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1 Introduction

Compliance Control for an
Anthropomorphic Robot with
Elastic Joints: Theory and
Experiments

Studies on motion control of robot manipulators with elastic joints are basically aimed at
improving robot performance in tracking or regulation tasks. In the interaction between
robots and environment, instead, the main objective of a control strategy should be the
reduction of the vibrational and chattering phenomena that elasticity in the robot joints
can cause. This work takes into account working environments where unexpected inter-
actions are experienced and proposes a compliance control scheme in the Cartesian
space to reduce the counter effects of elasticity. Two theoretical formulations of the
control law are presented, which differ for the term of gravity compensation. For both of
them the closed-loop equilibrium conditions are evaluated and asymptotic stability is
proven through the direct Lyapunov method. The two control laws are applied to a
particular class of elastic robot manipulators, i.e., cable-actuated robots, since their
intrinsic mechanical compliance can be successfully utilized in applications of biomedi-
cal robotics and assistive robotics. A compared experimental analysis of the two formu-
lations of compliance control is finally carried out in order to verify stability of the two
closed-loop systems as well as the capability to control the robot force in the
interaction. [DOI: 10.1115/1.1978911]

Using compliant elements in the mechanical transmission sys-

In many application fields, from industrial robotics up to bio-
medical or assistive robotics, where a very close human-robot
interaction is needed, one can resort to suitable mechanical solu-
tions to increase the level of safety and reliability in situations of
unpredictable contacts of robot manipulators with the environ-
ment, e.g., by adopting lightweight structures.

One approach to the mechanical design of lightweight manipu-
lators is based on the use of low inertia actuators, as in the dis-
tributed elastically coupled macro-mini parallel actuation [1]. This
system has the purpose of ensuring high performance in position
tracking tasks as well as in interaction tasks, through a micro
system driven by stiff transmissions and low inertia actuators.
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tem can be regarded as another approach to the design of safe
robots. In particular, if the intrinsic compliance can be considered
as concentrated at the joints, the assumption of robots with elastic
joints can be made. This is the case of robot manipulators actuated
through pulleys and steel cables, where the elasticity is deter-
mined by the elastic coefficient of the cables. Cable actuation can
ensure human-like dimensions of the artifact, lightness and also
anthropomorphic mass distribution, which are fundamental re-
quirements for biomedical and assistive robotics [2—4].

Control algorithms conceived for completely rigid robots may
guarantee a stable behavior even if a certain degree of elasticity in
the actuation system and motor transmission elements, or in the
link structure, is present [5,6]. The price to pay, however, is a
typical degradation of robot performance. In fact, elasticity of
mechanical transmissions induces position errors at the robot’s
end effector because of static deformation under gravity. In addi-
tion, it may generate lightly damped vibrational modes, which
reduce robot accuracy in tracking tasks [5]. Yet, it may become a
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source of instability in case of interaction between the robot and
the environment [7], possibly leading to undesirable effects of
chattering during contact [8].

Several solutions have been proposed in the literature to cope
with the control issue of robot manipulators with rigid joints in-
teracting with the working environment. They range from the con-
cept of active compliance to the concept of making the robot’s end
effector to behave as a mechanical impedance (see, e.g., Ref. [9]
for a survey), up to the hybrid position/force control approach
[10].

On the other hand, the dynamic effects of elasticity in the joints
have been extensively studied for improving robot performance in
regulation and tracking tasks [11]. To this regard, classical tech-
niques used for rigid robots, input-output decoupling, feedback
linearization or else inversion control, have been revisited.

For trajectory tracking control, one has to resort to a nonlinear
static state feedback or to an approximate singular perturbation
model of elastic joint manipulator dynamics [12] when a reduced
model of the robot can be used [13], whereas a nonlinear dynamic
state feedback is needed in the case of a complete dynamic model
[14]. Whenever regulation is desired, instead, a simple PD control
plus gravity compensation in the joint space can be adopted, as
proposed in [15].

The problem of controlling robot manipulators with elastic
joints in situations of interaction with the working environment,
instead, is not widely dealt within the literature.

