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Abstract

Accurate tracking of end-effector trajectories is one of the most demanding tasks for

robot arms with flexible links. This problem is tackled here using regulation theory,

considering the nonlinearities of the general dynamic model. The control design is

presented in detail, including output trajectory generation, associated reference state

computation, and different feedforward /feedback realizations of the regulation concept.

Extensive simulations on a simple but representative case study valxda.te the analysis
" and a.llow to- compa.te the various approaches

1. Introduction

Lightweight flexible structures are receiving increasing interest in robotic applications
as they require smaller actuators to obtain higher performance, e.g. in terms of motion,
speed [1]. Typically, the most significative but demanding task to be executed is the
“tracking of desired trajectories for the robot end-effector. Starting from the experience
gained in vibration suppression for large space structures [2], a common control approach
is to superimpose active modal damping to standard techniques for controlling the rigid
body motion [3,4]. For point-to-point tasks, a clever application of such composed
strategies may lead to acceptable results. However, when considering motion along a
trajectory, these methods cannot avoid deviations of the arm tip from the nominal path
during the slew. On the other hand, use of inversion techniques for exact reproduction
of end-effector tra.jectories induces in general instability in the closed-loop behavior [5]
When the tip position is the controlled output, the system input-output mapping is
non-minimum phase, a concept defined both in the linear and nonlinear setting [6,7].
As a consequence, dxrect inversion is unfeasible due to the forced cancellation of unstable
zero-dynamics. v

: For this class of systems, a convement way to achieve asymptotic output tracking
~while preserving internal stability is to follow a regulation approach. End-effector mo-
 tion control via nonlinear regulation has been successfully demonstrated in [8, 9] for a
one-link flexible arm. The rationale of this control scheme goes beyond cancellation of
nonhneamtxes, yet producing quite good tracking results. Suppose to apply in open-loop
a bounded input torque at the joint level: the flexible arm, being a passive mechanical
-device, will display bounded deformations and, accordingly, the end-effector will move ..
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along a certain trajectory. At this stage, no form of instability may ever occurr. If the
desired output trajectory coincides with (or is part of ) this motion, the robot arm must
experience the same deformation history, even under closed-loop control. Therefore,
the controller itself has to generate this evolution as a reference for the system state,
starting from the specified output trajectory. Moreover, any feedback action should
force the internal state of the system towards this ‘natural’ time-varying deflection, so
that the end-effector will eventually move as desired. The regulator’ control structure
is tailored to this qualitative description: an exosystem generates both the desired out-
put trajectory and the associated state evolution, while a stabilizing linear feedback
- guarantees attractivity of this state-space reference trajectory.

The initial conditions of the arm play an important role in understanding the type
of end-effector tracking behavior (exact vs. asymptotic) with respect to an arbitrary
motion. If the full state is assigned at the initial time, i.e. when the trajectory starts,
and does not match the necessary one, then a transient output error will exist, although
the stabilizing action of the regulator will let it decay to zero. On the other hand,
when input torques are allowed to be applied to the system also ahead of time, it is
possible to bring the flexible arm into the proper deformation state at the initial time.
From there on, the desired trajectory will be exactly reproduced at the system output.
This interpretation points out the relations with other strategies, sometimes referred as
non-causal solutions to the inversion problem, which are typical of frequency domain
approaches [10] and of iterative learning schemes [11]. Off-line optimal control laws also
yield similar input profiles [12].

In [8], nonlinear regulation theory was applied for the first time to the tracking
of sinusoidal end-effector motions of a flexible arm. Some viable alternatives in the
regulator design have been presented in [9]. Taking advantage of a preliminary input-
output inversion control law, regulation can be performed using several combinations
of feedforward/feedback terms. In particular, direct, indirect and mixed designs were
introduced, including different amounts of nonlinear state feedback. For illustration
purposes, developments in [8,9] were carried out for a one-link flexible arm, using a
simple nonlinear dynamic model with flexibility concentrated in an elastic spring located
along the link. ’ '

