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Abstract— We discuss some recent control techniques for
underactuated manipulators, a special instance of mechan-
ical systems having fewer input commands than degrees of
freedom. This class includes robots with passive joints, elas-
tic joints, or flexible links. Structural system properties are
investigated showing that robots with passive joints are the
most difficult to control. With reference to these, solutions
are proposed for the typical problems of trajectory planning
and tracking, and of set-point regulation. The relevance of
nonlinear control techniques such as dynamic feedback lin-
earization and iterative state steering is clarified through
illustrative examples.

1. INTRODUCTION

In recent years, a remarkable effort has been devoted to
the study of underactuated manipulators, a special class of
second-order mechanical systems with fewer control inputs
than degrees of freedom (e.g., see [1]) encompassing, among
the others, rigid robots with passive joints, rigid robots
with elastic joints, and robot with flexible links.

Despite of this broad definition, different underactuated
systems do not share the same difficulties from the control
point of view. In particular, it should be recognized that
robots with passive joints raise by far the most challenging
theoretical problems, typically requiring non-classical con-
trol approaches. To clarify this issue, we shall provide some
inherent structural reasons for such a peculiar difference,
based on the analysis of basic control properties of general
underactuated manipulator dynamics.

Dynamic modeling, trajectory planning and feedback
control of specific instances of underactuated mechanical
systems have already been investigated; significant theo-
retical results can be found in [2] and [3]. However, since
a general theory for these mechanisms is not yet available,
only case-by-case control solutions have been obtained so
far.

Motivated by this, we sketch a review of the most sig-
nificant case studies found in the literature of underactu-
ated robots with passive joints. Exploiting results from ad-
vanced nonlinear control theory, we describe in some detail
two quite general approaches which have proved effective
in controlling these systems, namely dynamic linearization
via feedback and iterative state steering. For illustration,
we also work out the application of these techniques to
examples of planar robots with passive joints.

The paper is organized as follows. In Sect. II, underac-
tuated manipulators are described in a unified framework.
The typical planning and control problems are defined in
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Sect. III, while Sect. IV presents an analysis of the con-
trol properties. Dynamic linearization and iterative steer-
ing techniques are used in Sect. V and VI, respectively for
tracking and regulation of robots with passive joints.

II. UNDERACTUATED MANIPULATORS
Robot dynamics can be generally described by

B(6)8 + c(8,8) +e(6) = G(8) T, (1)

where # € IR™ is the vector of generalized coordinates,
B(0) is the inertia matrix, c(9, §) and e(@) are respectively
the vectors of velocity (Coriolis/centrifugal) and potential
(gravitational/elastic) terms, and G(8) is the matrix map-
ping the external forces/torques 7 € IR™ acting on the
system into generalized forces.

When m < n, the robot is said to be underactuated (of
degree n — m), and the mechanical system has less con-
trol inputs than generalized coordinates. If matrix G has
full column rank, it is easy (e.g., see [4]) to show that, by
performing an input transformation and a change of co-
ordinates, the system dynamics takes on the partitioned
structure

(B 2)(E)+(2)+(2)=(3) o

where 7, € IR™. With a slight abuse of notation, we have
kept the same symbols of eq. (1).

The new vector of generalized coordinates ¢ displays the
partition in actuated and unactuated degrees of freedom, re-
spectively g, € IR™ and ¢, € R"™™. The last n —m equa-
tions of the dynamics (2) represent a set of second-order
differential constraints that must be satisfied for motion
trajectories to be feasible.

In principle, eq. (2) includes the following types of N-
joint robots:

a) rigid robots with n, active and n, =
joints:

N — n, passive

n="ng + np, m = Ng;

b) robots with n, rigid and n. = N — n, elastic joints:
n =Ny + 2ne, M = Ny + Ne;

¢) robots with n, rigid and n 5 = N —n, flexible links, each
modeled by 7y deformation modes:

n=n,+ (ny + Diny, m =n, +ny.
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Another interesting example of underactuated robotis rep-
resented by a kinematically redundant manipulator with all
joints passive and forces/torques applied to the end-effector
as the only available input command [4]. From a control
viewpoint, however, this kind of mechanism is equivalent
to a manipulator with both active and passive joints.