The PD control proposed in [15] can be regarded as a feasible
interaction control since it provides a sort of compliance at joints
if the feedback gains are properly adjusted. On the other hand, the
singularly perturbed model can be suitably exploited to achieve
force control either in a hybrid position/force control or imped-
ance control framework [16], or when a constraint on the environ-
ment is present [17]. This control approach allows compensating
for joint flexibility by introducing a corrective torque input.

Nevertheless, it should be stressed that all the interaction con-
trol schemes for robots with elastic joints proposed in the litera-
ture are validated by means of simulation tests on 2- or 3-degree-
of-freedom (d.o.f.) manipulators.

This paper is aimed at presenting a complete theoretical formu-
lation of a compliance control in the Cartesian space plus gravity
compensation for robots with elastic joints. The controller consists
of a proportional-derivative action plus gravity compensation, as
for rigid robots, but a new position variable, named the gravity-
biased motor position, is introduced [18]. This allows using only
the position and velocity information, available from the position
sensors on the rotors, to achieve an easy regulation of compliance
in the Cartesian space. Asymptotic stability is proven for two
formulations of the control law, namely, compliance control with
constant gravity compensation (as in [15]), and compliance con-
trol with on-line gravity compensation.

Further, the two control laws are experimentally tested on an
8-d.o.f. cable-driven robot manipulator in order to verify stability
of the closed-loop system and also the capability of force accom-
modation, by measuring the interaction force for different sets of
proportional gains. A comparison of the experimental results is
finally provided.

2 Robot Dynamic Model

Robot manipulators with » moving rigid links driven by elec-
trical motors through »n joints/transmissions subject to small elas-
tic deformations are considered.

Under the assumptions in [13], the dynamic model of a robot
with elastic joints (Fig. 1) can be expressed as

M(q)g +S(q.9)g+ g(g) + K(qg—6)=0 (1)

10+K(60-q)=u (2)

where ¢ is the (nX 1) vector of link positions and @ is the (n
X 1) vector of motor positions reflected through the gear reduc-
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Fig. 1 Elastic joint

tions. It is assumed that only the motor variables 6 and 6 are
measurable, or the latter are possibly obtained by accurate numeri-
cal differentiation.

In (1), M(q) is the (n X n) robot link inertia matrix, S(g,q)q is
the (nX 1) vector of centrifugal and Coriolis torques, K is the
(nX n) diagonal matrix of joint stiffness coefficients, and g(q)
=(9U, g(q)/é’q)T is the (n X 1) vector of gravitational torque, where
U,(q) is the potential energy due to gravity. Also, in (2) 7 is an
(n X n) constant diagonal matrix including the rotor inertia and the
gear ratios.

The robot dynamic model (1) and (2) presents three important
properties which will be useful in the demonstration of asymptotic
stability of the control law.

P1. The inertia matrix M(q) is symmetric and positive definite
for all g.

P2. If a representation in Christoftel symbols is chosen for the
elements of S(g,q), the matrix M —2S is skew-symmetric.

P3. A positive constant « exists such that

%@ _ | 7Ugla) <a 3)
dq - (?qz h

where the matrix norm of a symmetric matrix A(g) is given by
Amax(A(q)), i.e., its largest (real) eigenvalue at ¢." Inequality (3)
holds for all ¢ and implies

le(q1) - g(g)] < allg; = gl 4)

for any ¢, g,. It should be explicitly remarked that this inequality
holds whatever argument is used for evaluating the gravity vector.

3 Compliance Control with Constant Gravity Com-
pensation

Let x be the (m X 1) task vector (i.e., the Cartesian end-effector
pose), with m<n, and x, its desired constant value. The direct and
differential kinematics are, respectively,

x=x(q), *=J(g)q 5)
and depend on the link position variables only. The matrix J(g) is
the analytical robot Jacobian matrix. If m=n and away from sin-
gularities, a finite number of inverse kinematics solutions ¢, is
associated with x,, i.e., such that x(g,)=x,. Since, in general, sin-
gular configurations are to be avoided, i.e., det J(g,) # 0, the vec-
tor g, has to be selected in the same class of inverse kinematics
solutions as the initial configuration g,. If m<<n, "~ inverse
kinematics solutions g, exist and some of them can be singular

"This is the matrix norm naturally induced by the Euclidean norm on vectors, e.g.,

lall=v=L47.
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(rank J(g;)<m). Also in this case, a nonsingular inverse kine-
matic solution has to be selected as ¢g,;.

