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Abstract— This paper presents a unified approach to de-
tection and isolation of both actuator faults and unexpected
collisions for a two-link robot with a flexible forearm. The
proposed approach is sensorless, i.e., no dedicated exteroceptive
sensors are considered, and is based on the design of residuals
to be used as monitoring filters. The method has been tested by
extensive simulations on the Flexarm robot used as case study.
The reported results show the efficacy in detecting and isolating
faults in the actuators or collisions on the robot links.

I. INTRODUCTION

The demand for light and adaptable mechanical structures
in cutting-edge industrial sectors, such as aerospace or
biomedical, has led to an increasing interest for systems
with flexible components. Such enhanced paradigm for
mechanical systems had a remarkable impact on the robotic
research too, with the creation of the new branch of soft
robotics [1]. Robots with elastic joints or flexible links are
usually lighter and energy efficient, increase the safety level
in collisions, and may provide better adaptive characteristics,
for example in grasping tasks.
Because of these promising features, many control problems
have been investigated for flexible manipulators [2], [3],
[4], [5], [6]. While flexibility enables new abilities and
desirable performance, it introduces also a larger complexity
in the dynamical modeling and control design, e.g., by
requiring the definition and evaluation of additional state
variables. Indeed, the general model of a flexible robotic
arm is described by an infinite-dimensional system, but
two finite-dimensional model types are commonly used.
The first one is based on finite-element approximations
of the distributed deformation [7], while the second one
consists in selecting a finite number of terms, referred to
as deformation modes, from the series expression of the
distributed solution [8].
As for other mechanical systems, flexible manipulators are
subject to actuator faults that may alter the produced torques,
with a consequent loss of performance or even instability. To
prevent and avoid unsafe operational conditions, monitoring
schemes are usually implemented with the aim of detecting,
and possibly isolating, such faults. The risk of collisions is
an issue also for flexible manipulators. As in the case of
actuator faults, collision detection is typically performed by
dedicated filters [9], referred to as residuals, that supervise
the difference between the commanded torques at the joints
and the actual ones, without the use of torque sensors. In
particular, our method for residual design relies on physical
principles and leads to an estimation of the extra torques at
the joint level, reflecting the unknown external force applied
on the link structure due to a collision/contact. As such,
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it has been used already as a valuable tool for rigid and
massive robots in industrial contexts, both for safety and
in human-robot collaborative tasks [10]. To compute these
model-based residuals, the values of some state variables are
needed, and these can be provided by direct measurements
(e.g., through encoders), obtained by numerical derivation,
or estimated by dynamic observers. The use of residuals
for rigid robots, or for robots with elastic joints, leverages
a well established setup. However, the generalization to
robots with flexible links is still open.
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Fig. 1. Sketch of the Flexarm robot.

The aim of this paper is to present the design and
the application of residuals to actuator faults and collision
detection/isolation in a two-link robotic manipulator with
a flexible forearm. For this, we will consider a finite-
dimensional model of the flexible arm based on a finite
number of deflection modes. We assume in the following that
the entire robot state can be measured, typically through a
combination of encoders, optical sensors, and strain gauges,
while the commanded torques at the two joints are also
easily available. We shall see that the designed residuals are
able to detect and identify actuator faults on both joints and
collisions occurring on either link of the robot. Furthermore,
the same residuals allow to distinguish between an actuator
fault and a collision on the second link.

The paper is organized as follows. In Sec. II, a short
description of the Flexarm robot is given, presenting also the
structure of its dynamic model. In Sec. III, the formulation of
a momentum-based residual signal is presented in this con-
text, separating the rigid from the flexible contributions. In
Sec. IV, simulation results are reported, considering several
situations of actuator faults and collisions. Conclusions and
future work are discussed in Sec. V.
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II. FLEXIBLE ROBOT ARM MODEL

A. Motivating example

In [11], a two-link planar manipulator with revolute joints
and a flexible forearm has been presented, called Flexarm.
Despite of its limited complexity, the peculiarity of this robot
is that it includes the most relevant nonlinear and interacting
dynamic effects of interest. The mechanism is mounted on
a fixed horizontal basement, as sketched in Fig. 1. The
upper link is very stiff with respect to the forearm, whose
structure is designed in such a way to have flexibility only
in the horizontal plane of motion, being relatively stiff in
the vertical plane and with respect to torsion [11]. The arm
is actuated by two DC motors located at the joints, in a
direct-drive arrangement. No gear-boxes are used to couple
the motors to the links, as they would introduce in the system
undesired effects like backlash, friction and joint elasticity.