In this paper, the regulator approach is further investigated for the common non-
linear model of flexible robotic arms, thus including also the multi-link case, with the
aim of tracking general end-effector trajectories. Further insights are provided into the
actual computation of the controller terms, showing in particular some properties of
an efficient approximation technique. Next, the single steps involved in the regulator
synthesis will be outlined using the same one-link flexible arm as in [8,9]. In this case
. study, the direct, indirect and mixed nonlinear regulator designs are compared in terms
of practical tracking performance. Reference trajectories are chosen so to obtain smooth ,
interpolated motions. With this respect, cubic and fifth-order polynomials are tested by
simulation and numerical results indicate that very limited transient errors can be ob-
tained, even when starting the arm from the standard rest condition. For completeness,
also tracking results obtained with a linear regulator are given. The reported analysis
provides the basis for dealing with more complex robotic applications, well beyond the
case study presented here.
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2. Nonlinear Regulation of Flexible Robot Arms

The results on output tracking via nonlinear regulation using static state feedback are
briefly recalled, referring to the seminal paper [13] for details and technical assumptions.
Alternate design procedures are presented for the class of nonlinear invertible systems.
These theoretical findings are then reformulated for a general dynamic model of flexible
robot arms, illustrating the main computational steps involved and their significance.

2.1 QOutput Regulation of Nonlinear Systems

Consider an n-dimensional nonlinear system

x =f(x)+gx)u, y=h(x), M

with m inputs and outputs, and assume that its linear approximation at x = 0 is
stabilizable by means of a linear state feedback u = Fx. A reference trajectory ya(t)
is supposed to be generated by an autonomous r-dimensional dynamic system (i.e. an

exosystem) ,
W=s(w), ya=q(W) &)

Vector functions f and h are assumed to be zero at x = 0, as well as s and g at w = 0.
Although the control design is carried out for a fixed exosystem, note that a whole class
of trajectories can be generated by varying the initial conditions w(0).

The problem of tracking a sufficiently well behaved reference trajectory yq(t) on a
limited time horizon, while preserving stability in the closed-loop system, can be solved
finding a state feedback law of the form- ’ :

u= :'y(w) +F(x- m(w)), | (3)

where the smooth vector functions 4(w) and n(w) are zero at w = 0 and satisfy the
following equations:

%s(w) = f(n(w)) + g(r(W)yr(w), - ()
q(w) = h(x(w)). (4b)

The mapping w(w) characterizes the desired state evolution associated to the output
trajectory yg, and thus it will also be denoted as x4. The feedforward action y(w)
in the regulator law (3) is needed to keep the state evolving in time exactly as xq(2),
once an initial state error has been reduced to zero. The linear feedback action (1 e. F)
guarantees this attraction to x4, at least locally.

The set of n partial differential equations (4a) implicitly constrains the search
for m(w) to actual trajectories of the forced system. The m algebraic relations (4b)
simply express the fact that the output behaves as desired, or y = ya, when the
state is the required one. In particular, if the initial state ma.tches the desired one,
%(0) = x4(0) = x(w(0)), then exact output reproduction will result. Otherwise, only
asymptotic tracking is obtained. Moreover, boundedness of the exosystem state w, and’
thus of the desired output trajectory y4, implies in general that of the solution 7r(w)
to (4), i.e. of the state trajectory x4. Note that, if a suitable approximation 7(w) to
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m(w) is used in the regulator realization, the closed-loop stability will still be guaranteed
while the resulting output error is easily computed as ya(t) — h(7(w(1))).

The overall block diagram of this direct nonlinear regulator is reported in Fig. 1.
. The term ‘nonlinear’ refers here to the nature of the controlled system (1), implying
that both w(w) and 4(w) are in general nonlinear functions of the exosystem state.

exo- W * u ¥

systom *w) ——-*?+—* X = f(x) + gx)u h(x) }—
n(w) —;éi X

.Fig. 1 — Nonlinear regulator: direct design

Indeed, replabing the system model (1) with a linear one
f(x) =Ax, g(x) =B, h(x) = Hx, (5)
and using a linear exosystem »
s(w) = Sw, q(w) = Qw, . (6)

vields linear forms 7r(w) = IIw, 4(w) = I'w as solutions of (4), which in turn collapse
into the standard matrix equations

IIS = ATl + BT, , : (Ta)
Q= HIL ‘ (7b)

The resulting linear regulator is |
o u=Tw4 F(x-Iw). 8

Note that (5) could represent the linear approximation of (1) at x.= 0.