In [15], a PD control in the joint space is proposed for regula-
tion tasks of robots with elastic joints. Indeed, it could be adapted
to interaction situations if the matrix of joint proportional gains is
varied to regulate robot compliance. In what follows, the control
is extended to the Cartesian space in order to perform regulation
tasks as well as to modulate robot compliance at the end effector.

The control law is

M=JT(§)KP(xd_X(5))_KI)9+ 8(qa)s (6)

which provides the torque vector u of the robot dynamic model
(1) and (2) as a combination of a proportional term, acting on the
Cartesian error, a motor damping (derivative) term, and a constant
compensation of gravity at the desired ¢, The (m X m) matrix Kp
and the (n X n) matrix K, are positive definite and set the propor-
tional and derivative gains, while the (n X 1) vector

0=0-K"g(q,) (7

is a “gravity-biased” modification of the measured motor position
0.

It is worth noting that the kinematic terms x(é) (direct kinemat-
ics) and J7(6) (Jacobian transpose) are evaluated as a function of

0 (instead of the argument g); the rationale is that, as shown
afterwards, these expressions shall provide the correct values at
steady state, even without a direct measure of g. As a matter of
fact, the control law (6) can be implemented using only motor
variables.

3.1 Closed-loop Equilibria. The equilibrium configurations
of the closed-loop systems (1), (2), and (6) are computed by set-

ting ¢= #=0. This yields

8(q) +K(g—6)=0 (®)

K(6-q) =T (0)Kp(xs—x(0) + g(q,). )
From (8) it follows that, at any equilibrium, 9=g+K 'g(q).
Then, adding (8) to (9) leads to

J(q+K ' (g(q) - g(g))Kp(xy—x(q+ K (g(q) - g(q4))))

+g(q4) - 8(q) =0. (10)
Indeed
(11)

is a closed-loop equilibrium configuration. Moreover, in corre-

g=q, and thus =g, + K 'g(q,) = 0,

spondence of this equilibrium, Ed: 6,~K 'g(g,)=q, and conse-

quently x(6,)=x,.

In the assumption of m=n, i.e., the robot is not kinematically
redundant for the considered task, the uniqueness of such equilib-
rium is now shown under a mild additional assumption. Adding to
both (8) and (9) the term K(6,—q,)—g(q,)=0 leads to

K(g—q4) - K(6-0,) +g(q) - g(q) =0 (12)

- K(g—qy) +K(0-0,) + T (O)Kp(x(0) —x) =0 (13)

where the sign of the last equation has been changed. The follow-
ing expansion holds true

xX(0) = x4 =x(qy+ (0= 0) —x4=x(q,) +J(g) (0 6,) +0(|0
- 0dH2) _deJ(§+ (6,—0)(6-6, + 0(H0— l9d||2)
=J(0)(6-6,) +0,(|6- 6.

Therefore, Eqs. (12) and (13) can be rearranged as

Journal of Dynamic Systems, Measurement, and Control

K -K [q—qd]_[g(gd)—g(q)]
_ = | a4
-K K+J'(0)Kp(0) |LO-0,1 Loi(l6- 6]

Away from kinematic singularities, the smallest (real) eigenvalue
Amin(K) of the symmetric matrix

|k -k
S A
-K K+J(0)KpJ(6)

can be always bounded away from zero. In fact, in the above
assumptions, a sufficiently large (diagonal) Kp can be always se-
lected such that

Anin(K) > a. (16)

