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DYNAMIC DECOUPLING
OF VOLTAGE FREQUENCY CONTROLLED
INDUCTION MOTORS

Alessandro De Luca Giovanni Ulivi

Dipartimento di Informatica e Sistemistica
Universita di Roma "La Sapienza”
Via Eudossiana 18, 00184 Roma, ltaly

Abstract. A new nonlinear control scheme for voltage frequency controlled (VFC) induction
motors is presented, based on dynamic state-feedback. The proposed approach allows to
design an input-output decoupling controller for motor torque and flux, using as inputs the
amplitude and the frequency of the supply voltage. The closed-loop system contains an
unobservable sink. The dynamics of this part is stable and is related to the sinusoidal steady
state behavior of the motor. Simulation tests are included which validate the control scheme.

1. Introduction

The control of drives using an induction motor as actuator is a long standing and
thoroughly investigated problem [1;2,3]. The control system has to be designed in order to
produce a torque output which tracks a given reference profile while keeping limited, even
during fast transients, both the machine flux and the current sinked from the inverter. In fact,
when the modulus of the flux exceeds some threshold value, which depends on the machine
characteristics, the motor operates in an improper way; besides, the usual mathematical
model of the machine does not hold anymore. On the other hand, an inverter cannot source a
current value which is higher than its rated one, even for short time intervals. Therefore,
limiting current transients in the motor has also a direct influence on the size of the inverter.

The stated control problem has an inherent smooth nonlinearity due to the fact that the
output torque of an induction motor is a nonlinear function of the motor "physical" state
variables, i.e. currents and fluxes. Moreover, different nonlinearities may arise in the dynamic
behavior depending on the particular choice of the input variables.

Among the many solutions proposed for this problem, most of them are based on
schemes which control separately the motor flux and the produced torque. In some of them,
known as "field oriented" or "vector" control methods [1-4], it is possible to obtain, under
certain hypotheses, an approximately linear and decoupled relation between input and
output variables. Other approaches have been described which take explicitly into account
the nonlinear nature of the model, based on the application of optimal [5,6] or adaptive [7,8]
control. Recently, the use of differential-geometric concepts and control techniques for
nonlinear systems has proven to be effective for the exact linearizing and decoupling control
of reluctance motors [9] and induction machines [10,1 1].

Generally, these approaches heavily rely on a proper representation of the vector
variables of the system in a reference frame which rotates at a suitable speed. Measurable
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quantities and control variables are instead inherently expressed in terms of a fixed reference
frame. Therefore, the actual implementation of these techniques requires several coordinate
trastormations, which represent a relevant overhead for the control task.

Moreover, ail these methods use as control variables the two projections on a fixed
frame of the representative vector of the supply voltage. This limits the available choices for
the supply system (inverter and modulation device). When the AC machine is supplied by
power devices which are driven by pulse-width modulating (PWM) techniques, the amplitude
and the frequency (rotating speed) of the voltage vector are the most appealing inputs. In fact,
based on these inputs, optimal PWM techniques exist which minimize some suitable
performance index which takes into account e.g. the harmonic contents of the driving signal.

This paper proposes a nonlinear feedback control approach leading to a decoupling
scheme for a VFC mode! of the induction motor which is based on a fixed frame description
and uses the the amplitude and the frequency of the supply voltage as inputs.

The definition of the system outputs is typically connected with the control objectives.
Usually, in drives the most important mechanical variable is the torque produced by the
machine. To ensure correct motor operation, another controlled variable should be related to
the motor flux and may be defined in terms of either stator or rotor fluxes, because of the tight
couplings between the two windings.

The paper is organized as follows. The nonlinear dynamic model of the motor is
described in Section 2. The synthesis of an input-output linearizing and decoupling feedback
controller for the VFC induction motor is described in detail in Section 3. This result is an
application of the theory of input-output decoupling of nonlinear systems via dynamic state:
feedback [12]. Finally, simulation tests are reported and discussed.

2. Modeling of the induction machine

The dynamic behavior of a voltage fed induction motor can be described by a set of
four differential equations, based on the two-phase equivalent machine representation {3}
Standard simplifying hypotheses are made, i.e. iron losses and magnetic circuits' saturation
are neglected and an isotropic structure is assumed.

Different choices of two-dimensional vector variables may be used, describing the
motor dynamics in terms of rotor and/or stator fluxes and/or currents. The projections of the

stator current and flux vectors on a reference frame (a,B) which is fixed to the stator windings
are taken as state variables. The iy and ig components of the stator current are obtained on

the basis of direct measurements, while the ¢g and 9B flux components can be reconstructed

by means of an asymptotic observer of reduced order, as shown in [13,14]. Usually, the
projections vy and vp of the supply voltage are assumed as input variables. Therefore,

setting
T
}:[iu iﬂ ®, (pB] ﬁ‘:[va VB]

the dynamic equations describing the motor are:

T

X=AX+Bu
where
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and o= Rg /oLs: B=Rr/oly, o=1- (M2 /Lgl,). The parameters Rg and Ry are the stator and
rotor resistances, Lg and L, are the stator and rotor self-inductances and M is the mutual
inductance. The speed w can be considered as a slowly varying parameter, due to the large

separation of time-scales between the mechanical and the electromagnetic dynamics.
Treating o as a state variable would require the inclusion of a model of the load, which is
typically very poorly known and possibly even not smooth.

