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Abstract

An approach is presented for the robust stabilization of non-linear systems. The proposed strategy can be adopted whenever it is
possible to compute a control law that steers the state in finite time from any initial condition to a point closer to the desired
equilibrium. Under suitable assumptions, such control law can be applied in an iterative fashion, obtaining uniform asymptotic
stability of the equilibrium point, with exponential rate of convergence. Small non-persistent perturbations are rejected, while
persistent perturbations induce limited errors. In order to show the usefulness of the presented theoretical developments, the approach
is applied to chained-form systems and, for illustration, simulations results are given for the robust stabilization of a uni-

cycle. © 2000 Elsevier Science Ltd. All rights reserved.
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1. Introduction

This paper deals with the asymptotic stabilization of
equilibrium points for controllable systems. For linear
systems, controllability and smooth stabilizability imply
each other, whereas this is not true for non-linear sys-
tems. In fact, there exist systems which are controllable
but cannot be asymptotically stabilized at equilibrium
points by a continuous time-invariant feedback, e.g.,
non-holonomic systems. This circumstance has moti-
vated the search for time-varying (Pomet, 1992; Samson,
1995) and/or discontinuous (Sgrdalen & Egeland, 1995)
feedback controllers for particular classes of systems.
Hence, there is a clear interest in control strategies other
than the classical continuous state feedback, for they can
achieve stabilization of systems that do not satisfy the
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necessary condition for smooth stabilizability due to
Brockett (1983).

The stabilization strategy described here, first intro-
duced in Lucibello and Oriolo (1996), is called iterative
state steering; it can be summarized as follows. Suppose
that we can compute a control law, not necessarily in
feedback, which steers the system in finite time from any
point to another closer to the desired equilibrium. By
applying such control law in an iterative fashion, one
obtains a time-varying feedback which, under suitable
assumptions, produces exponential convergence to the
desired equilibrium, guaranteeing at the same time certain
robustness properties. In particular, small non-persistent
perturbations are rejected, while ultimate boundedness is
achieved in the presence of persistent perturbations.

The above idea is simple and, in fact, not completely
new. Related approaches were proposed by Hermes
(1980), resulting in a computationally intensive stabiliz-
ation technique for low-dimensional systems, by Bennani
and Rouchon (1995) for chained-form systems, and by
Lucibello (1992) for steering a flexible spacecraft. Also,
there are similarities with receding horizon control and
predictive control techniques; in particular, the former
have been applied to non-holonomic systems by Alamir
and Bornard (1996).

0005-1098/01/$ - see front matter © 2000 Elsevier Science Ltd. All rights reserved.

PII: S0005-1098(00)00124-2



72 P. Lucibello, G. Oriolo | Automatica 37 (2001) 71-79

With respect to these works, the distinctive points of
our contribution are the following:

e It formalizes an intuitive control approach that is
applicable to non-linear systems for which an approx-
imate steering control can be computed, identifying
conditions under which asymptotic stability with ex-
ponential convergence is achieved. In particular, our
approach can be applied to systems with drift, whereas
the methods in Hermes (1980), Bennani and Rouchon
(1995) and Alamir and Bornard (1996) deal only with
driftless systems.

e It addresses explicitly the robustness problem, exhibi-
ting a direct proof of disturbance rejection that gives
guidelines for robust control design. None of the
aforementioned techniques does this, with the notable
exception being the one by Bennani and Rouchon
(1995), which however heavily relies on the special
structure of chained-form systems.

e It can provide a simple solution to difficult problems,
such as the stabilization of an underactuated satellite
(Lucibello & Oriolo, 1998), of a non-flat non-holo-
nomic system (Vendittelli & Oriolo, 2000), or the ro-
bust stabilization of the unicycle (a canonical instance
of the class of non-holonomic mechanical system) con-
sidered in this paper.