In [8], two other schemes that realize the same nonlinear regulation concept were
introduced, assuming that system (1) is invertible [14]. In the case of a flexible robot
arm, it is known [5] that input-output inversion can be achieved by means of a purely
static state feedback of the form

u = ax) + g(x)v, with B(x) nonéingular. (9)

When this nonlinear feedback is applied, a proper change of coordinates X = P(x) will
display the Iinearity in the resulting input-output behavior. The state-space trasforma-
tion may equivalently be performed before using (9). Completing a direct synthesis of
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the regulator on the new input v, the input fed into the original plant will be a truly
nonlinear state feedback control law,

u = a(x) + AE) [F(w) + F& - 7#(w)) ], (10)

where a tilda denotes quantities computed after the application of the inversion law (9).
The overall indirect regulator is shown in Fig. 2.

exo- |V + v u Y.

system ¥w) —*(P—» alx) + Blx)v X = f(x)+ gx)u h(x) —

F
rw) |oOe—% ¥®)

Fig. 2 — Nonlinear regulator: indirect design

In this two-stage approach, inversion control typically cancels ‘hard’ nonlinearities
present in the original system, based on the measured state. The composition of (1)
with (9) may result in an unstable closed-loop system, which however inberits the orig-
inal stabilizability property. Thus the following regulatlon stage will mainly take care
of instabilities.

A third regulation scheme is obtained by computmg nonlinear terms in (9) along
the nominal state trajectory w(w), instead of at the current state x. The control input

‘becomes
u = a(n(w)) + (r(w))(F(W) + F(x — = (W))) (11)

and the resulting block diagram of this mixed desxgn is shown in Fig. 3. Here, stabiliza-
tion (e. & through pole placement) is obtained using a time-varying matrix ﬂ(ﬂ'(w))F
This gain modulation is expected to give better results than the constant linear feed-
back of the direct design. Note also that any combination of measured or nominal states
could be used in evaluating single components within o or f.

exo- |V - R ' y
system olalw)) + Binlw))y(w) —‘S}—. x=f(x)+g(xu hx) —
| | Bt F
wlw) | lé}i X

Fig. 3 - Nonlinear regulator: mixed design
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2.2 End-Effector Regulation of Flexible Robot Arms

In the following, the regulator equations (4) will be specified for the set of second-
order nonlinear differential equations, describing a controlled mechanical system. In
particular, consider a robot arm with an open kinematic chain structure, rotational

~ joints and flexible links. The dynamic model is of the formk

B11(6,6) ‘Bi2(4,6) n1(6,6,4,4) D1§] _ fu
{ BL(6.6) Bu(0.8]| |3] T n(6.66.8)F 5|+ o) = o] @
where 4 are the N rigid joint variables, and § are the N, generalized coordinates associ-
ated to deformations. B;; are blocks of the positive definite inertia matrix, partitioned

according to the rigid and flexible components. Similarly, n; contain the Coriolis, cen-
trifugal and gravity terms. The diagonal matrix D, represents joint viscous friction,

~ while the positive definite, symmetric (and typically diagonal) matrices K and Dy are,

respectively, the modal stiffness and damping of the arm links. The model structure (12)

- holds for any finite dimensional approximation of distributed flexibility, as long as the -

assumed modes of deformation satisfy the geometric clamped boundary conditions at
the base of each link [15]. Accordingly, the input torques u appear only in the first set
of equations. With reference to (1), here n = 2(N + N,), m = N.