B. The dynamic model

Inspired by the previous example, we aim at deriving a
general model for a two-link robot with flexible forearm.

The first link is rigid and we denote with θ1 the related
joint angle. In order to study the deflection of the flexible
arm during motion, i.e., to compute the low frequency modes,
the forearm link is modeled as an Euler-Bernoulli beam of
length `2, uniform density, and constant elastic properties.
With reference to Fig. 2, for a link point s ∈ [0, `2], w(s, t)
is the bending deflection measured from the axis passing
through the rotation axis of joint 2 and the Center of Mass
(CoM) of the forearm. Accordingly, θ2 is the angle between
this axis and the first rigid link. An approximation of order
n of the link deflection can be expressed as

w(s, t) =

n∑
i=1

φi(s)δi(t), (1)

with the time-varying coordinates δi(t) associated to the
mode shapes φi(s) (for further details, see [11], [8]).
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Fig. 2. Sketch of the Flexarm angles and deflection.

The dynamic model of the robot (neglecting gravity, which
has no influence on this planar robot) can be expressed

according to the Euler-Lagrange formulation as

M(q)q̈ + c(q, q̇) +Kq +Dq̇ = Gu, (2)

where q=
(
θT δT

)T
= ( θ1 θ2 δ1 . . . δn )

T ∈ R2+n

is the vector of the generalized coordinates, M(q) > 0
is the inertia matrix, c(q, q̇) is the Coriolis and centrifugal
vector, and K ≥ 0 is the stiffness matrix of the system. Joint
viscous friction and modal damping coefficients are arranged
on the diagonal of matrix D ≥ 0, while the input matrix G
transforms the motor torques u ∈ R2 into generalized forces
performing work on q.

Let the constant terms φie and φ′i0 be defined as

φie = φi(s)|s=`2 , φ′i0 =
∂φi(s)

∂s

∣∣∣∣
s=0

, i = 1, . . . , n.

(3)
Accordingly, the input matrix G takes the form

G =

(
I2×2
Gδ

)
, Gδ =

 0 φ′10
0 φ′20
· · · · · ·
0 φ′n0

 , (4)

with Gδ ∈ Rn×2, while the stiffness matrix K is

K =

(
02×2 02×n
0n×2 Kδ

)
, Kδ = diag

(
ω2
1 . . . ω2

n

)
,

(5)
where Kδ ∈ Rn×n contains the angular eigenfrequencies
ωi, i = 1, . . . , n, of the flexible forearm. Modal damping is
included by specifying

D =

(
02×2 02×n
0n×2 Dδ

)
, Dδ = diag ( 2ζ1ω1 . . . 2ζnωn ) ,

(6)
where the first two zeros on the diagonal of D reflect the fact
that friction at the joints is very small and can be neglected.

The relevant outputs for this system that are typically
considered for control are the angular positions θc1 and θc2
of the two motors (‘clamped’ to the link bases), which can
be measured by encoders, and the tip deflection ytip of the
forearm, which is measured in the Flexarm by an optical
sensor mounted at the base of the forearm. These quantities
can be expressed as linear combinations of the components
of q, namely as

θc =

(
θc1
θc2

)
=

(
θ1

θ2 +
∑n
i=1 φ

′
i0δi

)
, (7)

and

ytip =
w(`2, t)

`2
+ θ2 − θc2 =

n∑
i=1

(
φie
`2
− φ′i0

)
δi. (8)

III. RESIDUAL FOR ACTUATOR FAULT/COLLISION
DETECTION AND ISOLATION

During motion, actuator faults and/or collisions between
the manipulator and the environment (or a human operating
in the robot workspace) may occur as unforeseen events.