As a consequence, using the inequality (4) extracted by property
P3 leads to

K -K [q—qd]
—-K K+J(OKpJ(6) |LO0-6,

[‘Z—f]d]
0-6,

= Nnin(B)lg = g4l > allg — g4l = g(q) - g(q)l|

= )\min(K)

(17)

and thus equality (14), neglecting o;(]|6— 6,]|*), holds true only for

(q,0)=(qq. 62)-

Summarizing, locally around (q, 6)=(g,, 6,) and away from ki-
nematic singularities for a nonredundant robot, (¢4, 6,) is a unique
isolated equilibrium configuration of the closed-loop system (1),
(2), and (6). Indeed, local validity is an over-conservative state-
ment and uniqueness of such equilibrium holds in the whole joint
space region where ¢, is the only inverse kinematics solution
associated to xy.

3.2 Proof of Asymptotic Stability. The stability of the pro-
posed control law is proven by using the direct Lyapunov method
and then invoking La Salle’s Theorem.

Consider the auxiliary configuration-dependent function

P(¢.0) = 3(q = 0)"K(q = 6) + 3(xs = x(0)) 'K p(xg = x(8) + U(9)
- 05(q). (18)
It is easy to see that this function, under the assumption (16), has

a unique minimum in (g4, 6,). In fact, the necessary condition for
a minimum of P(g, ) is

v,pP K -K||q
VP@O=1g b=k & ||s

{ g(q) }
. ) B 0. (19
—J(O)Kp(xy—x(0) — g(q,)

Equation (19) is exactly in forms (8) and (9). Using the same
arguments of Sec. 3.1, it can be obtained that VP(q, 6)=0 only at
(g4, 6,). Moreover,
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i [k -K
VP(q,0,) = - -
W50 Lk K+ TOKD)
a
2(q) 0
dq
" aI'(6)
0 = =—=Kp(x;—x(6)
L a0 q:qd,9:9d
dq(q)
=K+ | dq (20)
0 01(“9— 9¢1||2) 4=q,.6=0,

where the expansion (14) has been used. The sufficient condition
for a minimum, i.e.,

V2P (4.0)| 21

=g p0=0,> 0.

is satisfied under the assumption (16).
The function derived from (18) as

V(g,6,4,0) = 3¢"™M(q)g + 3610+ P(q,0) — P(q46,)

is zero at the chosen equilibrium state, g=g,, 6=6,, ¢=6=0, and
positive for any other state in an open neighborhood of this equi-
librium, provided that condition (16) holds true. Hence, V is a
candidate Lyapunov function.

Along the trajectories of the closed-loop system (1), (2), and
(6), the time derivative of V becomes

V=q"Ma)q + 3@ + BT+ (- 7Kg~
T
K0+ | L) g

l .
= qT<— 8(a.9)d - 8(q) ~ Klg ~ ) + SM(q)g + Klg - 6) + g(q))

+ 0 (u-K(60-q) - K(g— 0) - T (OKp(x,~ x(0) - g(q,))
= 0T (O)Kp(x,— x(8) = Kp0+ g(qs) = I (O)Kp(x,— x(6))

-8(q,)=-0"K,0<0 (22)

where the skew-symmetry of matrix M—2S and the identity 0
=0 have been used.

Since V=0 if and only if #=0, when #=0 the closed-loop
equations give

M(q)g + S(q,9)q + g(q) + Kq = K6 =const (23)

Kq=K0-J"(60-K'g(q,))Kp(x,—x(6- K'g(q,)) - 8(q4)
= const. (24)

From (24), it follows that ¢=¢=0, which in turn simplifies (23) to

g(q)+K(qg—-0)=0.