III. PLANNING AND CONTROL PROBLEMS

As in the general case, the following problems arise when

attempting the control of underactuated robots:

P1 Trajectory planning

Given an initial configuration ¢° and a final desired con-
figuration ¢¢, compute a (dynamically feasible) trajectory
that joins ¢° and ¢<.

P2 Trajectory tracking

Given a dynamically feasible trajectory ¢¢(t), compute a
feedback control that asymptotically drives the tracking
error e = ¢¢ — ¢ to zero.

P3 Set-point regulation

Given a desired configuration g%, compute a feedback con-
trol that makes the equilibrium state ¢ = ¢¢, ¢ = 0 asymp-
totically stable.

If it is not possible to solve the assigned trajectory plan-
ning problem P1 — i.e., if no feasible trajectory exists join-
ing ¢° and g¢ for the given system — the corresponding tra-
jectory planning problem P2 and set-point regulation prob-
lem P3 clearly become meaningless. On the other hand, it
may happen that a trajectory joining ¢° and g% exists, but
we are not able to compute it in advance through planning;
in this case, it may still be possible to solve P3, obtaining
as a byproduct an asymptotic solution to P1. The study
of controllability and stabilizability for the given system
should clarify the situation in this respect.

IV. CONTROL PROPERTIES OF
UNDERACTUATED ROBOTS

To simplify the analysis and the control design of un-
deractuated robots, it is convenient to perform a partial
feedback linearization of eq. (2). Solving the second equa-
- tion for g, and substituting in the first, one finds that the
(globally defined) static feedback

Ta = (Baa—BI,B;1B..)a

+cg+eq— BT B! (cy +e4) (3)

yields a system in the form
Go = a (4)
ByyGy = —Busa-—cu—ey (5)

where the actuated degrees of freedom are now directly
controlled by the new acceleration input a.

A preliminary step in the assessment of control proper-
ties for the underactuated system (4-5) is to check whether
the second-order differential constraint (5) (with a = §,) is
integrable, either partially or completely, in the sense of [2].
If this is the case, while it is still trivially possible to con-
trol the coordinates g,, full configuration controllability is

lost; as a consequence, problems P1-P3 admit no solution,
except for very special cases.

Equilibrium controllability can be checked in the first
approximation by computing the tangent linearization of
system (4-5) around the considered state. Define the equi-
librium set as Q@ = {qg = ¢ : eu(g.) = 0, ¢ = 0}. Since ¢,
is quadratic in ¢, the tangent linearization of the system at
any point of Q is obtained as

0§a = a
Buu(‘]e) Odu + vfeu((Ie) 6g = - M(Qe)a-

It is rather immediate to see that the system is not con-
trollable in the first approximation if Ve, (g.) = 0.

In particular, linear controllability is lost in the case
of simultaneous absence of gravitational and flexibil-
ity /elasticity effects on the unactuated degrees of freedom
(ex{g) = 0, Vg). On the other hand, robots with elastic
joints and/or flexible arms, or robots with passive joints
subject to gravity are examples of systems that are control-
lable in the first approximation. In all these cases, problems
P1, P2, and P3 can be solved (at least locally) by standard
techniques. For example, in the presence of elastic joints,
solution methods for problems P1/P2 and P3 are given, re-
spectively, in [5] and [6]. As for robots with flexible links,
the reader may refer to [7] for trajectory planning, to [8]
for tracking and to [9] for set-point regulation techniques.
Finally, examples of robots with passive joints in the pres-
ence of gravity are the so-called Acrobot and Pendubot,
€.g., see [llv {10]) [11]3 [12]'

As an outcome of this analysis, we shall consider hence-
forth the most difficult case, i.e., robots with passive joints
that are not subject to any kind of potential energy. As
linear controllability is lost, it is necessary to resort to non-
linear controllability concepts. Among these, the most ele-
mentary is accessibility, which may be easily tested through
the well-known Lie Algebra Rank Condition [13]; however,
such characterization does not imply full controllability, be-
cause system (4-5) has a (nontrivial) drift term.