With reference to the last remark, we mention that
robust control for non-holonomic mobile robots was
also addressed by Canudas de Wit and Khennouf (1995)
for the case of a unicycle with perturbations on the
translational velocity, and by D’Andréa-Novel, Campion
and Bastin (1995) for the trajectory tracking problem,
which is however known to be much easier than point
stabilization in non-holonomic systems.

The paper is organized as follows. Section 2 introduces
the fundamental ideas on which iterative state steering is
based, while the robustness properties of the scheme are
analyzed in Section 3. In order to show the usefulness of
the presented approach, we devise a stabilizing control
for the (2,3) chained form in Section 4. Its effectiveness is
illustrated by simulating the control of a unicycle whose
radius is not exactly known.

2. Iterative state steering

The proposed stabilization strategy relies on the iter-
ative application of a suitable control law: during each
iteration, the state of the system is steered from the
current point to another, closer to the desired equilib-
rium. In this section, we shall give a result that formalizes
this simple idea.

Consider the control system

X(t) = f(x(0), u(r), 1), x(to) = Xo € By, (1

where x(t) e R" is the state vector, u(t)e R™ is the control
vector, and B, is an open ball around the origin of the
state space. Without loss of generality, we assume the
origin to be the desired equilibrium; hence, it is
£(0,0,t) = 0 for any teR.

Consider now an infinite sequence of time instants
{t,}, for k=0,1,2,..., with f+1 =t + T4+, and
0<T, <Ti+;1 <Ty < . For compactness, we let
x(tx) = x, hereafter. On each time interval I, =
[tx,t+1), the following steering control is applied:

u(t) = gy 1 (1) = odX(t), xp, 1), €Dy s )

The steering control (2) may be specified either in open-
loop (i.e., as a function of only the current initial condi-
tion x; and time t) or in feedback. Let

X = f((t),0(x(2), X, 1), 1) = f(x(£), X, ),
telr, k=0,1,2, ... 3)

be the closed-loop system, i.e., the dynamics of system (1)
under the repeated application of the steering control (2).

Throughout the paper, we suppose that the steering
control o - ) has been chosen so as to satisfy the following
assumption (the symbol || denotes the euclidean norm):

Assumption 1. The steering control function o is such that:

(@) ux,0,t) =0, for any (x,t) e R" x I} 4 1;
(b) fis locally Lipschitzian in x (with Lipschitz constant J.),
continuous in X, and 1!71’ecewise—continuous1 in t, for

teliyy;
(c) the following condition (contraction) is satisfied:
|Xk+1| SB|Xk|a ﬁ < 13 vxkEBx' (4)

A first consequence of Assumption 1 (point b) is that the
solution of Eq. (3) exists and is unique (Hale, 1980).
Therefore, once a steering control (2) has been selected,
the state ¢(t,x,,t0) at time t > t, is uniquely determined
by t and the initial conditions (xq, to).

Moreover, points a and ¢ of Assumption 1 imply that
the origin is an exponentially stable equilibrium point of
the discrete-time system

X1 = @t 15Xk, L) (3)
since
|xk+1|sﬁk+l|x0|a k=071529-”- (6)

We define geometric the strong type of exponential con-
vergence implied by Eq. (6).

As x; approaches the origin, one would also like the
state of the continuous-time system to converge ex-
ponentially to zero; moreover, stability in the sense of

! This means that f is continuous in I, ; ; except, possibly, for a finite
set of points where it may have finite jump discontinuities (Khalil,
1992).
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Lyapunov is desirable. Below, we give conditions under
which this situation is achieved.

Theorem 1. Under Assumption 1, for the controlled
system (3):

(1) The origin is a uniformly asymptotically stable equilib-
rium point.
(2) If the additional condition holds

7O, xe, 0 < filxi|", teliyr, £=0,r>0, (7

then the rate of convergence is exponential. In particu-
lar, if v > 1 the origin is an exponentially stable equi-
librium point.

Proof.

