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Abstract

We prove that the complete dynamic model of robots with
elastic joints can always be fully transformed into a linear,
controllable, and input-output decoupled system through
the use of nonlinear dynamic state feedback.

1. INTRODUCTION

The presence of flexibility concentrated at the joints is a
common aspect in many current industrial robots, when
motion transmission elements such as harmonic drives,
transmission belts and long shafts are used [1]. The dy-
namic displacement between the position of the driving
motors and that of the driven links requires doubling the
number of generalized coordinates needed to describe the
mechanical system w.r.t. the rigid case.

Several authors have considered the dynamic modeling
and the control problem in the presence of joint elastic-
ity [2]. There are mainly two different modelling assump-
tions for multi-link elastic joint robots. The complete
model assumes that the rotors of the actuators have uni-
form mass distribution and center of mass on the rotation
axis [3]. The reduced model assumes further that the ki-
netic energy of the rotors is due only to their spinning
angular velocity [4].

In [4], it is shown that the reduced model always satis-
fies the conditions for full linearization via static state
feedback. This allows to completely solve the trajectory
tracking problem using a nonlinear control law, by taking
advantage of the feedback transformation into a linear
system.

On the contrary, it was first shown in [5] that the com-
plete model of a 3R robot with elastic joints violates the
necessary conditions for linearization via static state feed-
back. If the extra terms that characterize the complete
model are neglected and the feedback linearizing control
design is carried out based on the reduced model, signif-
icant errors may arise in the closed loop [6]. An attempt
to solve the tracking problem using the complete model
is provided in [7], but only a local result is found there.
In [8, 9], the use of the more general class of dynamic
state feedback control laws has been first proposed for the
complete model, in order to achieve full linearization and
decoupling, useful for obtaining global tracking results. In
particular, the overall design of a fourth-order nonlinear
dynamic compensator is presented in [8] for a planar 2R
arm (an eight-dimensional state-space system). The ob-
tained closed-loop system is equivalent to two chains of six
input-output integrators, for which the tracking problem
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can be tackled with any desired linear control technique.
In [9], a case-by-case study was performed on several kine-
matic structures with joint elasticity.

Up to now, there is no rigorous proof that the complete
model can always be transformed into a linear and decou-
pled system via dynamic state feedback. In this note, we
show that this property holds in general. For this pur-
pose, we take advantage of some insights in the structure
of the model, as shown in [3], and of an easy-to-check suf-
ficient condition for full linearization via dynamic state
feedback introduced in [10].

2. DYNAMIC MODEL OF ELASTIC JOINT ROBOTS

We consider the complete dynamic model of a multi-link
robot with elastic joints given in [3]:

Bi(ge)de + Ba(ge)dm + [Ca1(ge, 4m) + C1(qe, ge)] e
+CB2(qe, de)gm + Ke(ge — gm) +9(ge) =0 (1)
BT (ge)ée + Baiim + CBs(qe, de)ge + Ke(gm — qe) = u,

where g¢ € R" and ¢,, € JR" denote the link and motor an-
gular positions, respectively. The positive definite inertia
matrix is partitioned in n X n blocks as

B, By
s = [5G "5°]

while the C-terms denote the centrifugal and Coriolis
forces, g(qe) is the gravity force acting on the links,
K. = diag{k,...,kn} is the joint stiffness matrix, and
u is the motor input torque.

The inertia matrix and the gravity terms are independent
from qun. The submatrix B2(ge) has a strictly upper trian-
gular structure and its non-zero elements have the special
dependence Bz,,'_,‘ = Bz,ij(qg,.',.. . ,qg,,--l) (] > i). More-
over, Bs is a diagonal matrix containing the inertia of the
rotors around their rotation axis. Finally, one has also

8By 8Bl .
Ca1 q(‘lt, qm) (alﬂ P %ﬁ) qm
1 [ 78By; 8B} 8B\ .
CB1,:5(ge,4e) = =3 |4 [ 7 ——t 4 (8qe 8q¢1~) qc]
5 "
. 1 3B 8(Bz)"
Cpr2,i;(ae,e) = 5 ( jt —2 E)qj.) Qt) 2)

.70B3 j;
0ge

_oBmy qt) ,

A 1
CB3,ij(ge, §e) = 3 (q Bqe,;



where A® denotes the ith row of a matrix A.

