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Abstract— We present a solution to the problem of finding
the torque command that provides rest-to-rest motion in a
given time for a one-link flexible arm. The basic idea is to
design an auxiliary output such that the associated transfer
function has no zeros. Planning a smooth interpolating tra-
jectory for this output imposes a unique rest-to-rest motion
to the whole arm, with automatically bounded link defor-
mation. The nominal torque is then obtained by inverse
dynamics computation in the time domain. The method is
presented for a linear model based on the Euler-Bernoulli
beam description of the flexible link with dynamic bound-
ary conditions. This approach lends itself to nonlinear ex-
tensions and feedback solutions.

1. INTRODUCTION

The basic problem of moving a manipulator from one
equilibrium configuration to another in a prescribed time
becomes critical in the presence of link flexibility, intro-
duced by a long reach and slender/lightweight construction
of the arm [1]. The gross motion induces residual oscilla-
tions at the nominal final time, extending thus the time
horizon before the arm can be considered at rest. Indeed,
link vibrations may eventually vanish due to the damping
injected by a feedback controller (2] and/or inherent in the
structure [3]. This, however, reduces the practical perfor-
mance of the robotic task when fast and precise positioning
is needed.

Several approaches have been proposed for the rest-to-
rest motion problem of flexible arms. Two basic model-
based methods are input shaping [4], [5], [6] and inverse
dynamics trajectory design [7], [8], [9]. Given a desired
reconfiguration task, input shaping consists in convolving
the reference command (a step input) with impulses, suit-
ably located in time, that ‘kill’ the modal frequencies of
the flexible arm. The method is straightforward for one or
few flexible modes [4], but more complex when increasing
the number of considered modes, or for achieving robust-
ness [6). On the other hand, one can design a smooth in-
terpolating trajectory for the end-effector of a flexible arm
and then use stable input-output inversion for computing
the rest-to-rest torque command with bounded link defor-
mations during motion. This approach was pioneered by
Bayo in the frequency domain [7]. and revisited later in the
time domain in [9]. However, there are two drawbacks for
the problem at hand: first, the computed nominal torques
are non-causal, extending in time both before the start and
after the completion of the desired end-effector trajectory;
second, the practical accuracy in the vanishing of link de-

formations is limited by the finite window in time (or in
frequency) used in the implementation. Another possible
technique for residual vibration suppression uses optimal
control theory [10] but needs to resort in general to nu-
merical solutions. Finally, in [11], [12] a different approach
has been proposed for a one-link flexible arm. In [11], a
combination of sinusoidal components is used to build up a
rest-to-rest joint trajectory, from which the nominal torque
command is obtained via inversion. In [12], the rest-to-rest
motion involves planning a suitable end-effector trajectory
s0 as to cancel the effect of non-minimum phase zeros in the
(inverse of the) associated torque-tip angle transfer func-
tion. Both methods are intrinsically linear and require the
solution of linear algebraic systems that are ill-conditioned
for increasing number of flexible modes.

In this paper, we design a system output with maximum
relative degree, i.e., such that no zeros appear in the trasfer
function from the input torque to the defined output. The
rest-to-rest motion problem is then solved by fitting to this
output a smooth polynomial interpolating the start and
final rest configurations. Building on the preliminary re-
sult of [13], it is shown that such a design output, as well
as the associated nominal rest-to-rest torque, can be com-
puted in closed form for a general linear model of a one-link
flexible arm (including also modal damping). Our method
applies also to more general state-to-state transfers, e.g.,
from an initial state with link deformation and possibly
nonzero velocity to a desired final equilibrium state with
zero deformation. In addition, generalization to nonlinear
settings is in principle feasible since the computations rely
only on time and state concepts. Numerical results are in-
cluded showing the effectiveness of the method. Finally, we
discuss how the obtained nominal feedforward torque and
state evolution can be used within a stabilizing feedback
controller.

