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Abstract

We present a new method for motion planning and
feedback control of three-link planar robot arms with
a passive rotational third joint. These underactuated
mechanical systems are shown to be fully linearizable
and input-output decoupable by means of a nonlinear
dynamic feedback, provided a physical singularity is
avoided. The linearizing output is the position of the
so-called center of percussion of the third link. Based
on this result, one can plan smooth motions joining
in finite time any initial and desired final state of the
robot. Moreover, it is easy to design an exponentially
stabilizing feedback along the planned trajectory. Sim-
ulation results are reported for a 3R robot.

1 Introduction

A large effort has been devoted during the 90’s to
the dynamic analysis, motion planning, and feedback
control of underactuated robots, i.e., second-order me-
chanical systems with less controls than degrees of free-
dom (see [1] and references therein).

Significant control analysis results can be found
in [2] and [3]. Nonetheless, a general theory for plan-
ning and control of underactuated robots is not yet
available and the most successful solutions were ob-
tained tailoring the approach to the specific case con-
sidered. We limit the following review to ground-based
rigid manipulators with passive joints (and no brakes).

The case of 2R planar robots under gravity with a
single actuator has been considered in [4, 5] (Acrobot,
passive first joint) and in [6] (Pendubot, passive sec-
ond joint). The gravitational drift reduces the regions
of the state space where these systems can be kept in
equilibrium. Moving from one equilibrium manifold
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to another requires ad hoc appropriate swing-up ma-
neuvers. However, since the approximate linearization
of these robots is controllable, they are in principle
relatively easy to control, at least locally.

The control of a planar 2R robot with an unactu-
ated base joint in zero gravity is more intriguing. In (7]
an oscillatory stabilizing feedback is designed for rest-
to-rest motion tasks, based on a Poincaré map analy-
sis. In [8], we have shown that the system fails to sat-
isfy the weakest existing sufficient conditions for small-
time local controllability (STLC), which implies that
the design of feasible motion trajectories is an open
problem. Moreover, smooth stabilization is not possi-
ble because the drift term tends to zero with the gen-
eralized velocities. The iterative state steering tech-
nique of [8], consisting of the repeated application of
open-loop commands, guarantees the stabilization to
a desired configuration. A numerical motion planner
and a trajectory controller based on time-scaling has
been proposed for the same system in [9].

The case of an underactuated three-link planar arm
has been considered in [10], focusing on the rigid-body
motion of the third link whose rotational joint is pas-
sive. This nonlinear system is proved to be STLC.
Rest-to-rest motions are planned through a sequence
of elementary maneuvers resembling those used for
parking a wheeled mobile robot [11] or pushing a fric-
tionless object [12]. In particular, they typically con-
sist of a pure trauslation of the third link, followed
by a pure rotation around its center of percussion
(CP) and by another pure translation. Each maneu-
ver starts and ends with zero velocity. If the initial
and/or final states are not equilibria, two more de-
celeration/acceleration phases are needed. A differ-
ent trajectory tracking controller is designed for each
phase, so that a switching logic is necessary. On the
other hand, in {13] it is shown that a planar PPR robot
with a passive third joint can be transformed into a
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second-order chained form via static feedback trans-
formation. Two of the chained-form states are related
to the coordinates of the CP.

In this paper, we build upon these works and ex-
ploit further the properties of the CP of the third link.
Under the action of a second-order dynamic feedback
compensator, the CP position (chosen as system out-
" put), together with its velocity, acceleration, and jerk,
become an alternative set of state coordinates. The
closed-loop system exhibits a tully linear and decou-
pled dynamics. Motion planning is then performed
using smooth trajectories that interpolate, in a given
finite time, any initial and desired final state. Trajec-
tory tracking control is achieved using standard linear
feedback techniques.

2 Three-link planar robot dynamics

The generic dynamic model of a three-link robot arm
moving in a horizontal plane with a passive rotational
third joint is

B@i+ead =6 |72 W

where ¢ = (q1,¢2,¢3) is any set of generalized coor-
dinates, and 7; and 7, are the available inputs on the
first two joints. The 3 x 2 matrix G(q) maps the inputs
into generalized forces performing work on gq.