(1) Assumption 1 implies that (point a) the origin is an
equilibrium point also of the continuous-time con-
trolled system, and that (points a and b)

|f~(X,Xk,t) _f(oaxkat” S/l|x|s xyxkEBxa [61k+1a

with 4 > 0 and | f(0, x,, t)] continuous in x, and such
that |f(0,0,t)] = 0. Therefore, we have

|f(x’xk’t)| < /llxl + |J7(0,xk,t)|a X, Xk EBx’ t61k+1'

®)
Since | f(x, xi, t)| is piecewise-continuous in ¢ in the
closed interval I, 1, |f(0, x,, )] can be bounded as

If(os xk9[)| S :u(|xk|)9 Xk eBx’ t61k+1’ (9)

with u(|x,|) continuous in x;, and such that p(0) = 0.
On the other hand, since

t
x(t) =X + J\f(X(T),xk,T)dT, [61k+17
i

we have

t

X < x| + J 1/ (x(2), X, D) dT < x|

ti

+ Jt Ax(r)ldT + Jt p(lxi ) d,

K 1

where we have exploited Egs. (8) and (9). By using the
Gronwall inequality (Hale, 1980) and the fact that
t—t, <T, fortel,,, one gets

(@ < (el + Taullxal)e*™,  te L. (10)

Since u is continuous at zero and u(0) = 0, Eq. (10)
shows that, as x; converges to zero, x(t) also con-
verges to zero. In particular, asymptotic stability is
achieved, as |x(t)] can be arbitrarily bounded, for
all t, by appropriately choosing x, (recall that

el < Blxol)-

(2) If the additional condition (7) holds, Eq. (10) gives

Ix(0)] < (xil + ATy |x )™, teliyy.

Hence,

Xl < L r <1T=x(0)] < IIxel’, t€lry, (11)
x| <L r=1=|x() < x|, telisy, (12)

where [ = (1 + jiTy)e*™ is a bounded positive
quantity. Since |x;| < ¥|xo|, we obtain

el < Lr <1=Ix(@] < IB¥Ixol" t€lisy, (13)
el < 1,7 = 1= x(0)] < Iffx0l, telisy, (14)

i.e., x(t) converges exponentially to zero, with rate
rllog Bl/ Ty if r < 1 or |log B/ Ty if r > 1. It is easy to
verify that convergence is exponential also when
|xx] > 1, with convergence rate |log f§|/Ty if r < 1 or
rllog B|/ Ty if r = 1 in that region.

If r = 1, the origin is locally exponentially stable
in the Lyapunov sense (Hahn, 1967, p. 113), as the
following estimate holds

! _
|x(t)] < E|x0|e (llog BI/T) ¢

for |xo| < 1. If r = 1, the origin is globally exponenti-
ally stable. [

Remark 1. With reference to Assumption 1, note that the
continuity requirement on f (and thus, on the steering
control «) in x; is essential for the proposed stabilization
strategy. In particular, condition (7) is known as Holder-
continuity of order r at the origin.

Remark 2. In our formulation, the duration T}, ; of the
(k + 1)th iteration is not necessarily fixed, and may take
values within an interval [ T,,, T, ]. In fact, as the current
initial condition x; approaches the origin, a smaller time
T will typically be sufficient for achieving the contraction
condition (4). Note also that only the upper bound
T\ has influence on the convergence rate estimate.

Remark 3. Egs. (13) and (14) hold for the (k + 1)th iter-
ation, with k = 1,2, ..., while Eqgs. (11) and (12) hold also
for the first iteration. In particular, if § = 0 in Eq. (4), the
steering controller drives the system to zero in one iter-
ation, and thus x(t) = 0, Vt > t,.

