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Abstract

We consider the problem of stabilizing a 2R robot
which moves in the horizontal plane by using a single
actuator at the base. This system is representative of
the class of underactuated mechanical systems that are
not controllable in the first approximation. The pres-
ence of a drift term in the dynamic equations makes the
application of most existing control techniques impos-
sible. The proposed stabilization method makes use of
three basic tools, namely (%) partial feedback lineariza-
tion of the dynamic equations, (i) computation of a
nilpotent approximation of the system, and (%) iter-
ative application of an open-loop control designed on
the nilpotent system. Although the procedure is pre-
sented for the 2R robot case, it provides guidelines for
devising a method of general applicability.

1 Introduction

The control of underactuated mechanical systems, i.e.,
with less control inputs than generalized coordinates,
is receiving increasing attention in robotic applications.
The possibility of building a mechanism that can per-
form complex tasks with a small number of actuators
is indeed appealing, for it allows to reduce cost, weight
as well as the occurrence of failures. However, the syn-
thesis of effective control strategies requires a special
effort, often calling for innovative tools and approaches.
The first interests in underactuated systems trace back
to the study of nonholonomic robots, such as wheeled
mobile robots under the rolling without slipping condi-
tion (1], dextrous hands with rolling fingers contact [2],
and satellite-mounted manipulators under angular mo-
mentum conservation [3]. While nonholonomy is some-
what native to these systems, researchers are now try-
ing to induce nonholonomic behaviors in order to re-
duce the complexity of the actuation system. For ex-
ample, Bicchi and Sorrentino [4] have addressed the
problem of designing a minimum-complexity robotic
hand able to perform dextrous manipulation through
rolling. In [5], a 6-joint nonholonomic manipulator has
been presented whose configuration can be completely
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controlled by means of only two velocity input com-
mands at the robot base. In the same spirit, in [6]
we have determined conditions for choosing one (of the
many) inverse kinematic maps of a redundant manipu-
lator so that full accessibility of the configuration space
is guaranteed by using only m < n task velocity com-
mands. Finally, Lynch and Mason [7] have addressed
the problem of arbitrarily positioning an object in the
plane by pushing it along a limited set of directions.
In all the above cases, the underlying differential con-
straints are in the first-order Pfoffian form A(q)g = 0,
where ¢ are the system generalized coordinates. A fun-
damental property of this model is the absence of a
drift term, which simplifies the controllability analy-
sis as well as the control design. In particular, it has
been shown that the system is completely controllable
in spite of its reduced number of inputs [1], but smooth
stabilization to a single equilibrium point is not possi-
ble [8]. Hence, one must either resort to open-loop
controllers [9] or to time-varying {10, 11] and/or dis-
continuous feedback {12, 13].

In [14, 15] it has been shown that dynamic models (i.e.,
with generalized forces as inputs) of systems with first-
order nonholonomic constraints inherit the same struc-
tural properties (and controllers). In fact, although a
drift term is present in these models, it is possible to
put the system via feedback in a form in which such
term represents a trivial dynamic extension.

However, there are cases in which the underlying differ-
ential constraints appear directly in second-order form
R(q)d + s(q,4) = 0. Examples in this class are robot
manipulators with passive joints, for which Oriolo and
Nakamura [16] have presented a detailed analysis, and
redundant robots driven through end-effector general-
ized forces [17].

The main difference between second-order and first-
order models is the presence of a non-trivial drift term
in the system equations. Therefore, the accessibility of
the system does not imply controllability, which must
be tested by using more sophisticated tools. Moreover,
the negative result on smooth stabilizability stands and
the control law synthesis is even more difficult than in
the first-order case, due to the presence of drift.

To solve the stabilization problem for underactuated



manipulators, we propose the following scheme: devise
an open-loop control for the system which can steer its
state closer to the desired equilibrium point in finite
time, and apply it in an iterative fashion (i.e., from
the state attained at the end of the previous iteration).
Under appropriate hypotheses [18], such a strategy pro-
vides robust stabilization for a wide class of controllable
systems. To simplify the computation of a suitable
open-loop control, one can try to approximate the sys-
tem equations by a nilpotent form, which can be easily
integrated and, at the same time, preserves the funda-
mental properties of the original system (in particular,
controllability). Approximate nilpotentization has al-
ready been used in nonholonomic motion planning by
Laumond et al. [19].