It has already been shown in Sec. 3.1 that systems (24) and (25)
has a unique solution, around a nonsingular (g4, 6,,), provided that

(25)

condition (16) holds true. Therefore, g=¢q,, 6=6,, ¢=06=0 is the

largest invariant subset contained in the set of states such that 14
=0. By La Salle’s Theorem, asymptotic stability of the desired set
point can be concluded.
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4 Compliance Control with on-line Gravity Compen-
sation

The control law (6) uses a constant gravity compensation at the
desired closed-equilibrium. A better transient behavior can be ex-
pected if gravity compensation is performed at any configuration
during motion. However, note that the gravity vector in (1) de-
pends on the link variables g, which are not directly measurable.
This is similar to the dependence on g of the direct and differential
kinematics of the robot—see (5)—and therefore, by analogy, one

can attempt using the “gravity-biased” variable 6, defined in (7),
in place of g also for the on-line gravity compensation, i.e.,

u=J"(O)Kp(xg= x(6) — Kpf+g(6) (26)

where Kp>0 and Kp>0 are both symmetric (and typically diag-
onal) matrices.

In what follows it is shown that the control law (26) provides
asymptotic stability of the closed-loop equilibrium configuration
(11), under the same assumption (16). The study of the closed-
loop equilibria is, however, slightly different and the stability
analysis requires a modified Lyapunov function candidate.

4.1 Closed-Loop Equilibria. The equilibrium configurations
of the closed-loop systems (1), (2), and (26) are computed by

setting = 0=0. This yields

g(@)+K(g-6)=0 (27)

K(0-q) =J"(O)Kp(x,—x(6)) + g(6).

Following the same procedure as in Sec. 3.1 leads to
T(q+K " (g(q) = 8(qa))Kp(rg = x(q + K (2(q) = 8(q.)) + 2(6)

-8(g)=0 (29)
which has

(28)

(30)

as a closed-loop equilibrium configuration. Moreover, in corre-

qg=q, and thus =g, + K 'g(q,) := 0,

spondence of this equilibrium, 6,:= 6,—~K'g(¢,)=g, and conse-

quently g(6,)=g(q,) and x(6,)=x,.

Further analysis allows showing that such equilibrium is
unique. Adding to both (27) and (28) the term K(6;,—q,)—g(q,)
=0 and recalling expansion (14), the equilibrium equations can be

rearranged as
K -k [q ~ 44 ]
-K K+J (0K (6 |LO-0,

_ { 8(qq) - 8(q) }
g(g)—g(qzi)+01(”'9— 0 .
Assuming to be close enough to 6,, the vanishing second-order

terms can be neglected and, away from kinematic singularities,
condition (16) can be assumed valid. Consequently,

_ 2 _ 2
I?[q Qd] [q %’]
6-6, 6-6,

31

2
= )\min

(K)

=Noin®lg—adP +6- 04>  (32)
can be written for the left-hand side of (31), while
8lq) —2g(9) ||? _
~ =llg(ga) - 8(@)I* +[1g(0) - g(qa)I
8(0) - g(q4)
< &(lg = qdP +116- 67 (33)

is obtained for the right-hand side, using inequality (4) and the
identity 6—g,=60-6,. By comparing (32) with (33), it follows
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Table 1 Stiffness coefficients for the joints of the Dexter arm, expressed in Nm/rad

Joint 1 Joint 2 Joint 3

Joint 4

Joint 5 Joint 6 Joint 7 Joint 8

Elastic
coefficient

10° 10° 6.34-10°

3.60-10°

2.69-10°  1.69-10° 1.23-10>  2.06-107

that, when \,;,(K) > e, the equality in (31) is possible only for
(g,0)=(q4,0,), which is thus the unique equilibrium configuration
of the closed-loop systems (1), (2), and (26).

4.2 Proof of Asymptotic Stability. Define the auxiliary
configuration-dependent function

P(q.0) = 5(q - 0)'K(q — 6) + 3 (4= x(6) 'K plxy = x(0)) + U,(q)

- U, (). (34)

The sole difference between Eqgs. (18) and (34) is in the last term
—Ug(é) in place of —67g(q,).

As in Sec. 3.2, it can be demonstrated that this function has a

unique minimum in (gy,6,), provided that condition (16) is

satisfied.
Consider the candidate Lyapunov function

V(q.6.9.0) = 34"M(q)g +36"16+ P(q.6) ~ P(q,.6,) = 0.
(35)
Indeed, V is zero only at the desired equilibrium state g=g,, 6
=6, g=6=0.