We note that in the reduced dynamic model of [4], the
off-diagonal block B; of the inertia matrix is always zero.
Matrix B is found to be zero also for particular kinematic
arrangements, even with the complete modeling. When-
ever B; = 0, the model (1) is linearizable via static state
feedback.

For tracking purposes, we define the link position vector
q¢ as the controlled output.

3. FULL LINEARIZATION VIA DYNAMIC STATE FEEDBACK

We recall the general sufficient condition of [10] for full
linearization via dynamic state feedback of square nonlin-
ear systems of the form

f@) + 320, (@)
h(z),

where z € R*, u € R™, y € IR™, f and the m columns g;
are analytic vector fields, and h is an analytic mapping.
For the robot model in eq. (1), x = 4n.

The goal is to find a dynamic state-feedback compensator

T
Y

3

a(¢,z) + b((, z)v
(¢, z) +d({, z)v,

with compensator state { € JR” and v € R™, such that
the closed-loop system (3)-(4) becomes, after a suitable
change of coordinates z = ¢((, z),

¢ =

u

)

Az + By
Cz,

z

" ©®)

with (A, B) controllable and (A, C) observable.

We make use also of the concept of zero-dynamics of a
system in the form (3). This is the internal dynamics left
in the system when the output is forced to be zero (or
constant) at all times, under the action of a proper input.
Then, the following result holds:

Theorem 1. [10] Suppose that the system (3):

i) is invertible;
ii) has no zero-dynamics.

Then, the system (3) can be fully linearized via dynamic
state feedback of the form (4).

The two assumptions of Theorem 1 guarantee that, when
the decoupling procedure of [11] is applied, the repeated
use of invertible static state feedback plus dynamic ex-
tension by input integrators does not introduce zero-
dynamics when the original system has none. The invert-
ibility assumption guarantees that, after a finite number
of steps, the decoupling procedure ends up with an ex-
tended system that can be decoupled via static feedback.
Moreover, the absence of zero-dynamics of the final ex-
tended system implies that the sum of the associate rel-
ative degrees equals the dimension p + v of the extended
state space. Therefore, the system can be converted by
a feedback transformation into a completely controllable
and observable linear system. Moreover, due to the pro-
cedure followed, the linear system (5) will also be input-
output decoupled.
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4. DYNAMIC FEEDBACK LINEARIZATION OF ELASTIC
JOINT ROBOTS

In order to apply Theorem 1, we need to verify the validity

of its two assumptions. For, we first show that the robot
model (1), with output ¥ = g, has no zero dynamics.

Lemma 1. If y(t) = gz (constant) for all ¢ > 0, then the
state (ge(t), gm(t), ge(t), dm(t)) of the robot is constant for
all t > 0, together with the input u(t).

Proof. If y = G, then ¢¢ = §e¢ = 0. Under these condi-
tions, the first matrix equation in (1) reduces to

(6)

Starting from the last row of (6), using the upper tri-
angular structure of Bz and the diagonality of K., and
proceeding backward, one has recursively

B3(3e)gm + Ke(@e — gm) + 9(@e) = 0.

Gmmn = qetn + M = 4m,n = q’":ﬂ =0
kn
gm,n—1 = ql,n—l + g'n__—_l_(_ql_) = Qm,n—l = 6’":""1 =0
kn—1
gm,1 ={qea1+ ng(qu = ¢m,1 ={m,1 =0.

Thus) (ql(t)) qm(t),dl(t);qm(t)) = (q—l’ qm, 0: 0) = const,
with §m = @ + K.* ¢(ge). From the second matrix equa-
tion in (1), it follows that u(t) = K.(gm — q¢), constant
forallt > 0. O

In order to show that the robot system (1) is invertible,
we provide directly the unique input associated with a
desired evolution of the output.

Lemma 2. Given ya(t) = ¢&(t), a smooth reference
link trajectory for all ¢ > 0, then the motor trajectory,
together with its derivatives, and the control input are
uniquely determined for all ¢ > 0.