In order to automatically recognize when an actuator
fails or when a collision happens (without resorting to
exteroceptive sensors, such as a tactile skin or force/torque
sensors), the physically oriented design of the residual signal
in [9], [12] can be exploited also in the present case, both
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for detecting the occurrence of a fault/collision as well as
for isolating the interested joint/link.

With reference to the Flexarm, we assume to have at
disposal information about the full state x of the system,
namely

x =
(
qT q̇T

)T
=
(
θ1 θ2 δ1 . . . δn θ̇1 θ̇2 δ̇1 . . . δ̇n

)T
.

(9)

We will define in general a residual vector for capturing an
unknown (in amplitude and sign) extra torque uF ∈ R2

that may appear in the dynamic model (2), as a result of an
actuator fault or a collision. We would have then

M(q)q̈ + c(q, q̇) +Kq +Dq̇ = G (u+ uF ) . (10)

For what follows, it is useful to decompose the inertia matrix
M(q) in blocks as

M(q) =

(
Mθθ(θ2, δ1, . . . , δn) Mθδ(θ2)

MT
θδ(θ2) In×n

)
, (11)

with Mθθ ∈ R2×2 and Mθδ ∈ R2×n. Moreover, the
Coriolis and centrifugal vector c(q, q̇) can be rewritten in
the factorized form

c(q, q̇) = S(q, q̇)q̇ =

(
Sθθ Sθδ
Sδθ Sδδ

)
, (12)

where the (non-symmetric) matrix S is obtained by symbolic
derivation of the elements of the inertia matrix M using the
Christoffel’s symbols [13] and is such that Ṁ−2S is skew-
symmetric (or, equivalently, Ṁ = S+ST ). According to the
inertia decomposition, we have the dimensions of the blocks
Sθθ ∈ R2×2, Sθδ ∈ R2×n, Sδθ ∈ Rn×2 and Sδδ ∈ Rn×n.

The generalized momentum p of the flexible manipulator
is defined (and decomposed similarly) as:

p =

(
pθ
pδ

)
=M(q)q̇ ⇒ pθ = Mθθθ̇ +Mθδδ̇

pδ = MT
θδθ̇ + Iδ̇

,

(13)
Its time derivative is computed as:

ṗ =Mq̈ + Ṁq̇ =

= (G(u+ uF )− Sq̇ −Kq −Dq̇) +
(
S + ST

)
q̇

=ST q̇ −Dq̇ −Kq +G(u+ uF ). (14)

In particular, we can split eq. (14) in

ṗθ = S
T
θθθ̇ + STδθδ̇ + u+ uF

ṗδ = S
T
θδθ̇ + STδδδ̇ −Dδδ̇ −Kδδ +Gδ(u+ uF ). (15)

Although a ‘complete’ residual r ∈ R2+n could be designed,
for our purposes it is sufficient to consider only the dynamics
of pθ for the definition of an useful residual. We define rθ ∈
R2, with as many elements as the number of robot joints, as

rθ(t) =Kr

pθ − t∫
0

(
STθθθ̇ + STδθδ̇ + u+ rθ

)
dτ

 ,

(16)
where Kr > 0 is a 2 × 2 diagonal gain matrix. It can be
shown [9], [12] that the dynamics of the residual is

ṙθ =Kr(uF − rθ). (17)

Thus, the residual rθ(t) asymptotically recovers the value of
uF (when constant) or follows closely the dynamics of the
fault/collision torque.

Faults and collisions are detected when the residual signal
exceeds a given threshold. Moreover, a simple rule that also
isolates the fault/collision is as follows:
• actuator faults: the fault is located at the joint where

the residual signal exceeds the threshold;
• collisions: the collision is located on the last link (down-

stream from base to end effector) whose corresponding
joint has a residual exceeding the threshold.

This heuristic rule for isolation relies on the fact that actuator
faults and collisions affect the components of the residual
vector in an intrinsically different way, as will be shown in
the next section.