To obtain a voltage-frequency control scheme for the induction motor (see Figure 1),
the voltage input vector should be expressed as

_ Vel [Vveoso ;
U= = where ¥ = Jwa(r) dt
Ve V sin § b

being ¥ its angular position and V the amplitude. w, is the voltage supply frequency. In order
to use u = (V, wy) as the new control input, the model has to be augmented with another state
variable, x5 = 9. Setting

-
-T T

x=[x xs], u=[V ma]

the motor state equations are written in their final form as

X =1#{x) +g(x) u

with
[ cos x
> 0
cLs
sin Xg
AX oy 0f Jo,xs) ©
00 = X) = s =
(x) g{x) 0 ]
cosx; 0
sin Xs 0
0 1

This modeling approach has some nice features: i) the angular motion 9(t) of the
voltage representative vector is smooth; ii) the model becomes nonlinear but is still linear in
the new input u; iii}) in the steady state, the value of this new input is constant.
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Suitable outputs for the systems are defined in terms of the stator flux and the torque.
Hence, the following nonlinear output functions will be used

2 2 2
Yi=®, =%, +x; = h,(x)
Yo=T = X5 Xg = Xy X, = h,(x)
where a motor with only one pole pair is considered.

3. Decoupling contro! of induction motor

Starting from the motor triple {f(x),g(x),h(x)} one may first check whether the condition
for input-output decoupling via a static state-feedback of the form u = ox) + B(X)v is satisfied. it

is well-known that this possible if and only if the decoupling matrix of the system is
nonsingular [15]. It is easy to see that in this case the decoupling matrix becomes

2x3cosx5+2x4sinx5 0
AX)=L h=] X, X4
9 — - X,)5inX, - (—-x,)cosx. 0
(oLs 1 5 oL, 2 5

resulting structurally singular. Here, Lyh denotes in a matrix compact form the Lie derivatives
of the functions hj(x) w.r.t. the vector fields gi{x).

In order to achieve decoupling consider the use of a dynamic state-feedback
compensator of the form

z = a(x,2) + b(x,z) v u=c(xz)+d(x,z) v
where the compensator state z has a dimension not specified a priori. Following [12], the
system is dynamically extended by adding one integrator to the first input:

U1=Z Z=W‘ U2=W2

To avoid a burdening of notation, the extended state is redefined as
T 1 T
x=[§ z] =[x1 x6]
and the state equations of the extended system become

X =f(x) + Gw
with
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[0 0

- 0 0
Ax+x6 g,(xg) o o

f(x) = 0 G= 0 o
0 0 1

1 OJ

Computing the decoupling matrix A(x) for this system leads to relative degrees ry =rp= 2
associated to the outputs and

ay;(x)  a,,(x)

A = Lglh(x) = a,,(x)  a,m|"

2(xacosx5 +X,8inX) 2x6(><4cosx5 - XgSinx,)
=] x, X, Xq X,
(—=-x,)sinx, - (—-x,)cosx. x [(—-x)cosx + (—— - x )sinx.]
0L5150L52 566L150_L25
S S
which is a nonsingular matrix in all points of the extended state space where
2 2
Xy +X

det A(x) = 2 x, [

= (X Xg +%%,) ] # 0
8
It can be shown that the term inside the square brackets is proportional to the scalar product

of the stator and rotor flux vectors and hence is nonzero during normal mode of motor
operation. Moreover, xg is always different from zero being the amplitude of the supply

voltage. Hence, the static decoupling feedback law from the extended state is a feasible one
and yields . ‘

wW=a(x)+ B(x) v '
where

-1 1 35(X) - @)
PO =A 00 = 5ot “ay(x)  ay(x)

and
o(x) = () L h(x)

2 2 .
L h, =3 {2[x6(x4 Sin X5 + X4 COS X;) - aol (x,%3 + X,%)1} - (x)
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d -——@-(x2+ xz)
Lihy = == { (X X3 +X,X,) - (4P ) (X%5 - XX,) Y

X
+ Xg [(x—3 - Xy)sin X, - (?‘%- X,)cos x: ]} - f(x)

The resulting overall dynamic compensator is
z=w, =0a,(x2) + B, (x,2) v, + B, (X.2) v,
U1 =2Z

Uy =0,y (X,2) + B,y (X,2) v, + B,y (X,2) V,
! i i bove.

