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Abstract

We present a survey of the nominal motion generation
schemes and of the associated simple control solutions
for robots displaying flexibility effects. Two model
classes are considered: robots with elastic joints but
rigid links and robots with flexible links. Model-based
feedforward laws are derived for the two basic motion
tasks of state-to-state transfer in given time and ezxact
trajectory execution. In particular, we present a new
solution to the finite-time reconfiguration problem for
a one-link flexible arm. Finally, we use the developed
commands into a simple feedback scheme that requires
only standard sensors on the motors.

1 Introduction

The rigidity assumption in the dynamic modeling of
robot manipulators beconies unrealistic when higher
performance is requested. Tasks involving fast mo-
tion and/or hard contact with the environment are ex-
pected to induce deflections in the robot components,
exciting an oscillatory behavior.

There are two sources of vibration in robot ma-
nipulators: i) concentrated joint elasticity, caused by
transmission elements such as harmonic drives, belts,
or long shafts —typical of industrial robots [1], and i)
distributed link flexibility, introduced by a long reach
and slender/lightweight construction of the arm {2]. In
both cases, the robotic systems contain additional gen-
eralized coordinates that exceed in number the avail-
able command inputs, making the motion planning
and control problems more difficult.

In order to be able to counteract the negative ef-
fects of flexibility. control laws should be designed on
the basis of more complete dynamic models (3, 4, 5].
Controllers aimed at precise positioning (regulation
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tasks) or accurate execution of trajectories (tracking
tasks) usually consists of the combination of a nominal
feedforward action and a robustifying linear /nonlinear
feedback part. In flexible robots, one main role of feed-
back control is the active damping of vibrations. Quite
often, it is relevant to complete the nominal motion
task in a prescribed finite time. In these cases, struc-
tural vibrations should be fully compensated within
the feedforward term.

A number of advanced feedback solutions already
exist in the literature (see the surveys in [6, 7}). Most
of them require feedback from the whole state of the
robot, implying the presence of additional sensors for
the deformation variables (strain gauges, accelerome-
ters, visual, and so on), beside the encoder/tachometer
pairs mounted on the joint motors. To avoid these ex-
tra sensors, a state observer can be included in the
control law at the expense of a more complex design.

In this paper, after reviewing briefly the dynamic
models of robots with elastic joints or with flexible
links, we consider first the problem of generating suit-
able model-based feedforward laws for the basic mo-
tion tasks of state-to-state transfer in given time and
exact trajectory execution. The results, partly avail-
able in the referenced literature, are organized here
in a systematic way. In particular, we present a new
solution to the finite-time reconfiguration problem for
a one-link flexible arm. The computed feedforward
commands can be incorporated into a simple feedback
controller that needs only position and velocity mea-
surements at the level of the robot motors. The re-
sulting scheme follows the so-called nonlinear regula-
tion paradigm [8] for nonlinear systems. It can be
considered as the counterpart for flexible robots of the
widespread pre-computed torque plus joint PD feed-
back control for rigid manipulators.



2 Dynamic models of flexible robots
2.1 Robots with elastic joints (EJ)

Consider a robot actuated by electrical drives with N
joints undergoing elastic deformation. Let ¢ € RN be
the link positions and 8 € RN De the motor positions,
as reflected through the gear ratios. In view of small
joint deformations, elasticity is modeled as a linear
spring. The rotors of the motors are balanced uniform
bodies, so that the inertia matrix and the gravity term
in the dynamic model will be independent of 6.
Following the Lagrangian approach, the robot dy-
namic model consists of 2N second-order differential
equations (see, e.g., [6] for a detailed derivation)

M(q)g + S0 + c(q,9) + glq) + K (g — 0)
STG+J6+ K(0 - q)

1l

0 (1)
7, (2)

where the inertia matrix M (q), the Coriolis and cen-
trifugal terms ¢(q, ¢), and the gravity terms g(¢) are all
related to the rigid links, the diagonal matrix J > 0
contains the effective motor inertias, S accounts for
the inertial couplings between motors and links (here
assumed to be constant), and K > 0 is the diagonal
matrix of the joint stiffness constants. Usually, the ith
motor is mounted on link i — 1 and moves link i. As a
result, matrix S is always strictly upper triangular [4].
In eq. (2), 7 € RY are the torques supplied by the
motors. Joint damping can be included by adding a
term D(§ — 6) in eq. (1) and its opposite in eq. (2).
For a one-link robot with an elastic joint as well as
for other multi-link special kinematic structures with
elastic joints (e.g., a 2R polar robot) it is found that
S = 0. The same situation is forced in general by
the modeling assumption introduced in [3], namely by
considering in the angular part of the kinetic energy of
each rotor only the term due to its relative rotation.
In those cases, the dynamic model (1-2) simplifies to

M(q)g +c(g,¢) +9(q) + K(qg - 6)
J6+ K(6 - q)

Il

The following control properties are known for the
above two dynamic models.