IV. SIMULATION RESULTS

We have simulated our detection and isolation method
considering single or concurrent actuator faults and unex-
pected collisions. The chosen platform was the planar robot
with two joints and a flexible link presented in Sec. II, with
only the first two deflection modes δ1(t) and δ2(t) included
the series expansion (1). The robot parameters used for the
simulations are those reported in [11].

To generate a torque input for a robot motion task, we
chose to control the clamped joint angles

θc =

(
θc1
θc2

)
=

(
θ1

θ2 + φ′i0δ1 + φ′20δ2

)
(18)

along a desired trajectory θc,des(t) by means of a simple
decentralized PD law

u =KP (θc,des − θc) +KD

(
θ̇c,des − θ̇c

)
, (19)

with gains

KP = diag ( 3 1 ) > 0, KD = diag ( 1.5 1 ) > 0.
(20)

The value of θ̇c in (19) is computed from (18), using the
state variables θ̇1, θ̇2, δ̇1 and δ̇2.

The results of four illustrative case studies are reported
next. In the first three, actuator faults are simulated, while in
the last one we applied an external contact force on link 1
and on link 2 during different intervals of time. In all cases,
the desired joint trajectories have been chosen as

θc1,des(t) = 2 sin(0.1πt), θc2,des(t) = 2 sin(0.2πt). (21)

A fault/collision event is detected when the following thresh-
old condition is valid:

∃ i ∈ {1, 2} s.t. |ri| ≥ rth = 0.01 [Nm]. (22)

A. Actuator faults
In the first case study, a fault on the first motor (moving

the rigid link) occurs at time tF1
= 5 s, when the motor

abruptly loses 90% of its effectiveness. In Fig. 3, it is clear
that the local PD law at joint 1 is no longer able to make
θc1 follow its desired trajectory after the fault has occurred.
The top plot in Fig. 4 shows the actual torque that the first
motor delivers to the robot (red line) and the commanded
torque computed by the controller (blue line).

The residual vector r, computed according to (16), is
shown in Fig. 5. Indeed, the fault is perfectly detected and
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Fig. 3. Case study 1. System outputs with a fault on first motor.
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Fig. 4. Case study 1. Commanded vs. actual torques.
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Fig. 5. Case study 1. Residuals with a fault on first motor.

isolated. In fact, r(t) = 0 as long as both motors are fully
operational, while the residual component r1 (purple line)
increases in magnitude and exceeds the threshold rth as soon
as the motor loses power, allowing the monitoring rule (22)
to detect the fault. Moreover, the fault is easily isolated at the
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Fig. 6. Case study 2. System outputs with a fault on second motor.
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Fig. 7. Case study 2. Commanded vs. actual torques.
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Fig. 8. Case study 2. Residuals with a fault on second motor.

first joint, due to the fact that only |r1| is above threshold. In
addition, note that the residual vector, as stated in eq. (17),
asymptotically converges componentwise to the fault torque
uF = u−uact (see the dashed black line in Fig. 5 for joint
1), where u is the torque commanded by the controller and
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uact is the actual torque delivered by the actuators.
The second case study is a dual case with respect to first

one. At time tF2 = 5 s, the second motor becomes faulty,
loosing instantaneously 90% of its power. The motion of the
relevant outputs of the robot is shown in Fig. 6, while Fig. 7
compares the commanded torque (blue line) with the actual
torque (red line). As before, the fault is perfectly detected
and isolated (|r2| > rth, whereas r1 = 0), as shown in Fig. 8.

The third case refers to a partly concurrent failure of both
actuators. Starting from time tF1 = 5 s, the first motor
actuates only 80% of the commanded torque; the second
motor exhibits the same type of faulty behavior, but starting
from time tF2 = 10 s (see Fig. 10). It is worth to note that,
despite the deviation of the outputs from their references is
rather limited (Fig. 9) and the missing torques are quite small
(Fig. 10), the residual in Fig. 11 allows to properly detect
and isolate the faults on each single motor (in a decoupled
way).
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Fig. 9. Case study 3. System outputs with faults on both motors.
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Fig. 10. Case study 3. Commanded vs. actual torques.