For the 'sake of simplicity, consider the simpler but significative case of deflections
limited, for each link, to the plane of rigid motion. Instead of taking cartesian-space
quantities, the output can be defined as

y =0+ C§, . (13)

i.e. each component y; is the rigid joint variable §; modified by a linear combination of

”the vanables 6, i assocxated to lmk i Under the hypothesxs of small link deformation, y

direct kinematics of the arm.

Using (13), the robot dynamics (12) can be rewritten in the new coordinates (y,96):

Bu(y = C6,6)¥ + [Bua(y — C6,8) — Bu(y ~ C6,6)C)é

+m(y — C4, 8, Sr‘—- Cé 3) + Dy ~ Cé) =u, - (14a)
BT,(y — C§,8)§ + [Baa(y — C4,6) — BL,(y — C4,6)C)§
+ny(y — C§, 6,y—-06 6)+K6+D26=0 (14b)

The reference state evolution x4 used in the regulator (3)is eqmvalently expressed in
terms of the new coordinates y4 and 6,, and of their derivatives y4 and 84. By this
choice, the problem of finding a solution to (4) reduces to determining only the N,
functions §; = m5(W), being ; = m;(w) = [9n5/0w]s(W) a direct consequence.

Assume that the desired trajectory is generated by a linear exosystem in observable
canonical form, so that

. " : A A
W(t) = {yd,i, Yai» Gais--r YT Li=1,...,N}2Y) - (15)
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can be taken as its state. The reduced solution to (4) is rewritten as 75(Y4), making
“ explicit that the time evolution of the arm deformation will be a function only of the
desired end-effector trajectory and of its time derivatives. Thus, the function 74 should
satisfy equation (14b), evaluated along the nominal output evolution

B (Y4, 75)¥a + [Baa(ya, ms) — sz(Yd, W.s)C] 5+ no(ya, 75, ¥ a, 7s) + Krs +Dyig = : )

S (18
where arguments have been indicated in a compact form. It should be stressed that this
equation is independent from the applied torque. Being (16) a nonlinear time-varying
differential equation, it is hardly impossible to determine a bounded solution in closed-
form. Indeed, this would be equivalent to finding proper initial conditions for 75 and
75 at time ¢ = 0 such that forward integration of (16) yields a bounded evolution. A
more feasible approach is to approximate the solution of (16), using elements which are
bounded functions of their arguments, e.g. making use of polynomials in Y. For a
second-order expansion, this would lead to an approximation of the form

g = 7?5(‘{.1) =7(Ya) + O("Ydﬂa)r an
with .
Wg(Yd) H]Yd + Z(YTH2 sz)eu (18)

where e; is the i¢th column of the identity matrix, and II;, II;; are constant coeffi-
cient matrices. As long as each component yg ;(t) of the desired trajectory is bounded
together with its derivatives up to the (r; — 1) order, the approximation 75(Y ;) is nec-
essarily a bounded function of time. The constant coefficients in (18) are determined
by plugging this into (16), expanding nonlinear terms up to the second order, and ap-
plying the polynomial identity principle.. This procedure can be iteratively applied for
increasing orders of the polynomial approximation, starting with the linear one. 'Note
that coefficients computed in the kth order expansion are kept also in the following one,
resulting in large computational savings: at each step, a linear system of equations has
to be solved for the unknown coeflicients.

Once this solution is obtained, with any desired order of accuracy, backsubstitution
of the reference deformation &, of the desired output trajectory yg4, and of their time
derivatives into (14a) will give the nominal feedforward term in the regulation law (3).
In fact, u = y('Y4) because x = x4 is being assumed. The only approximation involved
in this process is the one in (17), while all subsequent steps are consistent. In fact,
the obtained feedforward term will keep the whole state evolving along a suitableé close
approximation to the nominal state reference x4().