Property 1 The dynamic model (1-2) can be trans-
formed into a fully linear one via dynamic state feed-
back [9], with a compensator of dimension 2N(N —1).
The relation from the new input to the output ¢ is given
by N independent chains of 2(N + 1) integrators.

Property 2 The dynamic model (3-4) can be trans- -

formed into a fully linear one via static state feed-
back [3]. The relation from the new input to the output
q s given by N independent chains of 4 integrators.
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These properties imply that EJ robots have no zero
dynamics [10] associated to the output g.

2.2 Robots with flexible links (FL)

Consider a robot with N flexible links, interconnected
by (rigid) rotational joints. Link deformations are
small and thus only linear elastic effects are present.
We assume that each link can only bend in one lateral
direction (i.e., in the plane normal to the preceeding
joint axis), being stiff with respect to axial forces and
torsion. The bending deformation w;(x;,t) at a generic
point z; € [0, £;] along the ¢th link (of length £;) is then
modeled, using separation in space and time, as

Ni

)= 6u(a)sy(t), i
Jj=1

where the N,; spatial components ¢;;(x;) are the
assumed modes of deformation satisfying geometric
and/or dynamic boundary conditions, while &;;(t)
are the associated deformation coordinates. The use
of approximated finite-dimensional expansions in the
form (5) is preferred for handling general multi-link
flexible manipulators.

Let 6 € R" be the (joint) angular positions asso-
ciated to the rigid motion and 6 € R be the link
deformation variables, where N, Z 1 NVei. To sim-
plify derivations, the total kinetic energy of the system
is evaluated in the undeformed configuration 6 =
The robot dynamic model for control design consists of
N+ N, second-order differential equations (see, e.g., [5]

r [7] for details)

'wi("l:iat

Myg(0)6 + Mys(8)6 + co(0,6,8) + go(6.8) = Bor (6)
M}(8)8 + Mssé + c5(6,0) + g5(8) + K6 = Bst. (7)

The dependence in the Coriolis and centrifugal terms
¢p and ¢s stems from the structure of the blocks in the
overall inertia matrix A{(6). Matrix K > 0 represents
the arm modal stiffness. Modal damping can be intro-
duced by adding a term D§ (with D > 0) in eq. (7).
The input matrices By and Bs in egs. (6-7) take on
special forms depending on the reference frames used
for describing the link deformations with eq. (5). If
these frames are clamped at each link base (clamped
frames), we have By = Inxn and Bs = 0 so that the
torques T € IRY appear only in eq. (6).

The tip position of the ith link may be character lzed
by the pointing angle from its base

N
yEi = 0; +Z

¢11(€
z]v



These angles can be organized into a vector yg = 6 +
®pé € RY that is related to the end-effector location.

For a single flexible link moving in the horizontal
plane with 7, assumed modes of deflection, the dy-
namic model collapses to

'Illegé + 771965
mb,6 + Mssd + K6

(9)

= b, (10)

namely that of a linear system. Using a reference
frame linked to the instantaneous center of mass of
the link (pinned frame), the scalar § will be the angle
between the absolute 2-axis and the axis pointing at
the center of mass. After suitable orthonormalization
of the assumed modes, the inertia and stiffness matri-
ces become diagonal and eqs. (9-10) reduce to [11]

JUO = T,

.. ) ’
0 +wiby = ¢(0)7, 1,..., %,
where Jp is the total arm inertia, w; are the angu-
lar eigenfrequencies of the link, and the prime denotes
differentiation w.r.t. space.

The following control properties are known for the
above dynamic models.

Property 3 The dynamic model (6-7) can be input-
output linearized and decoupled with respect to the out-
put 8 via static state feedback [12]. The associated zero
dynamics is stable (asympotically stable with a modal
damping D > 0). The zero dynamics associated to the
output yg is in general unstable [13].