II. DYNAMIC MODEL OF A FLEXIBLE ARM

Consider an arm having a single rotating flexible link of
length ¢ and uniform linear mass density p, and moving
on the horizontal plane. We assume small deformations
limited to the plane of motion. The arm is driven by an
electrical actuator at the base, with inertia Jg and torque
7(t), and carries a tip payload of mass M, and inertia Jp.
We model the flexible link as an Euler-Bernoulli beam with
Young modulus E and inertia of the cross section I. Let
0(t) be the angle of a line pointing at the instantaneous
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center of mass of the link w.r.t. an inertial frame (pinned
angle). The transversal bending deformation at a point
z € [0, €] along the link is described by w(z, t).

From Hamilton’s principle, the flexible arm satisfies the
following equations of motion [14], [15]

EI'u.)”"(:I:, )+ p(t’i)(:z:, 1)+ Iﬂ(t)) 0

T(t) — JB(t) = 0O,

where J = Jo + (p€3)/3 + Jp + Mp£? is the total inertia
of the arm w.r.t. the joint axis, with associated dynamic
boundary conditions given by

w(0,t) = 0
Elw"(0,) = Jo (5(t)-+-1‘£/(0, t)) —7(t)
Elw'(8,t) = —Jp(é(t)+w'(z,t))

ElIw"(£,t) M, (eé(t) +e, t)),

denoting by a prime the spatial derivative w.r.t. .

By separation in space and time, assuming a finite num-
ber n, of deformation mode shapes ¢;(z) with associated
deformation coordinates 6;(t),

w(z,t) =3 $u(m)5i),

i=1
the free evolution (7 = 0) of the system is characterized by
the solutions to
BI${Y(z) - pwlgi(z) = 0
bi() +wlsi(t) = o,

being w; the eigenfrequencies of the flexible arm, with spa-
tial boundary conditions

40 = 0
EI$/(0) +wiJo4i(0) = 0
EI¢{(f) -l i(e) = 0
EI¢{" () + wiM, ¢:(8) = O,
for i =1,...,n.. The general solutions are in the form

¢i(z) = Aisin(Biz) + B;cos(fiz)

+ C; sinh(8;z) + D; cosh(B;z), @

where 8} = pw?/EI and f, ..., [, are the first n, roots
of the following characteristic equation

(csh~sch)— 2MP,6,v ssh — 2—']”,313 cch
P P
Ji M,
—7";5?(1 +cch) — p—;,a;*(Jo + Jp)(csh — sch)
T JoJpM,

+

;;Iﬂﬂf(csh +sch) — —pT—ﬁZ(l —cch) =0,

with s = sin(8;£), ¢ = cos(B;{), sh = sinh(B;f), and
ch = cosh(;£). Using the orthonormality conditions on the

mode shapes, the Euler-Lagrange equations for the N =

ne + 1 generalized coordinates ¢ = (8,8) = (6,61,...,6n,)
yield

Jé

i + w?s;

T @
$iO)yr, 1. ®)

It is easy to check that the linear dynamic model (2-3) is

controllable.
Note finally that the transfer function from 7 to the
clamped joint output

. e

6.=0+3 4(0)5,

i=1

4

is minimum phase (zeros in the left hand side of the com-
plex plane), while the transfer function from 7 to the tip
output

n
~ ¢i(£)

=0 — 5 5
Ye +§ 7 (5)
is non-minimum phase. Other relevant output functions
for a flexible arm have been considered in the literature
(see [16] and [17]), but all the associated transfer functions
include stable or unstable zeros.

III. REST-TO-REST MOTION DESIGN

Consider a desired rest-to-rest motion task for the one-
link flexible arm modeled by egs. (2-3). The arm should be
moved from an initial urideformed configuration ¢; = (6;, 0)
at t; = 0 to a final undeformed configuration g5 = (6¢,0)
at time ty = T, with ¢(0) = ¢(T) = 0.