Along the trajectories of the closed-loop systems (1), (2), and
(26), the time derivative of V becomes

. 1 . R .
V=4¢"M(q)j + EQTM(q)q +0'10+(4- 0)'K(q - 6)

T ~\T
= BT OK g~ 5(0) + q'T( —é—w'(")> - [9T<—6—'9 U'(e))
dq 76

= tf(— 5(q.9)¢ - g(q) - K(g - 6) + %M(q)ci +K(g- 0))

+"g(q) + 6" (u - K(6- q) - K(g - 6) = J"(O)K pl(x,— x(0))
- g(0) = 0" (" (O)K p(x,— x(6)) — K0+ g(6) - ()

— J(O)Kp(xy—x(8))) =— 'K ,0< 0 (36)

where, again, the identity 6=0 and the skew-symmetry of matrix
M-2S have been used.
The time derivative V vanishes if and only if §=0. Substituting

6(1)=0 into the closed-loop equations yields

M(q)g + S(q,q)q + g(q) + Kq = Kf=const (37)

Kq=K0-J"(6-K'g(q4)Kp(x,—x(6- K'g(q,)) - g(6

- K 'g(g,)) = const. (38)

From (38), it follows that ¢(r) =0, which in turn simplifies (37) to

g(q)+K(g-6)=0. (39)

As shown in Sec. 4.1, systems (38) and (39) have a unique solu-
tion, around a nonsingular (g4, 6,), provided that condition

Amin(K) > @ holds true. By La Salle’s Theorem, asymptotic stabil-
ity of the desired set point can be concluded.

Notice that the sufficient condition (16) involving the gain Kp
cannot be relaxed when passing from constant to on-line gravity
compensation. This is because the controller employs measured
quantities at the motor side, rather than the link quantities that
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would be needed to make independent of gravity the lower bound
on Kp which is sufficient for convergence. Nevertheless, it is ex-
pected that the compliance control with on-line gravity compen-
sation continues to work even with lower position gains. Such a
feature has been verified in a number of simulations which are not
reported here for brevity.

4.3 Accommodation of Interaction Force. In case of contact
with the environment, the two control laws (6) and (26) achieve a
compliant behavior during interaction. In order to gain insight into
the force accommodation properties of the system, a term J7(¢)h
shall be added on the right-hand side of (1), where # is the vector
of contact generalized forces exerted from the environment on the
robot’s end effector. Hence, the closed-loop system equations un-
der control (26) become

M(q)i+5(q.9)q+g(q) +K(g— 6)=J"(g)h (40)

160+ K(0-q) =J (K p(x;— x(0) — K0+ g(6).
By considering a simple elastic model at the contact, i.e.,
h= Ke(xe - x)

where K,=0 is the environment stiffness matrix and x, is the

(41)

undeformed rest location, at steady state (§=0, 6=0) it is

8(q) +K(g—0)=J"(q)K,(x,—x) (42)

K(6-q) =J"(O)Kp(xs—x(6)) + g(6). (43)

Assuming 2(6) =g(q), J(6) =J(g) and x(6) =x(g)=x leads to
K (x,—x)+ Kp(x;—x)=0.

The end-effector location at the equilibrium obviously differs
from x,, while the proportional control action K p(x,—x) balances
the elastic force K,(x—x,). Therefore, both x and A can be accom-
modated at steady state by means of a suitable choice of the com-
pliance K3'. From (42), the elastic torques due to joint deforma-
tion K(g—6) is the combined result of the achieved contact force
and of the gravity torque.

5 Experimental Results

Both formulations of compliance control in the Cartesian space
(i.e., with constant and on-line gravity compensation) have been
tested on an 8-d.o.f. robot manipulator, named the Dexter arm
[19], designed for applications of rehabilitation robotics. The ro-
bot is cable-actuated and can be regarded as a manipulator with
elastic joints because of the non-negligible elasticity of the cables.
Experiments of regulation in the joint space with both constant
and on-line gravity compensation can be found in [20,21].