Property 4 The linear dynainic model (9-10) is con-
trollable. The transfer function from 7 to 6 (joint out-
put) is minimum phase' (strictly minimum phase if
D > 0). For uniform mass distribution of the link, the
transfer function from 7 to yg (end-effector output) is
always non-minimum phase.

3 Motion tasks

We classify the required motion tasks for flexible (EJ
or FL) robots as follows:

State-to-state transfer. The robot should be reconfig-
ured from one (typically, equilibrium) state to another.
A finite completion time is usually specified. Inter-
mediate states can be arbitrary, provided that elastic
deformations are kept limited.

Tragectory execution. A given path is assigned with an
associated timing law. The trajectory can he specified
in terms of different output functions, e.g., at the mo-
tor, joint, or cartesian level, namely before or beyond

lts zeros are in the left hand side of the complex plane.
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the structural flexibility. Only bounded deformation
state solutions are feasible.

A basic remark is in order. For rigid manipulators,
state-to-state transfers are particular cases of trajec-
tory execution tasks. Since the number N of actua-
tors equals the number of generalized coordinates, one
can always fit a (twice-differentiable) trajectory inter-
polating the initial and final state so as to perform
the transfer in a given completion time. Moreover,
in the non-redundant case the level of trajectory def-
inition is not really relevant, provided that kinematic
singularities are not encountered. On the other hand,
structural flexibility implies the presence of extra co-
ordinates in the robotic system, namely N additional
variables for EJ robots and N, for FL robots. Depend-
ing on the level of definition, the output trajectory may
either induce a unique trajectory for the whole robot
state or multiple possible evolutions. The relevance of
this will become clear in Sec. 4 and 5.

The above motion tasks can be performed with two
standard classes of control laws, typically used in com-
binatiouw:

Feedforward control. The whole motion task should be
known in advance so that the required input torque can
be computed off line, hased on the available dynamic
model of the robot. This solution works satisfacto-
rily when no perturbations act on the system and the
initial state is correctly guessed.

Feedback control. Partial or full state measurements
are used within a feedback law for asymptotic stabi-
lization of an equilibrium state (regulation) or around
a reference trajectory (trajectory tracking). Local or
global stabilization results may be pursued.

4 Feedforward laws for EJ robots
4.1 Trajectory execution

Let the motion task be specified by a desired trajectory
q = qq(t), t € [0,T], tor the robot links. This may
come from the standard (rigid) kinematic inversion of
a cartesian trajectory.

The nominal input torque for this task, and the
associated robot state trajectory, are easily computed
for the model (3-4). From eq. (3), we have

b0 = qu + K=" [M(qa)da + c(gar4a) + 9(qa)],  (13)
which is the desired motor trajectory. Differentiating
twice yields

bu = du+ K7 [M(a)d” +2M(q)q))

+ N (qa)ia + Eaas da) + §aa)



where we have used the notation x4 = d'z/dt*. By
substitution in eq. (4), we obtain

Ta = J0g + M(qa)ia + c(qa, da) + 9(qa).  (14)

In order to be exactly reproduced by means of the
input torque (14), the desired output trajectory qq(t)
should be at least 4 times differentiable.

The same computation is slightly more complex for
the complete model (1-2) and is mainly based on the
strictly upper triangular structure of matrix § # 0.
By setting f(q.q,§) = M(q)§ +c(q.9) +g(q) + K¢, we
rewrite eq. (1) as

fla,d. ) + 86— K6 = 0. (15)

The desired motor trajectory 84(t) is obtained starting
from the last scalar equation in (15), which reads

From this 1
Onag = T S (4, 4a- Ga)-
N

The before last equation in (15)
In-1(4:4,G) — sN—1,NON — kn_1ON-1 =0
gives then

SN-1,N
kn

On_1a= {J"N-l(qcl,f]d,iid) -

1
kn-
where 6y 4 has been differentiated twice. Proceeding
upwards in a similar way, one arrives to the first equa-
tion in (15)

N
fi(a,4.4) - Z 81,50 —ki6h =0
=2
that gives
1 N
b4 = k‘l[fl(q(la(]dqu)“z s1,5054(qa: das - - 45 ])]-
j=2

Having computed componentwise the desired motor
trajectory, we differentiate it twice obtaining formally

04 = bq (Qd7(jdx --~7QE2(N+1)]) .