We use a set of generalized coordinates that simpli-
fies model analysis and control design, while capturing
all the following cases of interest: RRR (3R), RPR,
PRR, and PPR. Let ¢ = (z, v, 8), where (x,y) are the
cartesian coordinates of the base of the third link and
9 is its orientation w.r.t. the z-axis. Letting s¢ = sin
and cf = cos §, the dynamic model becomes
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where I3, m3, and d3 are, respectively, the baricentral
inertia, mass, and distance of the center of mass from
its base for the third link, and (F;, F,) are cartesian
forces. Subscript a stands for actuated joints. Note
that the third component of the Coriolis and centrifu-
gal force vector vanishes.

2.1 Partial feedback linearization

To make the analysis independent from the nature of
the first two joints, we perform first a partial lineariza-

2790

tion via static feedback of eq. (2). To this end, let
F, . - a
5] =+ 0[],
Y
where (ay,ay) are cartesian accelerations and matrix

. 3d? 29 —s60 ¢
Ba(q) = Ba(z,y) — —10% { s : C]

Iy +mad3 | —s0cf 0

is nonsingular being the Schur complement of diagonal
element b33 of the positive definite inertia matrix B.

The resulting equations are similar to those used
in [10} and [13):

= at
i = ay (3)
.. 1
b = I_((SBGI_ cfay),

where K = (I3 +mad3)/mads is precisely the distance
of the CP from the base of the third link. If uniform
mass distribution is assumed for the third link, it is
K = 203/3 (€3 is the iink length).

3 Linearization via dynamic feedback

We show below that system (3) can be transformed
into a linear controllable system by means of nonlin-
ear dynamic feedback and change of coordinates [14].
Define the CP cartesian position as the output:

yi| _ el
-Gl o
We apply the standard input-output decoupling al-
gorithm, that involves differentiating the output until
an auxiliary input appears in a nonsingular way. This
may require the intermediate addition of integrators
on the input channels, which become states of the dy-

namic compensator.
Differentiation of eq. (4) yields
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where eq. (3) has been used. Since the matrix multi-
plying the acceleration (a,,ay) is singular, we let
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and add an integrator on the (new) first input £
§=al. (7)
Vector (€, az) is the cartesian acceleration of the third

link base, expressed in the moving frame attached to
the link. As a result of (6), we have § = —ay/K and

yl _ e c
[yz} = (§ — K67) [sa} ) ()
Using egs. (3) and (7), the third derivative is
(3] . /
W _[ed 26c8] [a e
[yi"]] N [sﬁ 2650 | | ay| TE-KON | 1

Since the input matrix is still singular, we perform a
new input transformation

! ) ,
al=b Tl e
and add another integrator
1) = ay, (10)
where 7 is dimensionally a jerk, obtaining
Hﬁ}] =70 [ (¢ ke -
v (€ - K6%)6

Finally, the fourth derivative is computed as

o ay + (K62 — £)§?
[ | = RO | a2 -
vs KO =L oy + 26

Under the regularity assumption v & £— K02 #0, we
apply inversion control

[2]=[0 ] o [2]-[<50 %),

(12)
where (vy,v,) is the auxiliary input, giving

) _ [
g = , 13
] = 1] )

i.e., two decoupled chains of four integrators.

Equation (13) represents the original system (3) un-
der the action of the dynamic controller obtained con-
bining egs. (6-7) and (9-10) with the inversion con-
troller (12). The sum of the differential orders (rela-
tive degrees) of the two outputs in eq. (13) is 8, equal
to the dimension of the robot state plus the dimen-
sion of the compensator state (&,77) € IR?. Thus, full
linearization is obtained [14].
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The transformation from (z,y, 6,1, 7, 8,¢, 7) to the
linearizing coordinates (yi1,y2,91,%2,.-- ,ygsl,yg”) is
given by egs. (4-5), (8) and (11). The inverse map
from the solutions of eq. (13) to the robot and com-
pensator states is:

6 = ATAN2 {sign(v)d2,sign(y){}
0 = Cey'?l _ 59?1;3]
50 + cO i
€ = cBijy + 0§ + K6?
n = cﬁy[l?’] + s6 ygﬂ

i

HERARIH
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The inverse transformation is regular iff v # 0.
From eq. (8), we iote that 42 = §2 + §2, and thus
the regularity condition can be checked before actually
computing § and £. Physically, ¥ # 0 means that the
linear acceleration £ of the third-link base along the
link axis should not be due only to an instantaneous
rotation around theg CP, which produces the centrifu-
gal acceleration K6%. Thus, a pure rotation around
the CP is the only motion not admissible with this
linearization scheme.

I

4 Motion planning

Planning a feasible motion on the equivalent repre-
sentation (13) can be formulated as an interpolation
problem using smooth parametric functions y,(s) and
y2(s), with a timing law s = $(¢). For simplicity, we
directly generate trajectories y;(t) and ya(¢).

At time ¢ = 0, the robot starts from a generic state
(Zs,Ys,bs, Ts, Us, 95) and should reach, at ¢t = T', a goal
state (:L'g,yg,Hg.,i'g#gy,ng). To obtain the boundary
conditions for y;(t), y»(t) and their derivatives, we use
eqs. (4-5), (8) and (11), where £(0) = &, &(T') = &,,
71(0) = 14, and 7(T") = 14 can be chosen arbitrarily.

As an example, for a rest-to-rest motion (3 = s =
b = Ty =1y = ég = (), we have for the first output

[ y1s ] Ts + Kl [Y1g ] zg + K cly
Yts _ 0 ’ng — 0
dis | €, ' Gig | €y cly ’
y[3.] s cls y[3] 1lg g

LILls J LIly 4

and for the second output

[ y2s ] ys + Ks67 [ ygg} yy + K 56,
Y2s _ 0 yZy _ 0
125 - {S -5'95 ! :l]‘Zg - &9 Seg

L yg? ] s $Os Lyﬁjg] ] 19 Sbq



A straightforward solution to this interpolation
problem is to use polynomials of seventh degree:

7
yi(t) = Zau)\j, 1=1,2,
—

with normalized timne A = t/T. The open-loop com-
mands to system (13) are (i = 1,2):

1
vit) = 75
Dropping the output index i, the expressions of the
coefficients a; are:

(840(1,‘7)\3 + 3()0(11(,/\2 + 120a;5\ + 24&14) .

an = Y.
a, = 3.T
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output trajectory
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Figure 1: Rest-to-rest planning: yy (—), y2 (——)
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The selection of initial and final compensator states .
(&s,ms) and (&g, ny) affects the boundary conditions, sl K |
and thus the generated motion inside the chosen class /'
of interpolating functions. In the rest-to-rest case, & [ st
and &g should be nonzero and of the same sign, in order ' N K
to avoid the singularity v = 0 during the motion. In N
particular, if a pure translation of the third link is QU
desired, the task can be split in two natural phases :
(say, acceleration and deceleration) so that £ can be o . . ; . H
4 0.8 1 1.5 2 25 3

reset (changing its sign) at the intermediate time. This
possibility of (re)initializing both £ and 7 allows in
general to avoid singularities.

To illustrate the performance of the planner, we
present two typical results obtained for T = 10 s,
K=2/3(¢3=1m),and 5, =1, =0.

Figures 1-5 refer to the rest-to-rest planning

T 0.5m Tg 1.5m
ys | =] 1m — |yg | =1 2m |,
0 0° 8, 45°
with & = &, = ~0.1 m/s?. The time evolution of

the CP position is shown in Fig. 1, while the cartesian
motion of the third link is given in Fig. 2. The motion
of a complete 3R arm (with ¢, = ¢, = 1.5 m}, obtained
by kinematic inversion, is given in Fig. 3, while the
relative joint angles 6(f) are shown in Fig. 4. The
nominal torques in Fig. 5 are obtained from the inverse
dynamics (1) with the following mass data (links are
thin rods of uniform mass): m; = 10, me = 5, m3 =

1 (kg).

