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Abstract 
We prove that the complete dynamic model of robots with 
elastic joints can always be fully transformed into a linear, 
controllable, and input-output decoupled system through 
the use of nonlinear dynamic state feedback. 

1. INTRODUCTION 
The presence of flexibility concentrated at the joints is a 
common aspect in many current industrial robots, when 
motion transmission elements such as harmonic drives, 
transmission belts and long shafts are used [I]. The dy- 
namic displacement between the position of the driving 
motors and that of the driven links requires doubling the 
number of generalized coordinates needed to describe the 
mechanical system w.r.t. the rigid case. 
Several authors have considered the dynamic modeling 
and the control problem in the presence of joint elastic- 
ity [2]. There are mainly two different modelling assump 
tions for multi-link elastic joint robots. The complete 
model assumes that the rotors of the actuators have uni- 
form mass distribution and center of mass on the rotation 
axis [3]. The reduced model assumes further that the ki- 
netic energy of the rotors is due only to their spinning 
angular velocity [4]. 
In 141, it is shown that the reduced model always satis- 
fies the conditions for full linearization via static state 
feedback. This allows to completely solve the trajectory 
tracking problem using a nonlinear control law, by taking 
advantage of the feedback transformation into a linear 
system. 
On the contrary, it was first shown in [5] that the com- 
plete model of a 3R robot with elastic joints violates the 
necessary conditions for linearization via static state feed- 
back. If the extra terms that characterize the complete 
model are neglected and the feedback linearizing control 
design is carried out based on the reduced model, signif- 
icant errors may arise in the closed loop [SI. An attempt 
to solve the tracking problem using the complete model 
is provided in 171, but only a local result is found there. 
In [8, 91, the use of the more general class of dynamic 
state feedback control laws has been first proposed for the 
complete model, in order to achieve full linearization and 
decoupling, useful for obtaining global tracking results. In 
particular, the overall design of a fourth-order nonlinear 
dynamic compensator is presented in [8] for a planar 2R 
arm (an eight-dimensional state-space system). The ob- 
tained closed-loop system is equivalent to two chains of six 
input-output integrators, for which the tracking problem 
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can be tackled with any desired linear control technique. 
In 191, a case-by-case study was performed on several kine- 
matic structures with joint elasticity. 
Up to now, there is no rigorous proof that the complete 
model can always be transformed into a linear and decou- 
pled system via dynamic state feedback. In this note, we 
show that this property holds in general. For this pur- 
pose, we take advantage of some insights in the structure 
of the model, as shown in [3], and of an easy-techeck suf- 
ficient condition for full linearization via dynamic state 
feedback introduced in [lo]. 

2. DYNAMIC MODEL OF ELASTIC JOINT ROBOTS 

We consider the complete dynamic model of a multi-link 
robot with elastic joints given in [3]: 

Bi(qe)& +Ba(qe)ij, + [CAi(qe,qm) + cs i (qe ,qe ) ]Qe  
+ CB2(Qe, Q e ) b  + Ke(qt - qm) + g(qe) = 0 

eT(qe)qe + B34m + Css(qe ,  de)& + Ke(qm - ge)  = U, 

where qe E lR” and qm E &In denote the link and motor an- 
gular positions, respectively. The positive definite inertia 
matrix is partitioned in n x n blocks as 

(1) 

while the C-terms denote the centrifugal and Coriolis 
forces, g(qe) is the gravity force acting on the links, 
K, = diag(k1,. . . , &} is the joint stiffness matrix, and 
U is the motor input torque. 
The inertia matrix and the gravity terms are independent 
from qm. The submatrix Ba(qt) has a strictly upper trian- 
gular structure and its non-zero elements have the special 
dependence B2.ij = B ~ , i j ( q e , i , .  . . ,qe,j-i)  ( j  > a). More- 
over, B3 is a diagonal matrix containing the inertia of the 
rotors around their rotation axis. Finally, one has also 
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where A’ denotes the ith row of a matrix A. 
We note that in the reduced dynamic model of [4], the 
offdiagonal block B 2  of the inertia matrix is always zero. 
Matrix Ba is found to be zero also for particular kinematic 
arrangements, even with the complete modeling. When- 
ever B2 = 0, the model (1) is linearizable via static state 
feedback. 
For tracking purpwes, we define the link position vector 
qt as the controlled output. 