The paper is organized as follows. In the next section,
a general discussion is given about the problem of con-
trolling an underactuated manipulator, outlining our
stabilization approach. In Sect. 3, the main features
of the used nilpotent approximation are briefly illus-
trated. We apply in Sect. 4 the proposed approach to
a 2R planar robot with a single actuator at the base
and provide some simulation results.

2 The control problem for underactuated
robots

Consider a robotic manipulator with n joints having
only m actuated joints. Denote by ¢ € IR™ the joint
coordinates vector, and by 7 € IR™ the vector of gen-
eralized forces.

2.1 Partial feedback linearization

Partition the joint vector as ¢ = (g,,qp), where ¢, €
IR™ is the subvector of controlled joints and g € IR"™™
are the passive joints. Following the Lagrangian ap-
proach, the dynamic model of the system can be writ-

ten as
ERIRNREG
BT By G hy | 70

with the corresponding partitions of the n X n inertia
matrix B(g) and of the n-vector h(q, ¢), which collects
centrifugal, Coriolis and gravitational terms. Note that
the last n — m equations provide directly the second-
order differential constraint that is always satisfied by
the robot during its motion.

The generalized forces 7 can be chosen as a partially

linearizing and decoupling feedback law so as to obtain
a closed-loop system of the form

(ja = u, (1)
G fo(a,9) + Go(q)u, (2)

with v € R™ an auxiliary input vector.

2.2 Controllability

A fundamental question that must be addressed is
whether the robot can be completely controlled in spite
of its reduced number of actuators. The standard ac-
cessibility property, which may be tested by means of
the Lie algebra rank condition [20], cannot be used in
this case. In fact, for nonlinear systems with drift, ac-
cessibility does not imply controllability.

However, one may resort to the concept of small-time
local controllability (STLC), introduced in [21] by Suss-
mann, who gave sufficient conditions subsequently re-
fined by Bianchini and Stefani [22]. Roughly speaking,
a STLC system can reach any point near z° in arbitrar-
ily small time with trajectories remaining arbitrarily
close to z°.

Since only sufficient conditions exist for the STLC
property, their violation does not imply that the sys-
tem is not STLC. However, the latter possibility must
be taken into account. In this case, no general criteria
can be used for testing controllability, which must be
established through a constructive procedure.

2.3 Stabilization

We now address the problem of determining a sequence
of input commands so as to transfer the system from
an initial equilibrium point z° = (¢°,0) = (¢%,4¢J,0) to
a desired equilibrium point z¢ = (¢¢,0) = (2, ¢¢,0).
Such a sequence certainly exists if the system is con-
trollable. However, it is easy to prove that an un-
deractuated robot moving in the horizontal plane is
not smoothly stabilizable at an equilibrium point x®
via time-invariant feedback control laws. This result,
which is a consequence of a well-known theorem due
to Brockett [8], indicates that there is no simple way
to design feedback commands u so as to move the un-
deractuated robot between two joint configurations. In
order to overcome the limitations of smooth controls,
one may use time-varying or discontinuous feedback.
However, while systematic approaches exist for con-
trollable driftless systems—e.g., see [10, 12]-—the case
of systems with drift has received much less attention.
In particular, systems that are not STLC have been
studied so far on a case-by-case basis.

Our proposed method for the stabilization of the un-
deractuated robot in the partially linearized form (1-2)
prescribes the execution of two phases:

1. Drive in finite time T3 the controlled joint vari-
ables ¢, to their desired values qg by a proper
choice of u. Therefore, at the end of this phase
we obtain ¢o(T1) = ¢¢ and G,(Ty) = 0. Corre-
spondingly, we have ¢,(T}) = ¢f and ,(T1) = ¢{,
being in general ¢f # gf and ¢} # 0.