The above computational procedure corresponds to a direct design of the nonlinear
regulator. - For the indirect design, the control input u = a(x) + ﬂ(x)’i(w) can be
-recovered aga,m from (14). Under the assumption that By, — BJ,C is nonsingular,
acceleration § is isolated from (14b) and introduced in (14a). ' Next, by evaluating
¥ everywhere as yd, (14a) wxll give a nonlinear control law with feedback from the
~ tranformed state X = (y,96, y,é) The latter is immediately rewritten in terms of the
original state x = (4,4, 6,9), through (13). Indeed, a further stabilization around x4 (or
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id) has to take place. The mixed regulation design is accomplished in a similar way. In
this case, the feedback gain will be modulated by part of the inertia matrix.

3. Case Study: A One-Link Flexible Arm
3.1 Dynamic Model ‘

A one-link flexible planar robot arm will be used as a case study for the end-effector
tracking problem. For a single link, linear dynamic models are usually assumed when
limiting the analysis to small deﬂectlons However, in case of fast motion and/or in
presence of heavy carried loads, nonlinear effects arise also in this case due to the larger
deformations coming into play. A simple modeling technique divides the flexible link
into rigid segments that are connected by elastic springs, where link deformation is
concentrated, Following the Lagrangian approach, a nonlinear dynamic model can be
obtained in the standard form (12). Explicit expressions that are parametrized in the
* number of segments have been derived in [8], so that model order can be varied easily
to achieve the prescribed accuracy. The followmg treatment will be limited to the case
of two equal segments of uniform mass, moving on the horizontal plane.

A

Fig. 4 — A simple one-link flexible arm

Let m and £ denote the total link mass and length, and k the spring elasticity. With
reference to Fig. 2, 8 is the angular position of the joint and § is the flexible variable,
s0 tha.t N=N,= 1 The dynamic equations are

[0 O L] - e

- with the elements of the inertia matrix B(§) given by
\ ‘ bi(6) =a+2¢ coss, b12(8) = b+ ccosé, by =b,
and Coriolis and centrifugal terms
n1(6,6,8) = —c(8% + 208)sin6,  ny(6,6) = cé?siné,

where a = 5me%/24, b = ml*/24, ¢ = m£?/16. State equations can be obtained by
settmgx—- (9,6,6,8) € R
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The linearized expression of the end-effector angular position as seen from the base .

ye+6‘ ;’(20)

will be taken as controlled output for the system. The above ﬁmte—dxmensxonal model,
although of reduced-order, displays the same basic control properties of more accurate
and complex distributed models. In particular, (20) is a non-minimum phase output.

3.2 Direct Regulator Design

In order to obtain output tracking of end-effector trajectories for the considered one-link
flexible arm, the direct nonlinear regulator design will be followed. Stabilizability of the
linear approximation of (19) around the origin x = 0 is easily verified.

An exosystem will be considered, capable of generating polynomial trajectories up

to the fifth order. In particular, the followmg linear system of order T = 6 in canonical
form,

= Sw, ya = w; = Qw, (21)

CO OO G m
CoOo o
coOo Mmoo
O‘OHOOG

[T B oo B o T e T e
O oo
&

w

We )

properly initialized at w(0) = (ao, a;,2a2, 6a;,24a4,120as), generates the reference out-

put ' ; ‘ :
' va(t) = ast® + ast’ + a3t® + apt® + art + ao. ; (22)

The chain structure of integrators (21) can be extended to the nth order for generating,

as yd4, polynomial ‘trajectories of degree n —1. Note that, if ‘an infinite time horizon

is considered, polynomial trajectories will become unbounded. However, the proper

initialization of these exosystems and the limited time span considered in typical robotic
applications overcomes this critical point. In the quintic case, different combinations of
boundary conditions could be imposed on initial/final position, velocity, acceleration,
and jerk. The most practical choice is to set a finite time ts, with specified initial and
final position, velocity and acceleration. For

va(0) = yo y4(0) = yp §a4(0) = yo (23)
valts) =ys yd(tf) vr o dalty) =y
coefficients in (22) take on the values: - ‘ _
as 1 12(ys —yo) —6ts(v; +v0) + 3 (W7 —w) ] [a Yo
o4 | = —30t5(ys — o) + 2t2(7y} + 8yg) ‘t3(3y" =2y, lal=|v
a3 I 1 2065 (ys — yo) — 4t3(2y} + 3yp) + tH(y} — 3yl ao Yo