i(x) and B;i(x) are elements of the (a,8) pair defined a ‘ ‘
where O'#we) closfg—(lo)op equations may be written in terms of new coordinates § defined as
' T

E=To)=[n 00 Lihyo) byt Ly %, xp]
This state-space smooth transformation is a diffeomorphism wherever the Jacobian of T(x) is
nonsingular i.e. where

oT
oet [ 97] = 2 (XX + XX,) - det A(x) = 0

Hence, the set of coordinates £ is a feasible one in the subregion of definition of the control
law (x st det A(x) = 0) where the stator current vector is not onhogona! to the stator flux.hln
this singular situation a different description may be used. In any case, this does not affect the

Comml!l?gvu're 2 shows the equivalent structure of the closed-loop system. The input-output

is gi i bservable part of dimension
i v to y is given by two double integrators and an uno ible :
Leiaz‘r?: fr;c;n; 6 - Z: zgarises)./ The stability of this subsystem is a crucial issue in the whole

design procedure. Extensive simulations have shown that the behavior of this sink

&5 = \Ps (E:a) ée = \Ps (é) ' . )
is indeed a stable one, although not asymptotically. The functional form of W5 and Wy is rather

complex, but can be derived straightforward from T(x) and it; inverse trgns.fermation. "
Tr’we analysis of this dynamics in the steady state is of special interest. When the
outputs, i.e. the square of the stator flux modulus and the torque, are constant then

2
=@ =0 &=T; §=0 - h
and v; = v, = 0. Substituting these values into the dynamics of &5 and &g, yields the so-callel

i ift of the outputs. In the present case, it
- ics of the system [16], under a constant shift o - _
izse;)%s?syig?en:o verity tha%lin the dynamic controller oy = constant and o, = 0, so that the input u

to the VFC motor is itself constant. This means that the motor is supplied by sinusoidal

voltages of constant amplitude and frequency. Hencg, the zero-dynamics car:‘ belconépf:g;ag ::
using the standard steady-state analysis of the induction machine. Therefore, the close >

stator currents satisfy the following linear equations
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é"S 0 -0, ll&

&l [ o &

where , is the supply frequency.
4. Simulation results

The proposed control approach has been simulated on a high power induction motor,
having as model parameters:

a=27.232sec, B=17.697sec, o= 0.064, Lg =0.179 H.

These constants result in a very fast dynamics of the electromagnetic circuits. The rated value
of the stator flux is equal to 7.3V sec while the maximum torque is 1000 Nm. -

Starting from a steady-state situation with Ty =100 and w = 300 rad/sec, the motor
torque undergoes two step changes at t = 30 msec and 90 msec, respectively to the positive
and negative maximum values.

The following PD law is used for the external inputs v; , i=1,2:

=K Gyt Ko g Saiq) =~ K, Lih;(x) + Ko g, i~ hi(x))
with the gains K; = 104 and K, = 140.
Figure 3 shows the response of the two system outputs in the first 200 msec. The
sampling time used is 100 psec. The torque follows the desired profile while the stator flux is

kept constant even during the transients, thus confirming the achieved decoupling. Small

deviations are due only to discretization effects. The 5% overshooting in the torque is the one
expected from the chosen PD gains.

In Figure 4, the associated control inputs uy =V and u, = W, are reported while the two
components of the closed-loop stator current (i.e. &5 and &g ) are depicted in Figure 5. Stator
fluxes are not shown but have indeed a sinusoidal profile. It is worth to point out the specific
behavior of the current at the instant of torque inversion; a phase shift of about x is produced
between stator current and flux and this is accomplished in only one period.

Robustness with respect to variations in the machine parameter B has been tested. A
50% lower value gives rise only to small steady state-errors and overshooting. Finally, the

same control law performs well also when applied up to every 5 msec, as can be expected
from the smoothness of the obtained control profiles.

5. Conclusions

It has been shown that the use of nonlinear control techniques based on the
differential-geometric approach is effective for solving the control problem of voltage-
frequency controlled induction motors. Input-output decoupling is possible by means of a
dynamic nonlinear state-feedback. Tuning of the control parameters can be easily made on
the linear side of the problem. A major aspect of the presented approach is the ability of
controlling the electrical transients without explicitly introducing a rotating frame description
and the related field-oriented quantities. The chosen system inputs are the ones which are
directly available on common industrial inverters used for supplying the induction machine.
Finally, it should be mentioned that the whole control law derivation was performed using a
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program written by the Authors in a symbolic manipulation language and running on a
personal computer. .
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Figure 1 - Voltage Frequency Control (VFC) scheme for an induction motor drive
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Figure 2 - Structure of the closed-loop decoupled system
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Figure 3 - System outputs: torque and stator flux
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Figure 4 - Control inputs: frequency and amplitude of stator voltage
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Figure 5 - Closed-loop stator currents