2. Obtain asymptotic convergence of the passive

joint positions g, to their desired values qg while
guaranteeing that g, returns to qg.

The first phase, which we shall refer to as alignment,
can be performed in feedback using a standard terminal
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controller for the decoupled chains of two integrators
represented by eq. (1). For example, for i =1,...,m,
one may set

);

where +; is an arbitrary positive constant [15]. The
final time 7 will depend on v; as well as on the initial
conditions for ¢, .

As for the second phase, a possibility is to adopt the it-
erative state steering approach [18]. The main ingredi-
ent of this technique is an open-loop control that steers
the system closer to the desired equilibrium point x4 in
a finite time T5. The iterated application of such a con-
trol (starting from the state attained at the end of the
previous iteration) yields exponential convergence to
T4 under the assumption that the open-loop control is
continuous with respect to the initial conditions. More-
over, non-persistent perturbations are rejected, while
ultimate boundedness of the system state is guaranteed
in the presence of persistent perturbations [18]. Note
that the resulting control is a time-varying law whose
expression depends on a sampled feedback action.

In order to apply this method, we must devise an open-
loop control law that produces a cyclic motion of du-
ration 75 on the g, variables (i.e., a motion such that
;' = a(T1 + T2) = qu(T1) and G = 4o (Ty + T3) = 0)
while giving a final position ¢,(T} + T2) for the passive
joints that is closer to gf than the initial condition a,
with final velocity smaller than ¢{. To this end, it is
convenient to select the control input w within a pa-
rameterized class, in order to simplify the computation
of the required command. In some cases (e.g., when
the system can be put in second-order triangular or
Caplygin form [17]), this computation can be directly
performed by forward integration of the passive joints
equation (2). In general, however, one can resort to
an approximation of the dynamic equations, in order
to obtain an easily integrable form. At the same time,
the approximation should resemble the original system
as closely as possible, and in particular should preserve
controllability. An effective solution to this problem is
provided by approximate nilpotentization.

Ui = —;5ign(da, — 42, + 27Vida; |da;

3 Approximate nilpotentization

Nilpotent approximations [23] of control systems are
an example of high-order approximation that can prove
particularly useful when the linearized system does not
preserve the original controllability properties. In this
work, we use in particular the approximate nilpotenti-
zation technique proposed in [19], that we do not recall
here for the sake of brevity. This technique can be
applied to any system of the form

z = flz)+ Zg(ax)ui, € R, (3)

=1

satisfying the accessibility property.

The computation procedure is essentially based on the
existence of a suitable set of privileged coordinates z,
locally defined around any point 2z where the system
is accessible. With the system in these coordinates,
the nilpotent approximation is obtained by expanding
in Taylor series the components of the system vector
fields, and truncating them to the terms of a proper
order.

The approximating vector fields f, g1y---,9m can be
given a coordinate-free expression on the tangent space
of the state manifold. Moreover, they generate a nilpo-
tent Lie algebra which is full rank around z°, so that
the approximating system is locally accessible. Finally,
the i-th component of §; is such that only the first
1 — 1 variables 2z, ;—1 may appear in it. Hence, the
approximating system is polynomial and has the trian-
gular form

m
z = fi-’rzgjiu]', 1=1,...,v, (4)
Jj=1

m
filztp=1) + D Gie (21, k-1)u5,
=1

2k
k=v+1,...,n, (5)

where v is the rank of f,¢1,...,gm, and f},gh, vy Omys
i=1,...,v, (the first » components of f,g1,...,Gm)
are constant. In particular, it can be readily proven
that the approximating system is partially decoupled
and linearized. This suggests to perform a partial de-
coupling and linearization by feedback on the original
system before proceeding with the approximation pro-
cedure, so that the decoupled dynamics is exactly re-
covered by subsystem (4).

4 Application to a planar 2R robot

Consider the 2R planar robot of Fig. 1, having two rev-
olute joints and a single actuator at the base. We as-
sume that no friction is present at the joints. The same
mechanism was considered by Nakamura et al [24],
while Arai [25] analyzed the control problem for a 3R
manipulator with a passive joint.