The nominal input torque is computed by summing
egs. (1) and (2) as

Ta = (J + 8)0q + (M(qq) + ST)ia + c(qa, da) + g(zld)-
16

fn(qd. da,da)|
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The desired output trajectory gq(t) should now be at
least 2(N +1) times differentiable in order to be exactly
reproduced by means of the input torque (16).

On the other hand, if the motion task is specified
in terms of a desired trajectory for the robot motor
position, 8 = §,(t). t € [0.T], in order to compute the
nominal torque we have to choose initial values for g(0)
and ¢(0) (position and velocity of the links). From the
model (1-2), forward integration of

i = =M (@) [S82+ c(a.4) + 9() + K (g = 00)

yields the desired evolution g4(t) (setting S = 0 works
for the model (3-4)). Use of eq. (2) (or eq. (4)), evalu-
ated along 6 = 6,(t), gives the desired nominal torque
74. Indeed, this torque and the resulting link motion
will depend on the choice of ¢(0) and ¢(0).

4.2 State-to-state transfer

The previous trajectory generation schemes can be
used also for the state-to-state transfer task in a given
time T. A desired trajectory gq(t), t € [0,T7], is spec-
ified by interpolating suitable boundary conditions at
t = 0and t = T. The evolution of 64(t) is then
uniquely determined as a consequence of the fact that
robots with elastic joints have no zero dynamics as-
sociated to the output g (i.e., Properties 1 and 2).
Eq. (16) provides the required nominal torque. Note
that if the robot moves from one equilibrium state to
another, the configuration (6, ¢) and the input torque
7 at the initial and final time should satisfy

.(J(Qe) = I‘:(ge —qe) = Te.

5 Feedforward laws for FL robots

5.1 State-to-state transfer

Consider a generic state-to-state transfer motion task.
In particular, we have a rest-to-rest motion if the flexi-
ble link arm is reconfigured from one equilibrium state
to another. In the absence of gravity, the arm is un-
deformed.

For the one-link case in the horizontal plane, we can
solve this problem using an idea similar to the case of
elastic joint robots. In fact, in view of Property 4,
we can always design an output function y such that
the associated transfer function has no zeros (i.e., the
system has no zero dynamics). This output has maxi-
num relative degree (equal to the state space dimen-
sion 2(1ne + 1) of the flexible robot) and can be used,
together with its derivatives up to the order 2n.+1, as



a new state representation of the system. The state-
to-state transfer is then solved by defining an inter-
polating trajectory yq(t), with appropriate boundary
conditions at time t = 0 and t = T. For this, a poly-
nomial of degree 4n, + 3 will be sufficient.

We show this using the model (11-12). Let the
design output be, similarly to eq. (8),
N
y=0+> cibi=0+cs, (17)
i=1
with the coefficients ¢; (i = 1,...,n.) to be deter-

mined. These are computed by imposing the indepen-
dence from input 7 of the first 2n, derivatives of the
output (17). Due to the second order structure of sys-
tem (11-12), the torque may appear only in the first
ne even derivatives. We have

N

! . Sy
§= (J_u + ;Cl(ﬁz(o))T ;czwi 6;
from which we set 3~ ¢,¢}(0) = —1/Jy. Next,
Y= =3 " cwigi(0) T+ D el
i=1 i=1

from which we set > c;w?¢}(0) = 0. Proceeding fur-
ther in the same way, we obtain finally the following
linear system

V- ding{#)0),.... ¢, (0} -e=b,  (18)
with 87 = [=1/Jo 0 ... 0] and the Vandermonde
matrix

1 1 1
wi ws wp,
v=| wi w) we, |,
2n, —1)

2(n.—1) 2(n.—-1)
W Wy .

which is always nonsingular being w; # wj, for © # j.
Solving eq. (18) gives the vector of coefficients ¢. With
the following invertible state transformation

y 4 v 6
y _ (5:1 , '!/["} _T 6.1 (19)
y[z}l,,] 51.% y['—’n" +1] b ,l
where
1 ) Cn.,
I 0 —crw? . —Cp, W2 7
0 (=)™ crwi™ (=1)™cq,
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any initial and desired final states (6,6,6,8) are
mapped into boundary conditions for the interpolat-
ing polynomial y4(t) and its derivatives. The nominal
input torque for state-to-state trasfer is then
N
:Ul[;%(,l"+l)] _ (_1)n, +1 Zciwiz(nr,'*'])éi

i=1

(1) 3 ew?™ ¢(0)
i=1

Td =

(20)