3. Robustness analysis

Suppose that the given control system (1) is perturbed
as follows:

2(t) = f(=2(0), (1), 1) + eg(z(2), u(t), 1) (15)
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with ee R*, and zeR" the state of the perturbed system.
During the (k + 1)th iteration, the controlled system be-
comes

z =f~(Z(t), Zgs t) + 8&(2([’), Zks t),
The solution of Eq. (16) exists and is unique under As-
sumption 1 and the following

teliq. (16)

Assumption 2. Function § is locally Lipschitzian in z (with
Lipschitz constant 1), continuous in z; and piecewise-con-
tinuous in t, for tel; .

It is customary (Hahn, 1967) to classify the perturbations
as

persistent, §(0,0,t) # 0,
non-persistent, §(0,0,t) = 0.

For dynamical systems, converse Lyapunov theorems can
be used in order to infer that exponential stability of an
equilibrium is preserved under small non-persistent per-
turbations, while limited errors occur under persistent
perturbations (Hahn, 1967, Theorems 56.2 and 56.4).
However, even in the case of exponential stability, this
kind of result does not apply here, because — as shown in
the appendix — the nominal system (3) does not satisfy
the definition of dynamical system as given, e.g., by Hahn
(1967).

Nevertheless, a robust stability property can be estab-
lished for the continuous-time system (3) under certain
assumptions. To prove ultimate boundedness or com-
plete rejection of the perturbation for the continuous-
time system (16), we first analyze the stability of the
associated discrete-time system. To this end, let us recall
a preliminary result which is valid for geometrically
stable discrete-time systems. The proof is immediate and
therefore omitted.

Lemma 1. Consider the system

Cer1 = P&, k), CeR”
for which

(& K < Bl&l, B <1

and the perturbed system

Gerr = QG k) + 9(Ghs k), GeR™
(1) If the perturbation is bounded as

(e, K < e,
{ is ultimately bounded (namely, confined to the ball

{& 1 <e/(1 = B)}).
(2) More stringently, if the perturbation y satisfies the
following estimate:

(e R < el i’ s =1, (17)

the contraction (and hence, the geometric stability) is
locally preserved for sufficiently small ¢ (namely, for
|&]l < 1 and ¢ <1 — P). In the particular case s =1,
the stability is globally preserved for sufficiently
small e.

Remark 4. To appreciate the role of the condition s > 1
in Eq. (17), consider the system

Gevr =Bl +e/lGl, (eR, 0<f<1,6>0.

While { =0 is a geometrically stable equilibrium for
& = 0 (nominal system), it is easy to show that it is an
unstable equilibrium for any ¢ > 0 (perturbed system).
However, the state { is found to be ultimately bounded.

In view of Lemma 1, to prove ultimate boundedness or
asymptotic stability of the perturbed continuous-time
system (16), it is necessary to check whether the perturba-
tion induced by eg(x(t), x;,t) on the nominal discrete-
time system (5) satisfies the hypothesis of the lemma. As
shown in the following Theorem 2 (point 1), ultimate
boundedness of the error is guaranteed for sufficiently
small . As for asymptotic stability, if the system equation
(16) can be explicitly integrated, testing condition (17)
becomes simple and possibly straightforward. If this is
not the case, one may still apply point 2 of Theorem 2,
that gives sufficient conditions on g(x(t), xi,t) under
which, condition (17) is satisfied. Both types of perturba-
tions (i.e., integrable and non-integrable) will be illus-
trated by means of the case study analyzed in the next
Section.

Theorem 2. Under Assumptions 1 and 2, and for suffi-
ciently small &

(1) The state of the perturbed system (16) is ultimately
bounded.

(2) For tel, .y, denote by z(t) the state of the perturbed
system (16) and by w(t) be the state of the nominal
system (3), both initialized at z;, and let
1(t) = z(t) — w(?). If the additional condition

19z, zi, ) < 7lxl + Plziel,
[elk+19 ;7,205 lp>03 5219 (18)

holds, the origin is locally a uniformly asymptotically
stable equilibrium point of the perturbed system (16). In
particular, if s = 1 the asymptotic stability of the origin
becomes global.