(24)
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In order to obtain the reference state trajectory, the general procedure outlined
through (14) and (16) will be followed, using the second-order differential representa-
tion (18) of the robot system. In particular, (16) becomes :

b—ccosé
2

which should be solved for §(%) = 5(Y4(t)). A first-order approximation of this solution
will be determined by choosing . :

. § .
(b+ ccos8)fa + ( )6 + e(9a — -2-)2 sind + ké + dz6 = 0, (25)

6a =I1Y 4 = poya + p1¥a + p2iia +pa'§d +p4y,(,4) +p5y£5),
ba=T,Y 4 = poyia + p1 Ya + p2¥a +P33/§4) + Pw,(;s), : (26)
ba=T,Y, = podia + p1d4 +P2y,(14) +P3y§5)- V

Introducing these formulas for 6, 4, 4 into the linearized version of (25) around § = 6 = 0,
: . b—cy :
(b+)ja+ —2—96 + kS +dpd =0, 27)

and solving for the coefficients of y; and of its derivatives, yields the following explicit
expressions: ' '

’ b+ec dy(b+c
po=0, p1=0, P2 =——, P3="2%;§*—)',
; ) : i . 28
(b+)((c - Bk +243) bo+(e—tr+d) @
p4 = X 2k3 3 p5 = k4 ‘ . . .

In [8], this kind of approximation was found to leave some steady-state error in the case
of a sinusoidal trajectory so that more terms had to be included, at least up to the third
order. The second-order approximation (18) simplifies to :

ba=TYa+ Y] Y, (29)

Substituting (29) into (25), expanding nonlinear functions and retaining terms up to

. the second-order, linear terms in the components of Y, are matched by the same val-
- ues (28), while identities on quadratic terms are satisfied by II; = 0. For the third-order
" approximation ‘

ba=ThYa+YiIYa+ Y pijeyyP 'y, | (30)
0<i<s ‘

k252i
(25) should be expanded accordingly as :

b—-c
2

: Again, using (30) into (31) leads to a linear system of equations for the Pijr unknowns
weighting cubic terms in the elements of Y. Arising terms of order 4 or more are
neglected at this stage. Out of the 56 cubic coefficients, only 34 are non zero: in
particular, all coefficients Poji vanish since deformation cannot depend on y (viz. ya)

u ; ST ;
(bhe— o6+ (o + 7= 3) 6+ kst di=0.  (31)
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— a cyclic coordinate in the dynamic model (19); furthermore, p11i = 0 because there
are no cubic terms in the velocity ga. The rest of the coefficients can be computed
numerically, although for this example explicit symbolic expressions in terms of the
model parameters were also derived by using Mathematica™. Note that most of the
cubic coefficients in (30) turn out to be very small numbers, but they multiply high-
order derivatives. Thus, simplifications can be carried out only depending on the time
scaling of the desired trajectory (i.e. on t £)- '

The feedforward term of the direct regulator is obtained using the reference de-
* formation &; = 64(Y4) given by (30) in the first equation of the model (19).. This
provides ~

: o f M PR
u=q(Yy) = (a + 2ccos 54)3/.1 -+ (b —_ -g-) b — ZC‘ydlSd(Yd) sin b4+ d; (y,; - -éd-) {(32)

The feedback action is based on a stabilizing matrix F (here, a row vector) penalizing
the error on the full state X. As a result, the regulator will be :

6 — (ya — 8a(Ya)/2)

§ —84(Y
u=7(Yq)+F 6— (94 'j%(ci(;()ni)/z) e
8 —64(Yq)

3.3 Indirect Regufator Design

Since the relative degree of output (20) is two, the synthesis of an inversion-based control -
is accomplished by deriving twice the output and setting 4 = v.:Solving for u yields

Ba1(6) — 2b12(6) 2det B(S)
2byg — b13(8) 2by2 — b12(9)