A more appropriate concept for our study is small-time
local controllability (STLC), see [14]. If such property is
violated by an underactuated manipulator with passive
joints, the mechanism may still be controllable in the nat-
ural sense; nevertheless, one may safely argue that prob-
lem P1 (trajectory planning) becomes very difficult, while
P2 (trajectory tracking) cannot be solved in general. In
fact, roughly speaking, the lack of STLC suggests that the
robot must perform maneuvers in order to achieve arbi-
trarily small reconfigurations. Therefore, while a trajectory
joining any two given configurations may exist, its planning
may be out of reach, at least with the available techniques.
Similarly, asymptotic trajectory tracking becomes impos-
sible, since it requires the possibility of recovering small
errors by keeping the system close to the desired evolution.
Interestingly, however, problem P3 (set-point regulation)
for non-STLC systems may still be solvable; we will present
an example in Sect. VI-A.

Unfortunately, only sufficient conditions [14], [15] are
available for testing STLC. In particular, in the absence
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of gravity underactuated robots with passive joints having
a single actuation (m = 1) violate these conditions, e.g.,
see [16]. In any case, even if small-time local controllabil-
ity is guaranteed, there exist no systematic design method
" for solving P1, P2 or P3. An additional difficulty encoun-
tered in the set-point regulation problem is that, as shown
in [2], robots with passive joints in the absence of gravity
cannot be stabilized by smooth static feedback, for they
violate the necessary condition due to Brockett [17].

The above considerations should clarify the severe theo-
retical difficulties arising when addressing control problems
for robots with passive joints, and justify the variety of ap-
proaches taken by researchers in order to solve them on
a case-by-case basis. An overview of case studies found
in the related literature is given in Table I. In the fol-
lowing, we briefly illustrate two methods that have proven
to be effective and generalizable, at least to some degree,
to significant classes of underactuated manipulators: the
exact linearization via dynamic feedback and the itera-
tive steering techniques, respectively for trajectory plan-
ning/tracking and set-point regulation problems.

V. TRAJECTORY PLANNING AND TRACKING VIA
DyNAMIC FEEDBACK LINEARIZATION

The exact linearization technique via dynamic feed-
back [18] represents an effective solution to the P1 (tra-
jectory planning) and P2 (trajectory tracking) problems,
provided that a set of linearizing (also called flat) outputs
z € R™ exists. Such outputs have the property that the
whole state and the input of the system can be written
in terms of z and its time derivatives. In this case, it is
possible to build a dynamic compensator of the form

3 o(€,4,9) + B q.9)v
a (¢, 9,4) + (2,4, 4) v,

with state £ € IR” and new input v € IR™, such that the
closed-loop system is input-state-output linear and decou-
pled, i.e., represented by chains of integrators between v
and z.

Once the above construction has been carried out, the
trajectory planning problem (P1) can be formulated and
easily solved as a simple interpolation problem on the lin-
earized system. An interesting byproduct of this approach
is that linear control techniques may be applied to sta-
bilize the linear tracking error dynamics, thus providing a
straightforward solution also to the problem of tracking the
planned trajectory (P2).

It should be mentioned that singularities may arise in
the control design phase, essentially because dynamic feed-
back linearization is inherently based on model inversion.
In such cases, these must be carefully kept into account
and avoided when planning the trajectory via interpola-
tion. This can be usually achieved by appropriately choos-
ing the (re)initialization of the dynamic compensator state
—actually an additional degree of freedom available in the
control design.

In [19] and [20] we have shown that planar three-link
(or n-link) robots with passive rotational third (or last)

Z;

any 2
actuated
d.o.f

x Z

Fig. 1. An underactuated XYRR robot

joint can be exactly linearized via feedback, with or with-
out gravity. The linearizing output is the cartesian position
of the center of percussion (CP) of the third link. In the
following, we show that the same technique can be applied
in the presence of a double degree of underactuation, pro-
vided that a special mechanical condition is satisfied.