(3) If both conditions (7) and (18) are satisfied, the rate of
local convergence of the perturbed system (16) to the
origin is exponential. In particular, if r =1 in Eq. (7)
and s = 1 in Eq. (18) the origin is globally exponenti-
ally stable.



P. Lucibello, G. Oriolo | Automatica 37 (2001) 71-79 75

Proof.

(1) For tel,,, the state of the perturbed system is

Z(I) = Zx + J‘t (](Z(T)a Zkar)

+ &g(z(t), z¢,7)) d7t

with z(t) € B, for sufficiently small ¢, while

t

W(t) = Zx + J' f(W(T), Zkaf) dT
1
is the state of the nominal system initialized at z.
Defining

= Jt (f~(Z’ Zk»T) —f(W, Zk"c) + Sg(Z, Zkﬂ)) dTa

we get

t

L(2)] SJ Aly(@ldr + «{ (n]z(z)|

t t
+19(0, z¢, ) d, (19)

having used Assumption 1 (point b) and the fact that
19(z, z, )] < nlz] + 1g(0, z,7)] (@ consequence of As-
sumption 2).

Since |§(z, z¢, t)| is piecewise-continuous in ¢ in the
closed interval I ., |g(0, z, t)| can be bounded as

|g(09 Zkat)l < ‘/j(|zk|)a Zk eBxa [61k+1 (20)

with Y(]x;]) continuous in x;. Using z(t) = y(t) + w(t)
and Eq. (20) in Eq. (19) we obtain

t t

lx(m)ldT + SWJ [w(z)l dz

t

()] < (4 + en) J

2

+ e Tar(|zi)-

Now, using Eq. (10) we get

t

ol < (4 + Sﬂ)J (@l dz + eTar[Y(| i)

T

+ |zl + Tarpllzi)) €], (21)

and finally applying the Gronwall inequality, we
obtain

(&) < eTa[w(1ze]) + (2]
+ Torpil|zi]) e* T e Fen T

which shows that, for sufficiently small ¢, the pertur-
bation y(t+ 1) on the discrete-time system is arbitrar-
ily bounded. Therefore, Lemma 1 (in particular,
point 1) can be invoked to conclude that the state of
the perturbed discrete-time system is ultimately
bounded. Owing to the continuous dependence of

the continuous-time system (16) on the initial condi-
tion z,, its state is also ultimately bounded.

(2) If the additional condition (18) holds, in place of Eq.
(21) one obtains

t

() < (4 + eﬁ)f lx(ldt + eTy |z [*

1
and using the Gronwall inequality
(O] < eTagplzi e, s > 1.

This expression directly yields, for the perturbation
%(t;+1) on the discrete-time system, an estimate in
form (17). Therefore, Lemma 1 indicates that for
sufficiently small ¢ the geometric stability is locally
preserved for the discrete-time system. Through
Theorem 1 (point 1), the origin of the continuous-
time system (16) is uniformly asymptotically stable
in a local sense. If s =1 in Eq. (18), the geometric
stability is globally preserved, and thus the asympto-
tic stability becomes global.

(3) Similar to the above point, the proof of this fact is
immediately obtained combining the thesis of The-
orem 1 with the thesis of Lemma 1. O

Remark 5. Point 1 of Theorem 2 covers the case of
persistent perturbations, whereas only non-persistent
perturbations can satisfy Eq. (18) of point 2.

So far, we have discussed the features of the iterative
state steering approach from a general point of view. In
order to apply the proposed technique to a specific con-
trol system, one must be able to compute an appropriate
steering control o(x, x;,t). To be precise, « should satisfy
Assumption 1 (essentially, continuity in x; and contrac-
tion) in order to obtain asymptotic stability. If exponen-
tial convergence is desired, the hypothesis of point 2 of
Theorem 1 must also be met (Holder-continuity in x;).
Robustness with respect to perturbations can then be
analyzed using Lemma 1 and/or Theorem 2.