Table 1 reports the cable stiffness coefficients for the Dexter
arm. Ideally, a joint is rigid whether the elastic coefficient tends to
infinity; in practice, values around 10> Nm/rad, as for the first two
joints in Table 1, indicate a minimum level of elasticity that can be
neglected, in general. In the Dexter arm, this is due to the pres-
ence of the sole motor reduction gear box between the actuator
and the link of joints 1 and 2. All the other joints, instead, are to
be regarded as elastic, in view of the cable motor transmission.

The actuation system for cable-actuated robot manipulators
consists of electrical motors which are not directly connected to
the links, and a mechanical transmission system, after the gear
reduction, realized by pulleys and steel cables (as in Fig. 2). The

SEPTEMBER 2005, Vol. 127 [/ 325



— Link 7, Axis 7
D
?f
i
Link 6, Axis 6
Link 5, Axis 5 ,L__ng - Link 2, Axis 2

Fig. 2 The Dexter mechanical structure

consequence of cable actuation is that a mechanical coupling
among the joints is present even though the number of actuators is
equal to the number of d.o.f.’s, as in the Dexter arm.

For the considered 8-d.o.f. robot arm, the position variables are
16, decomposed in 8 motor position values measured by incre-
mental encoders and 8 link position values. In Fig. 3 they are
indicated, respectively, as # and ¢, while N,, and Np represent the
matrices of gear reduction ratios and mechanical coupling, respec-
tively.

The purpose of the experimental session is twofold. On one
hand, system stability in reaching the desired pose x, is demon-
strated and a comparison between control laws (6) and (26) is
carried out. On the other hand, the capability of the compliance
controller to modulate the level of force in the interaction is
shown.

Since the robot is kinematically redundant, the effect of nonu-
niqueness of g, for a given x, on the control algorithm conver-
gence has to be evaluated. To cope with this issue, in order to
realize the task of reaching a desired pose, a desired trajectory
x4(t) of duration T=10 s consisting of a straight-line path with a
quintic polynomial time profile (with zero velocity and accelera-
tion boundary conditions) has been planned from the robot initial
Cartesian position xy=[0.65 0 0.45 0 0 0]7 (m,rad) to the desired
position  x,=[0.75-0.06 0.35 0—7/4 0]” (m,rad). Roll-Pitch-
Yaw angles have been used for the representation of the orienta-
tion. A joint configuration trajectory g,(7) is computed off-line
from x,4(r) through an inverse kinematics algorithm using the
pseudo-inverse of the Jacobian matrix, and initializing the scheme
at the actual robot configuration at time #=0. Further, the constant
desired value g, to be used in (6), (26), and (7) is taken as g,
=q4(T).

The data reported in Figs. 4 and 5 correspond to position and
orientation error in the case of constant gravity compensation and
on-line gravity compensation, respectively. Both figures draw the

Fig. 3 A cable-actuated joint
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Fig. 4 Position error and orientation error in the case of com-
pliance control in the Cartesian space with constant gravity
compensation. The graph is related to a displacement in the
negative vertical direction.

best case from the viewpoint of accuracy, but the error of the
control law (6) turns out to be larger than that of the control law
(26).

The proportional matrix used for the experiments is different in
the two cases. For the control with on-line gravity compensation
Kp=diag{330,330,330,12,12, 12}, while for the constant gravity
compensation case Kp=diag{120,120,120,12,12,12}. For both
control laws, the derivative matrix has been chosen as K
=diag{10,10,9,3,2.5,2,0.1,0.1}.

The rationale for different values of proportional gains for the
position is that, if the same Kp matrix is used for the two control-
lers, as the motion starts, the constant gravity torque g(g,) has a
higher value than that with the on-line gravity torque g(g). When
added to the initial error multiplied by the proportional gain Kp,
this would lead to motor saturation. A reduction of Kp is thus
needed for the control law (6)

Conversely, proportional gains for the orientation are un-
changed because in the Dexter arm the joints responsible for the
orientation have very low mass and their contribution to the gravi-
tational torque is very small. In spite of that, the orientation error
is larger when the control law with constant gravity compensation
is used, in view of the coupling with the position.