After the partial feedback linearization of Sect.2.1, and
with the state vector Q = (41, q1,42,92) € IR?, the first
order dynamic model of the robot is

0 1
Q= —Ig;zdf -1 _OKC2 u = f(Q) + 9(Q)u,
P} 0

being sp = sin(gg), co = cos(ge), and K a constant
depending on the geometric and inertial properties of
the robot.

It can be readily verified

that {g,(f, 9,9, [f, gll, [f. (g, [f, g]]]} spans R* at any
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Figure 1: A 2R planar robot with a single actuator at the
base

Q) such that ¢ # kn/2, k =0,1.... Hence, the system
is accessible (in fact, strongly accessible). However, the
sufficient conditions for STLC are not satisfied.

Assume that we wish to steer the 2R robot from
® = (¢2,49) to ¢* = (¢f,q%), with initial and final
zero velocity. According to the control strategy pro-
posed in Sect. 2.3, at the end of the alignment phase
it will be ¢1(T1) = ¢f and ¢,(T}) = 0. Correspond-
ingly, ¢2(T1) = ¢} and ¢2(T}) = ¢5. At this point, we
must specify a cyclic open-loop controller for the sec-
ond phase which brings the passive joint g2 to a final
position g4l closer to ¢¢ than the initial condition 3.
To this end, we compute the nilpotent approximation
of the system at points Q! such that ¢{ = 0 and ¢ # 0.

4.1 Nilpotent approximating model

After applying the technique of Sect. 3, the vector fields
characterizing the approximate model of the system are
(see [26] for details)

1 0
. 0 A 1
=l o, | oe= 0 ,
1,2 i3)2
K% —%z% - Q—I?c;zg
where 8 = 1 + Kcos(¢l), v = Ksin(g)d,

8 K?sin(2¢Z), and the change of coordinates
Q = Q(z) is given by

g1 = 2z,

@ = qf -z, (6)
do = g3 — B2y +723 — 624 + y2120,

@2 = q)+dz+ Pz

Note that the dynamics of the ¢; and §; variables,
which correspond to z3 and z, is exactly recovered,
thanks to the partial feedback linearization performed
in advance on the original system. Instead, the use of
the nilpotent form for ¢ and ¢ will induce an approx-
imation error whose magnitude can be made arbitrar-
ily small by reducing T>. Besides, the expression of f
shows that z; = t, which is true in general for nilpotent
approximations when a drift term is present.

4.2 Design of the control strategy
As a preliminary step, we highlight the peculiar behav-
ior of the considered control system. The assumption
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Figure 2: The profile of the cyclic open-loop control u in
each iteration

that u is cyclic of period T3, and the use of egs. (6)
imply

=
=

ZQ(TZ) = O,
Z3(T2) =0.

g =g =0
a =q

Hence,
(M

showing that the variation of the passive joint position
along the cycle does not depend on the particular con-
trol input, but only on its period and on the initial
velocity ¢£. Moreover, we have

Ag =g —q} = Ga(Ta) = ¢4T>,

Agy = ¢ —¢f = —624(Tp).

Performing some computations (see [26]) we obtain

T2
/O zgu)dt_xcg@g)z/o

In the right hand side of the above expression, the sign
of the first term does not depend on the choice of the
specific cyclic input, but only on ¢4, while the second
term is o((¢1)%). Hence, the approximating system is
not STLC at equilibrium points®. In spite of this, the
system is controllable, as we will show constructively.
At this point, we choose a specific class of cyclic inputs.
In particular, assume that u is the piecewise-constant
function shown in Fig. 2, with duration 7% and ampli-
tude A. For such input, we have

Ty pr 6 T2
/ / / u(t)dtdfdr=0 = / 23(t) dt=0,
o JoJo 0

and eq. (8) implies

T2

il z3(t) dt. (8)

Aq2 = K232C2

(9)

which shows that, at each control iteration, we can ob-
tain only Agy of the same sign of sin(2q}), i.e., positive
for ¢ in the first and third quadrant and negative in
the second and the fourth. As for the variation Agy,
eq. (7) must be applied.