We can solve this problem by designing an output func-
tion y such that the associated transfer function will have
no zeros. This design output has the form

y=0+) cb=0+c"s

=1

(6)

with the coefficients ¢; (1 = 1,...,n.) to be determined by
imposing the condition that the output (6) has maximum
relative degree (equal to the state space dimension 2(n.+1)
of the flexible arm), i.e., y and its first 2n, + 1 derivatives
are independent from the input 7.

Due to the second order structure of eqs. (2-3), the
torque may appear only in the first n. even derivatives.

From
R -
i= 5+ adO)r - cwle,
i=1 i=1
we set 3 ¢;¢L(0) = —1/J. Next,

d4 e Te
y¥ = ;it-f =- }:qw?¢2(0)f + Zcz-w?&-
i=1 =1
from which Y c;w24!(0) = 0. Proceeding further until the
(2n. +1)-th output derivative, we finally obtain the follow-
ing linear system of equations, which can be always solved
in the (unique) unknown vector of coefficients c,

V diag{$1(0),...,¢,.(0)}c=1b, O]
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with b=[—1/J 0 ... 0]7 and Vandermonde matrix

1 1 1
2 2
w? w e W,
wh wi Wi
V= T 2 ne |,

wf(ne‘l) wg(ne"l) LU?.,(,"‘_I)
being nonsingular since w; # wj, for i # j.

The numerical solution of eq. (7) becomes, however, ill-
conditioned for large ne (similarly to the methods in [11],
{12]). On the other hand, the first column of the inverse of
the V matrix can be given an explicit expression in terms of
the determinant a lower order Vandermonde matrix. Per-
forming computations leads then to a closed form solution
for the coefficients ¢;:

Ne 2
1 wy

—— (8)
w} - w}’

Ci = ——

J$3(0)

i=1,...,n.

=1
J#

We note that these coefficients can be also recovered by
a Laplace argument, by transforming egs. (2), (3), and (6),
computing the transfer function y(s)/7(s), and finally im-
posing a constant numerator, i.e.,

y(s) _ 1 N adi(0) K
COREZAP PR It A M

Using partial fractions expansion leads to the values (8)
and to K =[], w?/J.

The design output (6) is used, together with its deriva-
tives up to the order 2n. + 1, as a new state representation
of the system, through the following invertible transforma-
tion

y ; fy 4
g 61 Yy 3 6
: = . 3 . = Q : ) (10)
y(zng] bn, y[2m+1] [5%
where
1 c Cn,
Q= 0 —cyw? —Cp Wi, (11)

0 (Dt L (D)l
The rest-to-rest motion problem can then be solved by
defining an interpolating trajectory y = yq(t), with ap-
propriate boundary conditions at time ¢; = 0 and t; = T.
From the structure of egs. (10-11), it is enough to simply
put ya(0) = 6;, y4(T) = 6y, with all derivatives up to the
(2n.+1)-th equal zero at the initial and final time. For sat-
isfying these boundary conditions, a polynomial of degree
4n. + 3 will be sufficient.

For a generic state-to-state transfer, one can still use
the same approach by mapping any desired values of the
state (8,6,6,6) at the initial and final time into boundary

conditions for the interpolating polynomial y4(t) and its
derivatives.

The nominal torque for a state-to-state transfer in time T
is finally computed by inversion of the highest order output
derivative expression, imposing yl(ret )] = y}f(n'ﬂ)]:

Te
y,[f("'ﬂ)](t) _ (_1)n,+1 Z c;w?("‘+’)6i(t)

7a(t) = — » (12)
(=)™ D™ ¢i(0)
i=1

with ¢ € [0, 7). In eq. (12), the values of § are obtained al-
gebraically by inverting the linear system of equations (10)
having set y = y4(¢). The transformation matrix @ can be
manipulated so as to let again the Vandermonde matrix V'
appear.