The above technique is a generalization of the rest-to-
rest method proposed in [14].

design output
100 T T T T T T T T T

90r

80

L
0 0.2

Interpolating profile for the design output

nominal torque
v T

08 1
s

] 02 014 D‘.G
Figure 2: Torque for rest-to-rest motion of a one-link

flexible arm

In Figs. 1-4 we show the results of a rest-to-rest
slew motion of 90° in T = 2 s for a one-link flexible
arm with 1, = 3 modes, uniform mass m = 2.0825 kg,
and

Jo

T

0.3038 kgm?,
[4.7175 14.3949 2(‘5.9193]Hz.



The design trajectory is given by a 15th-degree poly-
nomial. Note that the clamped joint angle (the one
that a motor encoder would measure) and the tip an-
gle given by eq. (8) oscillate around the smooth design
trajectory, but this effect vauishes exactly at the final
time, together with the deformation variables 6. Also,
the input torque is continuous and is zero outside the
time interval [0, 7.

clamped vs tip angle
100 T T

-20
o

Figure 3: Evolution of the clamped joint angle (—)
and of the tip angle (- -)

first three modes

Figure 4: Evolution of first three flexible modes

5.2 Trajectory execution

Consider now trajectory execution tasks for the gen-
eral model (6-7), in which clamped reference frames
will be used. Let 8§ = 64(t), t € [0,T], be the desired
trajectory assigned to the robot joints. From eq. (7),
we obtain

& = —Mg [Me;‘cs(%)éd + ¢5(84,04) + g5 (8a) — I\"é}
(84, 64,04) ~ Mg K6, (21)

Il
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which is a linear and marginally stable system with a
forcing termn I'. Forward iutegration of eq. (21) from a
generic (6(0),(5(())) provides the nominal deformation
history 64(t) (and its first two derivatives). Substitut-
ing these into eq. (6) yields the nominal torque

Ta = Moo(84)0a+ Do (0a)ou+co(84, 04, 04) + 9o (84, 6a)-
(22)

If instead the desired trajectory is specified in terms

of the end-effector output as yg = ygaq(t), t € [0,7]
(see eq. (8)), a computation similar to the one in

eq. (21) is bound to fail, unless the initial state of
deformation of the flexible arn is properly chosen. In
fact, rewrite eq. (7) by substituting ypq — @6 for 6

AI(};S('UEd - ®gob) [ij};d - @Eé] + ]Wéég +
cs(yed — PES, Ypa — ®Eb) + gs(ypa — ®£6) + K& = 0.

By approximating the nonlinear terms at § = 6§ = 0
(i.e., linearizing around the nominal output trajectory
yEed4(t)), we obtain

[Mss — Mgs(yea)®E] 6 + K6 = TE(YEd, VEG, UEQ),

with Tg = — [MJ;(yea)iEd + cs(VEd, UE4) + 96(YEQ))
as a forcing term. This is a linear time-varying dif-
ferential equation in § with the matrix weighting the
highest-order derivative being not positive definite.
This suggests that attempting forward integration for
generic initial conditions may lead to an unbounded
solution é4(¢) over time. As a matter of fact, for each
desired end-effector trajectory ygq(t), there exists a
unique initial deformation state (6(0), 6(0)) leading to
a bounded solution, any other choice being unfeasible.

In order to compute such initial deformation state,
several alternative ways have been followed. In [15]
a frequency domain inversion was proposed for a one-
link flexible arm modeled as in eqgs. (9-10). The idea
is to look at the motion task as one window of a pe-
riodic behavior in which all quantities are implicitly
assumed to be bounded. Working with Fourier trans-
forms of the desired end-effector output trajectory and
of the linear dynamic model terms, the nominal torque
is computed by inversion in the frequency domain and
then transtormed back in the time domain. The ob-
tained torque profile extends also before and after the
output motion time interval [0, 7], being in principle
defined over (—oo, +00). The problem of state initial-
ization is thus completely bypassed and the correct
values of (§(0),6(0)) are obtained through the appli-
cation of the non-causal part (i.e., for t € (—00,0))
of the nominal torque 74(t). The same results were
obtained in [10] for a linear model of one-link flexible



arms, but working only in the time domain. Stable
and antistable eigenvalues of the inverse system ma-
trix are treated separately and the associated differen-
tial equations are integrated forward and, respectively,
backward in time so that only bounded solutions are
found.