A. Ezample: An Underactuated XYRR Robot

An XYRR planar robot is a mechanism where the two
distal joints are rotational, while the two proximal d.o.f.’s
may be any combination of prismatic and rotational joints.
Assume that only the first two joints are actuated, that
the fourth link is hinged exactly at the center of percussion
(CP3) of the third link (see Fig. 1), and that the robot
moves in the horizontal plane. Denote by I;, d; and k; (i =
3,4) respectively the length of the i-th link, the distance
between the i-th joint axis and the ¢-th link center of mass,
and the distance between the i-th joint axis and the i-th
link center of percussion CP;. In the considered case, we
have

_ I3 + m3d§ -
m3d3

_ Iy + m4d2

k.
3 m4d4

l37 k4
where I; represents the centroidal moment of inertia of the
i-th link.

Choose the generalized coordinates as ¢ = (gq,qu) =
(z,v,93,94), where (x,y) are the cartesian coordinates of
the base of the third link and g3, g4 the (absolute) orienta-
tion of the last two links w.r.t. the z-axis. After the partial
feedback linearization procedure, the robot dynamic equa-
tions become:

r = ag

v = a
. o .2
l3ds + A3ac34Gs = 830: — C3ay — A3453445

l3c34d3 + kads 5405 — Caay + l383443,

where we have set for compactness s; = sing;, ¢; = cosg;,
845 = sin(g; — g;), ¢ij = cos(g; — ;) (4,7 = 3,4) and Agy =
malads/(msds + myls). Note that the last two equations
have been conveniently scaled by constant factors. The
inputs to the mechanism are the accelerations a; and a,,.
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The linearizing outputs for the system are the cartesian
coordinates of CP4, the center of percussion of the fourth
link (see Fig. 1):

T+ l3C3 + k4C4
y+ l3S3 + k4S4.

21

22

Following the design guidelines of [19], we obtain a dynamic
compensator of dimension v = 4, with state equations

L = &

&L = &+dia

£ = &a+24i6 —ptaudal
£ = up+¢da—(ds — da)da

and output equation
1 k4—Xas cag +2 .2
( = ) = R(gs) EsT( e vk +k4f14) +lads )
ay us

where R(gs) is rotation matrix defined by the angle g3, and
we have set

t3a = s34/c3a
_ 61 .2
p= T2 — ot +4q4
Y = pbi/cs,
¢ = 2038 —3tsapba+3dabs —taal o

The auxiliary inputs u; and up are obtained by inversion
control:

Uy = C4U + 54V
uy = i (sz ~ 5401 — da€a + (43 — da) —  + 1115) ,

with (v1,v2) the new input vector and

ls + A3scaq .2)
6= tgy (BT 34084 o a2
“(Mh—&dﬁ %

Under the action of the above dynamic compensator, the
system is completely linearized and decoupled:

d611 _
d6Z2
—dt_s = 2,

i.e., two chains of six integrators from input to output.
Planning a feasible trajectory on the equivalent repre-
sentation (6) can be formulated as a smooth interpolation
problem for the two outputs 2;(t) and z(t). For example,
one could use polynomial functions to join the initial 2°
(corresponding to the starting configuration ¢°) with the
final z¢ (corresponding to the final configuration ¢%), with
appropriate boundary conditions on the derivatives of z up
to the fifth order. However, it should be considered that the

above linearization procedure is valid only if the following
regularity conditions are satisfied

Y #0

c3a #0 and

throughout the motion. These conditions can be easily
given an interesting physical interpretation. In particular,
¢34 # 0 means that the fourth link should never become
orthogonal to the third, while ¢ # 0 holds as long as the
acceleration &; of the center of percussion CP4 along the
fourth link axis does not vanish during the motion. Besides,
being ¢ = 32+ 72, the regularity condition can be checked
directly from the linearizing outputs trajectory, without
actually computing &;. In any case, one way to avoid the
singularity during the motion is to reset the component &;
of the dynamic compensator state whenever it approaches
Zero.

