of true
robot positions and estimates provided by the EKF
and the MHDEF. In both cases it appears clearly that
the EKF estimates are unreliable, whereas the MHDF
estimates are remarkably precise.

5 Conclusions

The localization problem has been addressed for a
robot with unicycle kinematics and equipped with
range finders, moving in environments with nons-
mooth geometry, i.e., whose obstacle-free region has
a piecewise-linear boundary. A novel solution has
been presented based on a multi-modal filter called
Multi-Hypothesis Density Filter. The performance of
the MHDF has been compared in terms of BIAS and

RMSE to that of the EKF, through a series of Monte
Carlo experiments. The results have shown that the
EKF estimates computed for certain realizations of the
stochastic process may become unreliable, whereas the
MHDF provides better estimates on the average.

The superior performance of the MHDF (which we

have also observed through extensive simulation cam-
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paigns [8]) has a price in terms of computational load.
At the present stage of our study, a single step of the
MHDF is 30 or 40 times slower than a single step of
the EKF, essentially due to the heavy cost of building
the partition Z, [1]. One way to reduce the complex-
ity is to obtain Zx by updating Zx_; only in the area
where the predicted probability density of the robot
position differs significantly from zero.

Finally, it is worth to mention another possible ap-
plications of the MHDF to sensor fusion. It has been
shown here that the measurement function modeling
a range finder can be reduced, under certain hypothe-
ses, to a piecewise-linear function. Another type of
sensor that admits piecewise-linear measurement mod-
els are proximity sensors. For instance, consider a
bumper ring placed all around the robot. Its mea-
sures are inherently boolean (on/off), and therefore
can be modeled by characteristic functions over suit-
able neighborhoods of M. This type of function is
clearly piecewise-linear and bounded. Since this func-
tion is generally constant, the EKF algorithm cannot
take advantage of such measures, whereas the MHDF
algorithm would be able to process them in order to
improve the estimation.
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Figure 3: A realization of experiment 1: true robot

positions (-), MHDF (o) and EKF (+) position esti-
mates
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Figure 4: A realization of experiment 2: true robot
positions (-), MHDF (o) and EKF (+) position esti-

mates
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Figure 7: DISP, for MHDF (—) and EKF (-)