(a — 2b)(c6? sin § + k6 + dz6) + 2(ab — b — ¢* cos® §)v
b— ccos é

u = ny(6,6,8)+ d16 + (n2(6,8) + k6 + d2b) +

= ~c(8% + 206) sin 6 + d1 6 +
' : , (34)
which is in the standard form u = a(x) + B(x)v. The input-output linearizing coordi- .
nates in the system after inversion are X = (y,9,6,4). In view of (20), this implies only
2 linear transformation in the state space. The closed-loop equations can be written as

j=v,
i Ama(i,6, 8) + k6 + d2) 2b15(6) © (35)
b12(5) e 2b22 513(5) - 2b22 !

and it is easy to see that this system is unstable in the first approximation. In partic-

_ular, this instability is reflected in the system zero-dynamics, which is obtained [8] by
imposing y(t) = 0 in (35): ' : .

(c/2)8% sin § + 2(ké + da8)

b= b—ccosd

(36)
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This confirms that tracking of a desired output trajectory ya(t) cannot be achieved by
simply stabilizing the (linear) input-output behavior in (85), e.g: using

cv=fet Fy-vw)+BG-5), FF<o, (37

as specified in a pure inversion-based approach [16].

As a matter of fact, (34) with (37) will force the state of the system to become
unbounded. This is always true, except when the initial arm deformation is exactly
in that particular state specified by a bounded solution of the regulator equations, i.e.
when 6(0) = 84(Ya(0)) and 6(0) = 64(Y 4(0)). This instability will be overruled by the
linear feedback part in the regulation synthesis of v. The indirect design takes advantage
of the simplified structure of system (35). In particular, the reference behavior for the
first two states and the feedforward term are in this case »

mM(Ya) =ya, Fo(Ya)=9a, F(Ya)= - (38)

i.e. the output reference position, velocity, and acceleration, as expected. On the other
hand, references for the deflection variables are the same ones computed for the direct
design. The resulting v will be of the form

v =ja+ Fi(y ~ va) + By — ga) + Fa(6 - 6a(Y)) + Fa(6 — ba(¥a)) (39)
= §a + F(% - %), |

which should be compared with (37), as a clear distinction between inversion and reg-
ulation. The actual input torque applied to the flexible robot, arm is obtained combin-
ing (39) with (34).

3.4 Mixed Regulator Design

A mixed regulator can be derived from (34), evaluating nonlinear terms at their de-
sired values but including also the linear stabilization part (39) into v. After some
manipulation, the control input becomes ’

2(ab— b — c? cos? 64(Ya))

v=a N+ =

FE- id),' (40)

where (Y 4) is the same as in (32). This expression points out that, in case of matched
initial conditions for the full state, the direct regulator (33), the indirect regulator (34)
with (37) or (39), and the mixed one (40) all collapse into -a unique feedforward law
that assigns the same steady-state behavior. However, when initial state matching is
impractical, the above control laws will produce different transient errors.

4. Simulation Results

The nonlinear regulator approach has been tested by simulation using as parameters
for the one-link flexible arm:

£=1m, m=02kg, k=5 Nm/rad, d; =d; =0.01 Nmsec/rad.  (41)
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Simulations were run using Matlab™, with a fourth order Runge-Kutta integration
" method. For the quintic polynomial trajectory, the following data were used:

Y =0° y;=90°, y=y;=yy =y;=0, ty=1sec. (42)

After ts, the reference state is forced to zero, except for ya = 84 = 90°. This corre-
sponds to reset instantaneously the exosystem state, a critical operation that will cause
disturbance on tracking. The feedback gain matrix F of the indirect design was chosen
by assigning poles at —20 = 730 and —30 425 to the linearized system. In all other
cases, gains were determined in a consistent way so to allow a significative comparison.
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" Fig. 5 — Output for a quintic polynomial Fig. 6 - Joint and tip velocity