Figure 2: Rest-to-rest planning: Third link motion

arm motion

0.51

05

1 i

-1 -0.5 0 0.5 1 25 3

Figure 3: Rest-to-rest planning: 3R arm motion
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relative joint angles
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Figure 4: Rest-to-rest planning: 6y (---), 82 (——) and

85 (—) Figure 6: Motion-to-rest planning: y1 {—), y2 (——)
cartesian motion of the third link
25 — . . .
joint torques
120, T T T T T T T T T
1001 4 2
8ot 1
60}F 4 1.5p
3 : ‘
20k T N T P S P O SRR S
50 ; ; ; : . ; . : ; o . . i .
0 1 2 3 4 g 6 7 8 9 10 0 a5 1 15 2 25
Figure 5: Rest-to-rest planning: 71 (- ), 72 (——) Figure 7: Motion-to-rest planning: Third link motion
g=1 N (=N k
arm motion
Note the high joint velocities and peak torques * N T
around ¢ = 6 s, corresponding to a rapid rotation of the 250
third link approximately around its CP — and thus to
a decrease of the singularity index ~. 2 ]
In Figs. 6-9 we report the results for the motion-
to-rest planning 15 1
Ts 1m Ty 1m B 1
Ys 1m Yg 1m osh |
0, 0° b, 90° ‘
. = — . — N
I -0.1m/s Ty Om/s |’ ol ]
s -0.1m/s Ug Om/s
f; 30°/s by 0°/s 05 f 1
with & = &, = —0.1 m/s?. The joint velocities é(t) NTTos o s 1 15 2 25 3

smoothly go to zero, without the need of an extra de-

celeration phase Figure 8: Motion-to-rest planning: 3R arm motion
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Figure 9: Motion-to-rest planning:
and 3 (—)

1 (), 62 (——)

5 Trajectory tracking control

The design of a linear trajectory tracking controller
is performed on the equivalent system (13). Given a
desired smooth trajectory (y14(t),y24(t)) for the CP
(planned as in Sect. 4 or with any other method), we
choose

3 3
-
vi=yd 4+ F | YT i=1,2, (14)
Yid — Yi
Yid — Yi
where the gain matrices F; = [fis fio fa  fio] as-

sign arbitrary poles in the left-half of the complex
plane to the tracking error systems. The actual states
(y,,yg,...,y[f],y,[f)) in eq. (14) are computed on-line
from the measured joint positions and velocities us-
ing forward kinematics and transformations (4-5), (8)
and (11).

We have simulated the tracking of the rest-to-rest
trajectory of the previous section, starting from the
off-path configuration: z(0) = 0.5 m, y(0) = 0.9 m,
#(0) = 15° (with zero initial velocity). The poles were
all set in —2, yielding gains

Fi=F=(8 24 32 16].

The actual motion of the third link is shown in Fig. 10
(to be compared with Fig. 2). The evolution of the
CP position errors e; = y;q — y; (1 = 1,2) has the
prescribed exponential rate of decay. Figures 11 and 12
indicate the corresponding fast transient error for the
3R robot joint variables, with limited additional torque
required with respect to the nominal case.
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Figure 10: Trajectory tracking: Actual cartesian mo-
tion of the third link

200

nominal vs. actual relative joint angles
r T T T
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Figure 11: Trajectory tracking: Actual vs.

joint variables
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3 4 5 6 7 8 9 10
s

nominal

nominal vs. actual joint torques

150

Figure 12: Trajectory tracking: Actual vs. nominal

joint torques



6 Conclusions

A new method has been presented for motion planning
and feedback control of the class of three-link planar
robots with a passive rotational third joint. The po-
sition of the center of percussion of the third link is
the linearizing output for an inversion-based control
scheme based on dynamic feedback linearization. On
the linear side of the problem, the design of feasible
trajectories and of an exponentially stabilizing feed-
back is easily performed.