For illustration, the trajectory planning technique out-
lined above has been applied to generate a feasible tra-
jectory from ¢° = (1,1,0,7/8) to ¢¢ = (1,2,0,7/4)
(m,m,rad,rad) for an underactuated XYRR robot with
l3 = k3 = 1, 14 = 1, ’C4 = 2/3 and A34 = 1/3 (m)
The resulting trajectory for the center of percussion CP4 of
the fourth link is shown in Fig. 2, while the corresponding
cartesian motion of the last two links is depicted in Fig. 3
and Fig. 4 (stroboscopic view). The two last links undergo
a counterclockwise rotation of 360°. Assuming that also
the first two joints are rotational, the motion of the whole
manipulator appears as in Fig. 5.

As already mentioned, this approach also yields a
straigthforward solution to the trajectory tracking prob-
lem: a simple linear controller (e.g., a generalized PDS con-
troller) on the linearized dynamics (6) will drive the track-
ing error exponentially to zero. Figure 6 shows this con-
vergence for the case of the third link base initially placed
at a cartesian position corresponding to an off-trajectory
start (i.e., with initial output errors e; = 2¢ — 2 # 0, for
i=1,2).

L 1 i
7 8 g 10

Fig. 2. Trajectory planning: linearizing outputs z1 (—), z2 (- -)
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Cartasian motion of the third and fourth links
T T

~

N : : :

p ; S j ; i i

Fig. 3. Trajectory planning: cartesian motion of the last two links

Stroboscopic motion of the third and fourth tinks
T T T T T T T

Fig. 4. Trajectory planning: stroboscopic motion of the last two

links

VI. SET-POINT REGULATION VIA ITERATIVE STEERING

This technique for solving problem P3 is based on the
general stabilization framework proposed in [21]. For sys-
tems in the form (4-5), it requires in principle the ap-
plication of two control phases [16]. In the first, called
alignment, the active joints g, are brought to the desired
equilibrium (g%,0) using, e.g., a terminal controller or a
fast PD controller. At the end of this phase, the passive
joints g, will have drifted to some position and velocity,
and must be driven to the desired state (¢g¢,0) allowing
the active joints g, to cycle over (g¢,0). This is achieved
in the contraction phase by the iterative application of a
finite-time open-loop controller whose task is to decrease at
each iteration, of (possibly varying) period T, the passive
joint state error (g2 — g, (kT'), —g,(kT')) while guaranteeing
¢a(kT) = ¢ and ¢,(kT) = 0, with k = 1,2,... . At the
end of each iteration, the state of the system is measured
and the parameters of the open-loop controller are accord-
ingly updated, resulting in a sampled feedback action. The
general results of [21] indicate how to choose the open-loop
controller so as to obtain asymptotic stability of the desired

Fig. 5. Trajectory planning: stroboscopic motion of the manipulator

Output orrors

Fig. 6. Trajectory tracking: Output errors ey (—), e2 (- -)

equilibrium, with exponential rate of convergence.

One difficulty in applying the conceptual approach out-
lined above to system (4-5) lies in the derivation of a suit-
able open-loop controller; this is essentially due to the pres-
ence in the dynamic equations of a drift term which makes
their forward integration impossible. As proposed in [16],
an useful tool to this end is the nilpotent approzimation
of the system, which is by construction polynomial and
triangular (and hence forward-integrable) but retains the
controllability properties of the original dynamics. On the
approximate system, it is possible to compute an appro-
priate open-loop controller which satisfies the conditions
of [21]. However, one may find that this controller works
only from certain contraction regions of the passive joint
state space. In this case, it may be necessary to perform an
additional intermediate phase, called transition, between
alignment and contraction, so as to bring (g, ¢,) from the
value attained at the end of the first phase to a state be-
longing to one of the contraction regions. The design of the
transition phase depends on the specific mechanism under
consideration.

In [16], we presented a complete solution to the P3 prob-
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A

(actuated) d
— g ‘i\/ 7,

(7

Fig. 7. An underactuated PR robot

lem for a 2R planar robot with passive second joint. Here-
after, we sketch the application of the same technique to
an underactuated PR robot (detailed in {22]). This system
does not satisfy the weakest available sufficient conditions
for STLC, as given in [4].