In the next section, we consider a class of non-linear
systems for which a suitable steering control can be
computed with reasonable effort, i.e., systems that can be
put in chained form. For illustration, we also work out
a case study for an example of this class.

4. Application to chained-form systems

Consider the driftless control system

Xy = uy,
Xy = uy,
5(3 = qul, (22)

Xp = Xp—1Uy
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with 2 inputs and n states. System (22) is called a (2,n)
chained form and is readily verified to be controllable via
the Lie algebra rank condition.

Murray (1993) has established necessary and sufficient
conditions for converting a generic two-input driftless
system

g =/f1(@v1 + f2(qQ)v,

into chained form by means of an input transformation
v =a(q)u and a change of coordinates x = f(¢). In par-
ticular, controllable driftless systems with two inputs and
n < 4 state variables can be always put in chained form.

By using the necessary conditions due to Brockett
(1983), it can be shown that system (22) cannot be stabil-
ized at a point by using continuous time-invariant feed-
back. Time-varying (Samson, 1995) and/or discontinuous
(Sgrdalen & Egeland, 1995) feedback controllers have
been proposed, but their robustness has not been ana-
lyzed so far. The iterative state steering technique repres-
ents a natural approach for the design and the analysis of
robust control laws, the essential element being a suitable
steering control to be applied iteratively.

The design of open-loop control laws for chained sys-
tems is relatively simple. Among the available techniques,
we cite sinusoidal steering (Murray, 1993) and piecewise-
constant inputs (Monaco & Normand-Cyrot, 1992).
Hereafter, we show how to design a piecewise-continuous
open-loop control satisfying Assumption 1 as well as the
hypothesis of Theorem 1.

4.1. The (2,3) chained form

Consider the (2,3) chained form

X1 = Uy,
Xy = Uy, (23)
X3 = XUy

with x(ty) = xo = (X10,X20,X30) and t, = 0. We wish to

design an open-loop control law with steering interval

T = 1, whose iterative application guarantees robust sta-

bilization of the origin; in particular, an exact (f = 0)

steering control can be computed in this case, although

this is not required by the iterative steering paradigm.
Let

"y = {—Cl —2X10, [6[0,1/2), (24)
C1, te[1/2,1),

", = {O, 1 te[0,1/2), 25)
¢y +e3t—7), te[l/21)

with ¢y, ¢,, ¢35 constant values to be determined as a func-
tion of the initial conditions. In particular, it must be
u; =u, =0 for x, =0. By forward integration, it is

easily verified that x;(1) =0 always, while imposing
x,(1) = 0 and x3(1) = 0 one obtains, respectively,

Cy = — <2X2() +%> (26)
and
96
C3 = <x3o — X10X20 — 200 > (27)
Cq 4

At this point, letting
¢1(Xo) = x0T, v >0, (28)

one obtains that ¢; is a continuous function at zero, with
¢1(0) = 0, and guarantees the same properties for ¢, and
¢z as given by Eqgs. (26) and (27), respectively. In particu-
lar, ¢; is Holder-continuous of order 1/(1 + v), while
¢, and c¢3 are Holder-continuous of order v/(1 + v).

Substituting the expressions of ¢, ¢, and c¢3 (with
x; in place of x, during the (k + 1)th iteration) in the
steering control (24) and (25), and the latter in the system
dynamics (23), it is easy to verify that the closed-loop
dynamics within each iteration satisfies Assumption
1 and condition (7). To be precise, function u(|x;|) is
found to be Holder-continuous of order 1/(1 + v)ifv > 1,
of order v/(1 +v) otherwise. Therefore, point 2 of
Theorem 1 guarantees that the (2,3) chained form is uni-
formly asymptotically stable under the iterative applica-
tion of the above steering control, with exponential
convergence.” Moreover, Theorem 2 indicates that small
non-persistent perturbations satisfying condition (18) are
rejected, while persistent perturbations give rise to lim-
ited errors.