3. FULL LINEARIZATION VIA DYNAMIC STATE FEEDBACK 

We recall the general sufficient condition of [lo] for full 
linearization via dynamic state feedback of square nonlin- 
ear systems of the form 

(3) 

where x E R”, u E Em, y E Rm, f and the m col- gi 
are analytic vector fields, and h is an analytic mapping. 
For the robot model in eq. (l), p = 4n. 
The goal is to find a dynamic statefeedback campemator 

(4) t =  4 c ,  .) + b(C, x)v 
U =  c(c, + 4 c ,  x)v, 

with compensator state ( E R’ and v E Bm, such that 
the closed-loop system (3)-(4) becomes, after a suitable 
change of coordinates z = b((L, x), 

(5 )  
B = A.z+Bv 
y = cz, 

with (A, B) controllable and (A, C) observable. 
We make use a b  of the concept of zero-dynamics of a 
system in the form (3). This is the internal dynamics left 
in the system when the output is forced to be zero (or 
constant) at al l  times, under the action of a proper input. 
Then, the following result holds: 

Theorem 1. [lo] Suppose that the system (3): 

i) is invertible; 

ii) has no zero-dynamics 

Then, the system (3) can be fully linearized via dynamic 
state feedback of the form (4). 

The two assumptions of Theorem 1 guarantee that, when 
the decoupling procedure of [ll] is applied, the repeated 
use of invertible static state feedback plus dynamic ex- 
tension by input integrators does not introduce zero- 
dynamics when the original system has none. The invert- 
ibility assumption guarantees that, after a finite number 
of steps, the decoupling procedure ends up with an ex- 
tended system that can be decoupled via static feedback. 
Moreover, the absence of zero-dynamics of the final ex- 
tended system implies that the sum of the associate rel- 
ative degrees equals the dimension p + U of the extended 
state space. Therefore, the system can be converted by 
a feedback transformation into a completely controllable 
and observable linear system. Moreover, due to the pro- 
cedure followed, the linear system ( 5 )  will also be input- 
output decoupled. 

4. DYNAMIC FEEDBACK LINEARIZATION OF ELASTIC 
JOINT ROBOTS 

In order to apply Theorem 1, we need to verify the validity 
of its two assumptions. For, we first show that the robot 
model (l), with output y = qt,  has no zero dynamics. 

Lemma 1. If y ( t )  = qt (constant) for all t 1 0, then the 
state (qt(t),qm(t), qt(t), qm(t)) of the robot is constant for 
all t 2 0, together with the input u(t). 

Proof. If y qt, then qt = qt = 0. Under these condi- 
tions, the first matrix equation in (1) reduces to 

BZ(qt)am + Ke(@ - qm) + g(qt) = 0. (6) 

Starting from the last row of (6), using the upper tri- 
angular structure of Ba and the diagonality of K,, and 
proceeding backward, one has recursively 

Thus, (Qt(t),Qm(t),Qt(t),Qm(t)) = (qt,qm,O,O) = m S t ,  
with qm = qt + K;’g(@). From the second matrix equa 
tion in (l), it follows that u(t) = Ke(qm - @), constant 
for all t 2 0. 0 
In order to show that the robot system (1) is invertible, 
we provide directly the unique input associated with a 
desired evolution of the output. 

Lemma 2. Given yd(t )  = q i ( t ) ,  a smooth reference 
link trajectory for all t 2 0, then the motor trajectory, 
together with its derivatives, and the control input are 
uniquely determined for all t 2 0. 