1This can be also verified by directly constructing the nilpo-
tent approximation at an equilibrium point.



In order to meet the iterative steering paradigm, we
must guarantee that the final error contracts, i.e.,

lg% — ¢ < mled — gkl (10)
I < melddl, (11)

with 7,2 < 1. However, in view of the lack of the
STLC property for our approximating system, entailed
by egs. (7) and (9), the above conditions can be satis-
fied only in particular situations.

For example, assume that ¢g¢ belongs to the first quad-
rant Q;. If (¢4, ¢2) verify

@ <0, g5 >q8 q €, (12)

one can directly apply the proposed iterative steering
technique using the open-loop control u of Fig. 2 in
which:

1. The duration T, is chosen so as to satisfy eq. (10)
according to eq. (7).

2. The amplitude A is chosen so as to satisfy eq. (11)
with the aid of eq. (9).

Note that the resulting control law is a continuous func-
tion of the initial conditions (qé ,d4). Hence, the con-
traction phase yields exponential convergence to the
desired equilibrium point (¢,0).

If, on the other hand, any of the (12) does not hold, one
can easily verify that it is not possible to satisfy both
the conditions (10-11) while approaching the desired
configuration. Therefore, before we can apply the iter-
ative steering technique it is in this case necessary to
attain an initial condition (qf,¢}) satisfying eqs. (12).
This transition phase can be executed in finite time as
follows: if the initial velocity of the second joint is neg-
ative, keep it constant until ¢ enters Qy, else keep it
constant until ¢g; enters the Q; or Q3, where the sign
of g5 can be made negative. Note that, in order to keep
g2 constant one simply sets u = 0.

The above procedure can be improved by minimizing
the duration of the transition phase by a clever choice
of the arm ‘maneuvers’. The cases qg € Qs, Q3 0or Q4
can be treated in a similar way.

4.3 Simulation Results

In order to illustrate the performance of the proposed
control strategy, we present some simulation results for
a 2R robot with K = 0.5. We have assumed that, at
the end of the alignment phase, ¢ = /8 rads and
¢} = 0.23 rads/s, while the desired configuration of the
passive joint is qg = /4 rads.

Being ¢¢ ¢ Q; and ¢} > 0, the control strategy of
Sect. 4.2 prescribes the execution of a transition phase,
in which ¢, is kept constant until g, enters Qo, where
g2 can be made negative. As ¢o returns in Q, the
contraction phase takes over. By properly tuning the
contraction rates on gs and ¢o, it has been possible to
use a constant duration T =1 s for all iterations.

o8r

08t

ca4r

PP

02

30
time (s)

Figure 3: Errors samples for g2 (rads, solid) ¢, (rads/sec,
dotted) during the second control phase

30
time (s)

Figure 4: Error on ¢; (rads) during the second control
phase )

Figure 3 shows the error samples for ¢» (solid)
and ¢o (dotted) during the second control phase
(transition+contraction) with sampling time of 1 s,
while in Fig. 4 the complete time history of the g2
error is reported. Note the constant velocity of the
second joint at the beginning of the transition phase
and the exponential convergence rate during the con-
traction phase.

5 Conclusions

We have presented a solution approach for the stabi-
lization problem of a planar horizontal 2R robot with a
single actuator at the base. Such system, which is sub-
ject to a second-order nonholonomic constraint, is not
smoothly stabilizable; moreover, the presence of a drift
term in the dynamic equations complicates remarkably
the control synthesis. The stabilization strategy con-
sists of three phases, namely (i) alignment, in which
the first joint is brought to its desired position, (%)
transition, where simple maneuvers are executed to ob-
tain the correct initial condition for (%) contraction,
based on the iterative application of a suitable open-
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loop control designed for a nilpotent approximation of
the system.

The proposed method can be extended to the large
class of underactuated mechanical systems, which are
often found in robotic applications. We are currently
implementing the controller on a prototype 2R robot
available in our laboratory.
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