Using the same approach, it is very simple to work out
extensions of the above iterative steering technique for
the general case of (2,n) chained-form systems.

In the remainder of this section, we apply the proposed
method in order to obtain robust stabilization of
a wheeled mobile cart. This system, which can be con-
verted in (2,3) chained form, will provide an example of
physically motivated chained form perturbations.

4.2. Case study: Unicycle

Many types of wheeled mobile robots with multiple
wheels have a kinematic model equivalent to a uni-
cycle (see Fig. 1A). The generalized coordinates
are q = (px,py,0), where (p,,p,) are the Cartesian

2The resulting feedback controller is time-varying (in particular,
piecewise-continuous in t), consistently with the indication of Brockett’s
theorem on smooth stabilizability, and Holder-continuous with respect
to the state variables. Note also that a feedback law continuous in
t could easily be obtained by choosing a different open-loop control
law.
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Py

Fig. 1. Generalized coordinates for the unicycle.

coordinates of the contact point and 0 is the orientation
of the vehicle with respect to the horizontal axis.
The pure rolling non-holonomic constraint is ex-

pressed as
pxsind — p,cosf = [sinff —cos@ 0]g=0,

which can be solved for the generalized velocities as

P+ cosf 0
py |=|sin0 [pvy +|0 |va, (29)
0 0 1

with p being the wheel radius, v; the driving and v, the
steering velocity (respectively, the wheel angular velocity
about its horizontal and vertical axis).

System (29) may be put in (2,3) chained form via the
change of coordinates

X1 = 09
X, = pycosl + p,sin0,
X3 = p,sinf — p, cos 0,

together with the input transformation

x3/p 1/p
v= u.
1 0
The above input and state transformation are globally
defined.
To test the robustness of our stabilization strategy, we
have introduced a perturbation on the wheel radius,

whose true value is assumed to be p + Ap. As a conse-
quence, (2,3) chained form is found to be perturbed® as

21 = U1,

A
Zy =y +?p(“2 + z3u4), (30)
23 :Zzul.

3 For the sake of clarity, we use here the same symbols of Section 3.
Hence, x and z denote, respectively, the state of the nominal and of the
perturbed system.

When the steering control of Section 4.1 is iteratively
applied to the perturbed chained form, the closed-loop
perturbation is represented by the following vector field:

0 0

N . _Ap
&g = &gy +&g> 27 2 +7 Z3Uy
0 0

with u;, u, given by Egs. (24) and (25). Note that g
satisfies Assumption 2.

It is convenient to analyze first the effect on the nom-
inal system of the perturbation term &g, alone. Since the
integral of the second control input (25) between 0 and
T =11is — x,, by construction, we have

A A
quz(t)dtz —lXZO.
o P p

Using this fact and integrating the third equation of the
nominal system, it is easy to verify that the effect of
perturbation &j; on the discrete-time system satisfies
condition (17) with s = 1. Hence, global asymptotic stab-
ility of the continuous-time system is preserved for suffi-
ciently small Ap.

We now redefine the nominal system as the original
unperturbed system (i.e., the (2,3) chained form) plus the
first perturbation term &g, and analyze the effect of the
second perturbation term &g, by applying Theorem 2 to
the new nominal system. Note that the latter satisfies
both Assumption 1 and condition (7).

For tel, ., denote by z(¢) the state of system (30) and
by w(t) the state of the new nominal system, both in-
itialized at z;, and let y(t) = z(t) — w(t). By integrating the
third equation of the nominal system, one readily finds
the following estimate

[ws(t) < olzi|, >0,
and thus
19(z, 21, D)) = |23 (Du (0)]
= I3 (Ous (0) + waOus O < Al + Plzil,

where the expressions of 77 and i can be computed from
Egs. (24) and (25). The perturbation term &g, is thus
non-persistent and, in particular, satisfies condition (18).