A comparison with [10], suggests the following re-
marks: i) the motion planner of Arai et al. pre-
scribes pure translation or rotation maneuvers, while
our scheme usually produces swinging motions of the
third link; ¢) the linearization procedure in this paper
introduces a control singularity, which however can be
avoided using the dynamic compensator state as a de-
gree of freedom in the design; #4) with our method, a
one-shot trajectory can be planned and a single feed-
back controller works throughout the motion, while
multiple (up to five) motion phases with intermediate
stops and controller switchings are required in [10].

The present work can be improved along several
directions. A remarkable benefit can be obtained by
separating path synthesis from timing law generation.
In any case, other interpolating functions (polynomi-
als of lower order, sinusoidal functions) can be used for
motion planning, exploiting the arbitrary reset of the
compensator states £ and 7 in order to realize — with-
out control singularities — motions with discontinuous
higher-order derivatives. Finally, our preliminary re-
sults show that inclusion of gravity in the considered
underactuated mechanisms is also possible within the
dynamic linearization approach.

References

[1] M. W. Spong, “Underactuated Mechanical Systems,”
in Control Problems in Robotics and Automation,
B. Siciliano and K. P. Valavanis Eds., LNCIS, vol. 230,
pp. 135-150, Springer Verlag, London, 1998,

G. Oriolo and Y. Nakamura, “Control of mechanical
systems with second-order nonholonomic constraints:
Underactuated manipulators,” 20th IEEE Conf on
Decision and Control, pp. 2398-2403, 1991.

M. Rathinam and R. M. Murray, “Configuration flat-
ness of Lagrangian systems underactuated by one
control,” 35th IEEE Conf. on Decision and Control,
pp. 1688-1693, 1996.

M. W. Spong, “The swing up control problem for
the Acrobot,” IEEE Control Systems, vol. 15, no. 1,
pp. 49-55, 1995.

2795

[5] A. De Luca and G. Oriolo, “Stabilization of the Ac-
robot via iterative state steering,” 1998 IEEE Int.
Conf. on Robotics and Automation, pp. 3581-3587,
1998.

M. W. Spong and D. Block, “The Pendubot: A
mechatronic system for control research and educa-
tion,” 34th IEEFE Conf. on Decision and Control,
pp. 555-557, 1995.

Y. Nakamura, T. Suzuki, and M. Koinuma “Nonlin-
ear behavior and control of nonholonomic free-joint
manipulator,” IEEE Trans. on Robotics and Automa-
tion, vol. 13, no. 6, pp. 853-862, 1997.

A. De Luca, R. Mattone, and G. Oriolo, “Stabilization
of underactuated robots: Theory and experiments for
a planar 2R manipulator,” 1997 IEEE Int. Conf. on
Robotics and Automation, pp. 3274-3280, 1997.

H. Arai, K. Tanie, and N. Shiroma, “Time-scaling
control of an underactuated manipulator,” 1998 IEEE
Int. Conf. on Robotics and Automation, pp. 2619-
2626, 1998.

(7]

(8]

[9)

[10] H. Arai, K. Tanie, and N. Shiroma, “Nonholonomic
control of a three-dof planar underactuated manip-
ulator,” [EEE Trans. on Robotics and Automation,

vol. 14, no. 5, pp. 681-695, 1998. »
Robot Motion Planning and Control, J.-P. Laumond
Ed., LNCIS, vol. 229, Springer Verlag, London, 1998.
K. M. Lynch and M. T. Mason, “Stable pushing:
Mechanics, controllability, and planning,” Int. J. of
Robotics Research, vol. 15, no. 6, pp. 533-556, 1996.
J. Imura, K. Kobayashi, and T. Yoshikawa, “Non-
holonomic control of a three-link planar manipulator
with a free joint,” 35th IEEE Conf. on Decision and
Control, pp. 1435-1436, 1996.

A. Isidori, Nonlinear Control Systems, 3rd Edition,
Springer-Verlag, 1995.

[11]

[12)

(13]

(14]