Extensions of these approaches to the multi-link
flexible arm case involve either an iterative inversion
in the frequency domain {17, 18], based on succes-
sive linearization of the residual dynamics, or the nu-
merical time integration of suitable nonlinear opera-
tors [19, 20]. Along the same line, the iterative learn-
ing technique in [21] can be seen as a gradient-type
method for computing the unique bounded deforma-
tion 64(t) associated to ygq(t).

25 3 35 4

Figure 5: Torques for a bang-bang acceleration trajec-
tory of the FLEXARM (1 = —, 7y = - -)

06F-

y {m)

04l

1

-1 -0.8 06 -0.4 -0.2 0.2 04 06 08 1

0
X {m}

Figure 6: Stroboscopic motion of the FLEXARNM
In Figs. 5-6 we report the results obtained after 3
iterations of the algorithm in [18] on the FLEXARM,
a two-link planar manipulator with a very flexible fore-
arm developed in our Lab. The dynamic model and
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the parameter values for the FLEXARM can be found
in [22]. The desired output trajectory ygq has a bang-
bang acceleration profile for a 90° slew motion of both
links in 7" = 2 s. The interval of output motion is cen- -
tered in a time window of 4 s, over which the compu-
tation of the input torques is performed. In Fig. 5, the
precharging torques (before t = 1 s), needed to bring
the flexible arm in the proper initial deformation state,
and the discharging torques (after t = 3 s) are quite
evident. The stroboscopic motion of the flexible arm
in Fig. 6 shows that these initial and final internal link
deflections do not perturb the end-effector position.

6 Feedback control

All the feedforward computations of the previous sec-
tions can be incorporated into a simple feedback con-
trol strategy aimed at robustyfying the behavior in the
presence of inaccurate information on the actual initial
state, small disturbances, or model uncertainties.

If we assume that only the position and velocity of
the motors of an EJ or FL robot can be measured,
and are thus available for feedback, a simple linear
PD scheme with feedforward compensation can be de-
signed as

r=14+Kp(Bs—0)+ Kp(fs - 6) (23)
where Kp > 0 (at least) and Kp > 0. Maybe not
surprisingly, this same structure can be used for any
flexible robot and for state-to-state transfer as well as
for executing trajectories defined at different output
levels. Therefore, the controller (23) works both for
regulation and tracking purposes. The key point is to
use the specific feedforward torque 74(t) and (partial)
state references 04(¢t) and 64(t) corresponding to the
case at hand. For example, for tracking a desired link
trajectory gq(t) of an EJ robot, we use eq. (14) for 4
and eq. (13) for 84, which are based on the dynamic
model (3-4). In order to perform in feedback mode a
rest-to-rest maneuver with a one-link ﬂqxible arm, T4 is
computed from eq. (20) while 64 and 64 are obtained
by inverting the state transformation (19) with y =
ya(t) (in particular, the position reference of the joint
clamped angle is displayed in Fig. 3). Other instances
can be easily recovered by the reader.

On a formal basis, the stability analysis of the con-
trol law (23) for regulation tasks in the presence of
gravity is detailed in {4} for a constant gq of EJ robots
and in [23] for a constant 8y of FL robots. The con-
stant torque 74 is equal to g{qq) (see eq. (14)) for EJ
robots and, respectively, to go(8q,64) (see eq. (22)) for
FL robots.



7 Conclusions

We have surveyed and classified different alternatives
available for generating the torque commands needed
to perform typical motion tasks in fexible robots. In
doing so, we have proposed a new scheme for rest-
to-rest motion (or, more in general, for state-to-state
transfer) of a one-link flexible arm. The generalization
of such a scheme to multi-link flexible armns is a current
research problem. In general, the absence or presence
(and in the latter case, also the stable/unstable charac-
ter) of zero dynamics associated to the chosen output
of the flexible robot plays a dominant role in assessing
the feasibility of the various computational schemes.
A PD-type control law based on the nominal feedfor-
ward computations is a viable solution for a cheap but
effective implementation of a feedback controller for
the various motion tasks. A global stability analysis
for the trajectory tracking capabilities of this feedback
law is missing,.
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