A. Ezample: An Underactuated PR Robot

A planar PR robot with a passive second joint! is shown
in Fig. 7. After partial feedback linearization, the system
dynamics takes the form:

G = a
S
g2 = E sinqaa,
where ¢, g5 are the generalized coordinates and we have
set kz = (Iz + mad3)/mady, Wwith my, I, respectively the
mass and the centroidal moment of inertia of the second
link, and ds the distance between the second joint axis and
the center of mass of the second link.

For the alignment phase, we can use a simple PD con-
troller

kp,ka >0

to bring the first joint to the desired position. Denoting
by (gak, g2k ), the passive joint state at the beginning of the
k-th iteration (k = 1,2,...), the contraction phase is ob-
tained by the iterated application of the polynomial open-
loop controller for a period T}

a = kp(qf — q1) — kads,

A
a(t) = 75 (42X° — 105X% +90X° — 30X + 3))
k

where A = t/T} and

Tk — (1 _ 7]1) q2d ‘— q2k (7)
92k
[T (L = m2)dox
A k303 sin2gy ' (8)

being 8 = 3/80080, and 71, 72 € (0,1) are the chosen
contraction rates. The above open-loop controller has been

1Based on the results in 2], it is immediate to show that the same
manipulator with a passive first joint is integrable, in the sense that
the second-order differential constraint (2) turns out to be holonomic.
Therefore, such a mechanism would not be controllable.

designed on the basis of the nilpotent approximation of the
system computed at (qk, dx):

G =1

G2 = a

G = —(

o k2‘j§k 2 _ l

G = Tcos qar G4-56

This local approximation is expressed in a new state (,
related to the original state (g, ¢) through a change of co-
ordinates based on the structure of the system Lie Algebra.

For illustration, the set-point regulation technique de-
scribed above has been applied to stabilize an underac-
tuated PR robot having k; = 2.5 m at the configura-
tion ¢? = (0,7/4) starting from an initial configuration
¢° = (1, —7/4) (m,rad). Figure 8 shows the joint evolution
during the alignment, transition and contraction phases.
Note how the second joint velocity is kept constant at the
end of the alignment phase (by setting a = 0) until ¢, enters
the contraction region, implicitly defined by the conditions
0< Tk <o00and 0 < Ag < oo in egs. (7-8). The acceler-
ation command a and the actual input force command 7,
on the active prismatic joint are reported in Fig. 9.

FirstJoint {P) Positon

1 T T T

: H H i i H L ! L
[ 5 10 15 20 25 30 k3 40 45 50

. Set-point regulation: Joint evolutions
Cortrol Behavior (Acceleration)

H ! i H i
[ 5 10 15 20 25 30

Control Behavior {Forca)

Fig. 9. Set-point regulation: first joint acceleration a and force 7,
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Robot Actuation Notes Trajectory Set-point
Planning (P1) and Tracking (P2) Regulation (P3)
2R second joint passive open periodic/Poincare [23]
‘ iterative steering [16]
2R first joint passive integrable [2] - -
2R+g | second joint passive Pendubot open energetic [10
2R+g first joint passive Acrobot open energetic [11
iterative steering [12]
PR second joint passive open iterative steering (here,22]
PR first joint passive integrable [2] - -
RP second joint passive open iterative steering [24]
RP first joint passive integrable |24] - -
3R third joint passive STLC elementary maneuvers (rot/trans) [25] | vanishing trajectory [26]
dynamic feedback linearization [19
3R+g third joint passive STLC dynamic feedback linearization [20 extension of [11
nR last joint passive extension of [19] extension of {19
4R | last two joints passive | CP3 hinged | elementary maneuvers (rot/trans) [27] open
dynamic feedback linearization |here]
TABLE 1
UNDERACTUATED PLANAR MANIPULATORS WITH PASSIVE JOINTS IN THE LITERATURE
Acknowledgments {14] H. J. Sussmann, “A general theorem on local controllability,”
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