Proof. We will first show how, from a given ¢f (t) together

‘with its derivatives, it i8 possible to compute in closed

form the associated trajectory g2 (t) for gm.
Consider the nth row of the first equation in (1), with
(e, e, Ge) substituted by (g7, 47, ds),

B? (¢)df + [Chi(a?, dm) + CB1(af,d8)] 4¢
+C33(8, 68 )im + kn(gen — gmm) + gn(gf) = 0.

In this equation, the terms in the Lh.s. are known func-
tions of time, except for the second, the fourth, and the
sixth one. However, since Bf = 0 and B; is independent
from ge,», using the expressions (2), one has

Ci1(g2,4m) = CBa(g¢,d¢) = 0.

Therefore, eq. (7) becomes linear in the unknown g¢m
and we can solve for it as

™

1
Immn = qg,n(t) + E In (t) = q;in," (t)’
where
Fa(t) = BT (¢€)dé' + CB1 (g, 48)d¢ + 9n(q)-

Thus, g2, ,,(¢) and its derivatives are actually known func-
tions of time.



Next, consider row (n — 1),
(‘Iz)Qz + B3N (qd )im
[CX; (g¢,4m) +C (q » e )] ¢ + Cps ' (6¢,d2)im (8)
+kn-1 (qt,n—l - Qm,n-—l) + gﬂ—l(qg) =0.
Due to the structure of B, one has also that
B} (42)dm = Ba,(n-1yn(@En—1)Gim,m,
and
Ca1'(@f,4m) = CaT"(4F:4mm)
B2 (¢¢,47) = (0 0 0 ).

Therefore, the only term in eq. (8) depending from an un-
known motor variable is the linear term in ¢m n—1. Thus,
from eq. (8) we can solve for

gmmn-1= qt n—1 (t) + .fn—~1(t) = Qm,n—l(t),
where f,_1(t) is again a known function of time, depend-
ing on the quantities (¢, d¢,dc’, 4 n, Gra,n)-

From row (n — 2) of the first matrix equation in (1), one
can proceed in the same way and recursively deduce the
whole ¢%, and, by symbolic differentiation, ¢, and §2.
Finally, from the second matrix equation in (1), one has

u?(t) = BY (¢8)df + B + Cpa(a?, 48)ds + Ke(af — o).
]

Remark. In the above proof we have used the fact that
Cp2 turns out to be strictly upper triangular and that
C%4 does not depend on any gm,j, for j <i,i=1,...,n

We can state now our main result.

Theorem 2. Elastic joint robots modeled by eq. (1), with
output y = qe, are always globally feedback linearizable
via dynamic state feedback.

Proof. From Lemma 1, the dynamic model (1) has no
zero-dynamics since there is no internal dynamics consis-
tent with the constraint ;';’(t) = const. From Lemma 2, a
unique state evolution z%(t) = (g§(t), ¢2.(t), 44 (¢), q,,,(t))
and input u¥(t) are associated with a given output trajec-
tory y%(t) so that the robot system is left invertible and,
being square, invertible. Therefore, Theorem 1 applies. E]

As a consequence of Theorem 2, it is possible to achieve
global and stable output tracking via state feedback
for the complete model of robots with elastic joints.
Once eq. (1) is rendered, via dynamic extension, feed-
back equivalent to a controllable and observable lin-
ear system, it is easy to design a controller with arbi-
trary linear error dynamics that asymptotlca.lly tracks
any smooth desired output trajectory ¢§, starting from
any initial state. We note that the desired state trajec-
tory (g¢(t), gm (£),4£(t), 4m(t)) can be computed off line,
as shown in the proof of Lemma 2.

5. CONCLUSIONS

We have shown that the complete dynamic model of
robots with elastic joints can always be fully transformed
into a linear and decoupled system through the use of
dynamic state feedback. The closed-loop system is diffeo-
morphic to chains of input-output integrators of proper
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length, whose stabilization is easy. As a result, the tra-
jectory tracking problem is globally solvable also for the
complete model of robots with elastic joints, at least in
the nominal case.

The actual construction of the dynamic compensator and
the associated coordinate transformations are still a diffi-
cult task to be defined in a general way. This is because
the dimension v of the compensator depends on the par-
ticular kinematic arrangement of the arm. An example of
such a controller can be found in [8].
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