Experimental evidence shows that the closed-loop system (1),
(2), and (6) is stable for small displacements, whereas it can be-
come unstable for large displacements. Moreover, accuracy for
displacements along the direction of the gravity acceleration vec-
tor is higher than for displacements in the opposite direction (Figs.
4 and 6).

On the other hand, the behavior of the closed-loop system (1),
(2), and (26) is always stable and not influenced by the variation
in magnitude or in direction of the displacement. Furthermore, the
error converges asymptotically to zero and the time course of the
error, in particular of the orientation error, is smoother than the
case of constant gravity compensation (Figs. 4 and 5).

In order to analyze the robot behavior in situations of interac-
tion with the environment, the experimental setup has been
equipped with an one-axis load cell, placed on an obstacle. A
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Fig. 5 Position error and orientation error in the case of com-
pliance control in the Cartesian space with on-line gravity
compensation
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Fig. 6 Position error and orientation error in the case of com-
pliance control in the Cartesian space with constant gravity
compensation. The graph is related to a displacement in the
positive vertical direction.

series of impacts have been carried out in the direction of the load
cell and the contact force has been measured and monitored by
means of an oscilloscope. The same procedure has been repeated
for each Cartesian direction in order to evaluate the capability of
the robot arm to regulate compliance in the Cartesian space.

The experiments have shown that reducing the value of Kp is a
suitable means for reducing the value of the interaction force for
both control laws.

Figures 5, 7, and 8 are relative to the compliance control in the
Cartesian space with on-line gravity compensation and two values
of Kp (e, Kp=diag{330,330,330,12,12,12} and Kp
=diag{200,200,200,6,6,6}). Figure 7 shows that decreasing Kp
causes an increase of the position error, as expected. Instead, Fig.
8 reports the force course during an impact in the z direction, as
measured by the load cell. It is evident that a reduction of Kp
corresponds to a reduction of the impact force, that is basically a
regulation of robot compliance.

Further experiments, which are not reported here for brevity,
have demonstrated that compliance control in the Cartesian space
produces analogous results in the case of constant gravity com-
pensation. It has been observed that the robot behavior is about
the same in all the other directions of motion.

6 Conclusions

In designing an interaction control strategy, elasticity in the
joint actuation system should not be neglected. In fact, elasticity
in the joints is one of the main causes of performance degradation
in tracking tasks and, whenever the robot works in contact with
the environment, it is also one source of vibrational phenomena or
chattering effects.

This paper has proposed a compliance control in the Cartesian
space for reducing the effects of joint elasticity in the interaction.
It has demonstrated that a PD action in the Cartesian space plus
gravity compensation can stabilize also robots with elastic joints,
by using the same sensors required for the rigid case.

Two formulations of the control law have been theoretically
analyzed and experimentally tested. The first formulation is based

POSITION ERROR ORIENTATION ERROR

0.05
0.01 0.04
= 0.03
= g
= 0.005 = 0.02
0.01
0 0
0 5 10 0 5 10

(s] [s]
Fig. 7 Position error and orientation error in the case of com-

pliance control in the Cartesian space with on-line gravity com-
pensation and lower Kp
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Fig. 8 Impact force in the case of compliance control in the
Cartesian space with on-line gravity compensation for higher
(left) and lower K values (right)

on a constant gravity compensation, while the second formulation
proposes an on-line gravity compensation in order to improve
robot behavior especially in the transients.

Experimental trials have been carried out on an 8-d.o.f. cable-
driven robot manipulator. They have confirmed asymptotic stabil-
ity of the two control laws as well as the expected improvement of
transient behavior when an on-line compensation instead of a con-
stant compensation is used for the gravity.

Further, the experimental setup has been equipped with a load
cell in order to measure the exerted force in the interaction with
the environment. The experimental data have revealed also the
capability of compliance regulation through a suitable choice of
the proportional gains.
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