Figures 5-8 show the obtained tracking results for the quintic polynomial case using the
indirect regulator law (34) with (39). The desired and the obtained output are prac-
tically coincident, even in the presence of a peak velocity reaching more than 160°/sec
at the trajectory midpoint. As shown in Fig. 6, the velocity of the joint (continuous
line) and that of the tip (dashed) are slightly different in magnitude. The non-minimum
phase nature of the system is displayed in the reverse initial motion of the tip. A more
detailed view of the tracking error e = y — yq is given in Fig. 7. The maximum error
value is about 0.15° and vanishes in 0.2 sec: from there on, exact tracking follows. The
presence of a transient error at t; = 1 sec is a consequence of-the exosystem reset which
produces a mismatch with the current state of the flexible arm. The input torque u in
Fig. 8 is similar to the one necessary for an equivalent rigid arm — a cubic as the desired
acceleration profile. Differences arise at the beginning and at the end of the motion,
in response to state errors. Note that no excess torque is required for the flexible case.
When applying the direct regulator design (33), which uses pure linear feedback and
feedforward based on the nonlinear model, no relevant differences were found.
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Fig. 10 — Torque for a cubic polynomial

In order to assess the effect of trajectory smoothness, the same net motion was accom-
plished using a cubic polynomial with zero initial and final velocity. Tracking error

and required torque are shown respectively

about six times higher, but still very small.

in Fig. 9 and 10. The maximum error is -
Non-zero torques at the initial and final

instants correspond to step changes in the desired acceleration, with an added peak due
to transients. Moreover, the quintic polynomial trajectory roughly halves the deflection
6 and its time derivative (Fig. 11) with respect to the cubic case. Note that, for this
very smooth trajectory, the maximum deflection is about 2.5°.
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regulation error

1t is also interesting to compare the performance of the nonlinear regulator with respect
to a linear one, i.e. using (8) designed on the linearized system. Figure 12 shows a
very similar error behavior in the linear (continuous line) and in the nonlinear (dashed)
case. This is not unexpected because of the very small nonlinearities coming into play.
However, while peak transient errors are identical, the remaining behavior during motion
(between 0.2 and 1 sec) is qualitatively different, giving perfect tracking only for the
nonlinear regulator. This becomes also more apparent when considering the case of fast
sinusoids, as reported in [8]. . )

The performance of the mixed regulator design (40) is also quite satisfactory, as
shown in Figs. 13-14 for the quintic polynomial. An initial position error of about 9°
was assumed in this case, so to emphasize closed-loop convergence of state trajectories
towards the reference one. In particular, Fig. 14 indicates 2 rapid and well damped
transient according to the chosen pole location of the linear feedback. The small error
appearing after ¢; is the same as in Fig. 7, shown with a different scale.
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‘5. Conclusions

Nonlinear control theory offers several techniques to deal with the problem of tracking
trajectories for robot arms with flexible links. In particular, the regulation approach is
well suited in the case of end-effector tracking, as it is a natiwral framework for solving
the closed-loop instability phenomena arising with standard inversion techniques. It
has been pointed out that, for flexible manipulators, solving the regulator equations
accounts in determining the nominal deformation associated with the desired output
motion. This allows to set up an efficient computatlonal procedure for deriving the
- regulation control law.

Different possible realizations of nonhnear regulators have been presented, high-
lighting tracking capabilities and ease of implementation. Simulation results have shown
that tracking can be quite accurate when smooth reference trajectories are selected.
Work is under way for extending the application of this control strategy to multi-
mode/multi-link flexible robot arms. The proposed feedforward/feedback schemes will
be evaluated in the experimental test bed available in our Robotics Laboratory [17].

Finally, it is worth to remark that the conditions under which a nonlinear regula-
tor can be successfully designed using static state-feedback are the same which allow
regulation using only output measurements, provided that a reasonable observability
hypothesis is satisfied and that dynamics is included in the controller. Conversely, the
stabilizability of the nonlinear system, which is needed for regulation, does not neces-
sarily ask for full state feedback. For instance, feedback from the flexible variables may
be avoided. Further investigation is being devoted to these aspects.
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