Proof. We will first show how, from a given qf( t )  together 
with its derivatives, it is possible to compute in closed 
form the associated trajectory q$ (t) for qm. 
Consider the nth row of the first equation in (l), with 
(qt, qt, 4t) substituted by (d,  &, ii,“), 

In this equation, the terms in the 1.h.s. are known func- 
tions of time, except for the second, the fourth, and the 
sixth one. However, since BT = 0 and B2 is independent 
from q+, using the expressions (2), one has 

Therefore, eq. (7) becomes linear in the unknown qm,,, 
and we cam solve for it as 

where 

Thus, q&,n(t) and its derivatives are actually known func- 
tions of time. 
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Due to the structure of B2, one has also that 

and 
n-1 d 

CA,  (qttqm) = c Z ' ( d , C , n )  
c n - 1  d d 

B2 ( q t , & )  = ( 0  0 0 * ) *  

Therefore, the only term in eq. (8) depending from an un- 
known motor variable is the linear term in qm,,,-l. Thus, 
from eq. (8)  we can solve for 

d 1 d qmp-1 = qt,n-l(t) + - fn- l ( t )  = qm,n-l(t), 
kn-1 

where f n - l ( t )  is again a known function of time, depend- 
ing on the quantities (q,",q,",qt,qi,n,q&n). 
From row ( n  - 2) of the first matrix equation in (I), one 
can proceed in the same way and recursively deduce the 
whole 9% and, by symbolic differentiation, q& and q:. 
Finally, from the second matrix equation in (l), one has 

ud(t)  = B2 ((?e)@ + B d + c B 3 ( q t , q t ) d t  + K e ( q $ - q i ) .  
T d d  d d d  

0 
Remark. In the above proof we have used the fact that 
CBZ turns out to be strictly upper triangular and that 
Gl does not depend on any q m , j ,  for j 5 i ,  i = 1, .  . . , n. 
We can state now our main result. 

Theorem 2. Elastic joint robots modeled by eq. (l), with 
output y = qt, are always globally feedback linearizable 
via dynamic state feedback. 
Proof. n o m  Lemma 1, the dynamic model (1) has no 
zero-dynamics since there is no internal dynamics consis- 
tent with the constraint ( t )  = mnst. n o m  Lemma 2, a 
unique state evolution J ( t )  ( q ~ ( t > , q ~ ( t ) , * ~ ( t ) , q ~ ( t ) )  
and input ud( t )  are associated with a given output trajec- 
tory yd( t )  so that the robot system is left invertible and, 
being square, invertible. Therefore, Theorem 1 applies. 0 
As a consequence of Theorem 2, it is possible to achieve 
global and stable output tracking via state feedback 
for the complete model of robots with elastic joints. 
Once eq. (1) is rendered, via dynamic extension, feed- 
back equivalent to a controllable and observable lin- 
ear system, it is easy to design a controller with arbi- 
trary linear error dynamics that asymptotically tracks 
any smooth desired output trajectory gf,  starting from 
any initial state. We note that the desired state trajec- 
tory ( g , " ( t ) , q i ( t ) , q , " ( t ) , q i ( t ) )  can be computed off line, 
as shown in the proof of Lemma 2. 

5. CONCLUSIONS 

We have shown that the complete dynamic model of 
robots with elastic joints can always be fully transformed 
into a linear and decoupled system through the use of 
dynamic state feedback. The closed-loop system is diffeo- 
morphic to chains of input-output integrators of proper 

length, whose stabilization is easy. As a result, the tra- 
jectory tracking problem is globally solvable also for the 
complete model of robots with elastic joints, at least in 
the nominal case. 
The actual construction of the dynamic compensator and 
the associated coordinate transformations are still a diffi- 
cult task to be defined in a general way. This is because 
the dimension Y of the compensator depends on the par- 
ticular kinematic arrangement of the arm. An example of 
such a controller can be found in [8]. 
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