Wrapping up, the iterative controller of Section 4.1
designed on the original unperturbed system (i.e., for
Ap = 0) guarantees robust asymptotic stability, with ex-
ponential convergence rate, for sufficiently small Ap.
Moreover, this property holds globally, since condition
(18) is verified with s = 1.

The simulation results reported in Figs. 2A and 3A are
in accordance with this prediction. The robot must per-
form a parallel parking maneuver, moving from (0,2,0) to
(0,0,0). The control law is given by Eqgs. (24) and (25), with
v=11in Eq. (28). A 20% perturbation on the nominal
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state error norm
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Fig. 3. Time evolution of the state error Euclidean norm.

wheel radius p =1 was included in simulation. The
cartesian motion of the unicycle is shown in Fig. 2a.
Fig. 3A is a logarithmic plot of the error euclidean norm
after eight iterations; note the exponential convergence
rate.

We conclude this case study by pointing out that
different trajectories can be obtained by choosing
different steering controls in place of (24) and (25). For
example, it is possible to compute a sinusoidal steering
control that meets our requirements. The essential point
here is that, as long as the conditions stated in
Theorems 1 and 2 are satisfied, the iterated application of
the control law will yield robust asymptotic stability,
with exponential convergence rate. The possibility of
‘shaping’ the system trajectory while guaranteeing at the
same time robust stabilization is an advantage of our
method.

5. Conclusions

We have presented an approach for the robust stabiliz-
ation of non-linear systems. The essential tool is a control
law o« that steers the system closer to the desired equilib-
rium point (assumed to be the origin) in a finite time.
Whenever such a control is computable, its iterated ap-
plication (i.e., from the state x; attained at the end of the
previous iteration) yields exponential convergence to the
origin, provided that o is Holder-continuous with respect
to x;. The resulting stabilization scheme can reject a class
of small non-persistent perturbations, while small persist-
ent perturbations induce limited errors.

For illustration, we have applied the proposed method
to a particular class of controllable non-linear systems,
i.e., chained forms. These are a family of driftless systems
that cannot be stabilized by smooth time-invariant feed-
back, and represent a fairly canonical form for mechan-
ical systems subject to non-holonomic constraints. In
particular, we have presented simulation results for
a wheeled mobile robot with the kinematics of a unicycle.
We mention that iterative state steering can also provide
stabilization of non-holonomic systems that do not ad-
mit a chained-form transformation, such as the general
trailer system (Vendittelli & Oriolo, 2000).

It appears that several other difficult control problems
can be successfully addressed by using this approach. In
particular, the proposed strategy is proved to be effective
in the control of underactuated mechanical systems, such
as the underactuated 2R manipulator (De Luca, Mattone
& Oriolo, 2000) and the satellite with a failed control
(Lucibello & Oriolo, 1998).

Appendix

By means of an example, we show below that the
solution ¢(t, x¢,to) of Eq. (3) may not satisfy the semig-
roup condition

q)(ta X0, tO) = (p([’ QD(T: X0>» tO )s T)’ =t (Al)

Therefore, the controlled system (3) does not satisfy the
definition of dynamical system as given (e.g., Hale, 1980;
Hahn, 1967).

Consider the simple system

X(t) = u(t), x@),ut)eR, x(ty) = xo,
and let

Xk

ut) = — R

teti,ter 1),

where x, is the state at time t;, being ;1 — t;, = 1, Vk.
With this choice, the state is steered halfway to zero at
each iteration.
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Letting xo, = 1, t, = 0, we have
@(0.5,%0,t0) =3, @(1,%0,0) = 3.
On the other hand,
o(1,0(0.5,x0,1t0),0.5) = ¢(1,3,0.5) = 7%
and, thus,

(P(laXOa tO) # @(1’ @(O'S:XO-) tO)» 05):

showing that the solution does not satisfy the semigroup
condition (A.1).
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