B. Collision on both links
The residual vector signal (16) returns a reliable esti-

mation of the external torques (subtracted or added to the
commanded ones) that are acting at the level of the robot
joints. These ‘external’ torques are detected when an actuator
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Fig. 11. Case study 3. Residuals with faults on both motors.

fails (in multiple ways, as seen in the previous examples) or
when a unknown force is exerted on the robot links from
the environment (e.g., in case of an unexpected collision).
In this fourth case study, an external force Fext = (1 1)

T ,
acting in the plane of robot motion, is separately applied to
both links, in particular at the origin of the two frames o1
and o2e (see Fig. 1). The force Fext is applied to link 1 during
the time interval from tF1,init = 10 s to tF1,fin = 12 s, while
the same force is applied to link 2 between tF2,init = 25 s and
tF2,fin = 27 s. These external forces produce torques uext that
act on the robot joints according to the usual formula

uext = −JP (q)TFext, (23)

where JP (q) is the robot Jacobian relative to the actual
position of the contact point P along the kinematic chain,
which depends in turn on the current robot configuration q.

The three system outputs θc1, θc2, and ytip, together with
the control reference values for the first two, are shown in
Fig. 12, while the commanded and actual torques acting on
the joints are reported in Fig. 13. The behavior of the residual
vector in Fig. 14 confirms that the first collision (on link 1)
affects only the residual at the first joint, while the effect of
the second collision (on link 2) propagates over both joints.
Therefore, even in this case, it is possible to distinguish the
two instances of contact.

Remark 1: Although with the residual analysis it is pos-
sible to isolate the link on which a contact occurred, it is
typically unfeasible (without an extra sensor) to derive from
the residual an accurate information about where the collision
occurred on the link. This is because both the external force
Fext and the Jacobian JP (q) are unknown.

V. CONCLUSIONS

In this paper, we addressed the problem of detection and
isolation of actuator faults and of collisions for a robot with
flexible links, without the need of any dedicated extero-
ceptive sensors. To this end, we have extended to flexible
robots the mathematical formulation of the momentum-based
residual, a reliable method already widely used in rigid
robots, so as to improve safety in human-robot physical
interaction and collaboration. By separating the residual in
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Fig. 12. Case study 4. System outputs with collisions on both links.

0 5 10 15 20 25 30 35
-2

-1

0

1

2

u
1
 [
N

m
]

0 5 10 15 20 25 30 35

time [s]

-1

-0.5

0

0.5

1

1.5

u
2
 [
N

m
]

Fig. 13. Case study 4. Commanded vs. actual torques.
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Fig. 14. Case study 4. Residuals with collisions on both links.

two different parts, we exploited for our purposes only the
component pertaining to the rigid dynamics. We have tested
our algorithm through extensive simulations performed on
the Flexarm, a two-link planar manipulator having a rigid
upper link and a flexible forearm, with arbitrarily assigned

reference trajectories for the joints. Thanks to the extended
version of the residual, we were able to effectively detect and
isolate actuator faults as well as link collisions. Moreover,
faults and collisions can be distinguished according to a
simple rule, by reasoning on the joints whose residual signal
exceeds a given threshold. In the context of the present
paper, since only simulation results are reported and the
dynamic model is assumed to be known, the threshold has
been set to zero for all joints; nevertheless, a crucial task
to be considered in possible real applications is the proper
tuning of such threshold. In fact, when model uncertainties
or disturbances are present, the residual may diverge from
zero even if no faults or collisions occur.

Although relatively simple, the Flexarm platform is al-
ready a challenging benchmark for our purposes. As a conse-
quence, the proposed detection/isolation method is expected
to be valid for any robot with flexible links, provided a good
knowledge of its dynamic model parameters is available.

In the present work, we assumed that the full system
state is accessible for measure. However, this situation rarely
occurs in practice, especially when dealing with robots with
flexible links, for which a direct measure of the deflection
modes is often unavailable. To overcome this issue, we are
currently working on an extended version of the method that
integrates a suitable nonlinear state observer.
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