In the specific case of rest-to-rest motion, a closed form
expression of the nominal torque can obtained without the
need of computing neither the coefficients ¢; nor the inverse
of Q. In fact, setting y = y, in eq. (9), we obtain in the
Laplace domain o

Ta(s) = H—niﬁ {521}1(32 +‘U¢2)] yals),
i=1 %4 i=1

and thus in the time domain

J ) ne—1 .
Tat) = e —s [y?‘““”’(r) + Y adt “”(t)}

1=1"4 i=0
(13)
with coefficients «; easily obtained by convolution of poly-
nomial coefficients. For example, for n, = 3, we have

3
2
a =],

i=1

3 3 2 3
o =Z_I.Iiﬂi, ar =Y wh

i=1 w}
A series of remarks are in order.
o Although computations are simpler when using the
eigenfunctions (1) as assumed modes and expressing link
deformation in the pinned reference frame (leading to
egs. (2-3)), the same method can be applied to any other
linear model and reference frame for the one-link flexible
arm, provided that the system is controllable. In fact, the
state-space transformation (10) is just an explicit deriva-
tion of the controllable canonical form for linear single-
input systems.
» Along the same line, the numerical values entering in
the model (2-3) (i.e., the total arm inertia J, the eigenfre-
quencies w;, and the spatial tangents ¢.(0) at the link base
—which act as input gains) may be also the outcome of an
experimental identification performed on the flexible arm.
« Inclusion of modal damping can be handled in a similar
way. For a dynamic model of the form

Jo =71
8i + 2sw;b; + w2 = $(0)T, i...

ey
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where ¢; € (0,1) is the damping coefficient of the ith mode,
the structure of the design output is modified as

Ne Ne
: y=0+Zq5;+79+Zdi5i, (14)

i=1 i=1

and the 2(n, + 1) unknown coefficients are computed as
before, by imposing the maximum relative degree to the
output (14). Even in this case, a closed form expression can
be derived for v, the ¢;’s, and d;’s, reasoning in terms of
partial fractions expansion and residuals —as with eq. (9).
o Let cf.k) (t = 1,...,k) be the set of output coefficients
obtained when assuming k¥ modes in the dynamic modeling.
It is interesting to analyze the behavior of the numerical
values of these coefficients when increasing the number of
assumed modes. It is easy to see that

(k+1) (k) Wiy :
ci =Ci — % ’L=1,...,k,
Wiy — Wi

being the eigenfrequencies w; and eigenvectors ¢;(z) in-
dependent from the number of modes considered in the
expansion. Therefore, since the sequence {w;} is fast in-
creasing, the lowest order coefficients (say, for i up to k/2)
converge rapidly to a constant value for increasing k.
« By choosing an interpolating polynomial of order 4n.+5,
one can impose also y([f("‘“)] = 0 at the initial and final
time, so that the nominal torque profile given by eq. (12)
starts and ends at zero. Higher order polynomials with
symmetric zero boundary conditions for the derivatives
would achieve further smoothness of the nominal torque.
o A common criticism to the use of smooth high-order
polynomials as motion trajectories for flexible arms is that
too much of the available motion time is wasted in ex-
cessively slow starting and arriving phases. Accordingly,
larger peak torque values attained only for few instants are
required for the same total motion time (see also the nu-
merical results in Sect. IV). The presented method can be
modified so as to generate bang-bang or bang-coast-bang
type of torque profiles, with smooth interpolating phases
near the start and final (and midway) instants. Actuator
capabilities are then much better used: with the data used
in Sect. IV, we obtained a reduction of 70% (!) of the peak
torque for the same motion time 7.

IV. NUMERICAL RESULTS

We have applied the presented method to a flexible arm
with the following data:

0.7m
p = 2975kg/m
EI = 24507N m?
Jo = 1.95-107% kg m?
M, = 0117kg
J, = 0.

The first three modal frequencies of the flexible arm are:
f1=4.0524, f, = 12.3440, and f3 = 22.8727 (Hz).
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Fig. 1. Interpolating profile for the design output
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Fig. 3. Evolution of first three flexible modes
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Fig. 4. Rest-to-rest motion torque
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Fig. 5. Stroboscopic view of the flexible arm

Figures 1-5 show the results of a rest-to-rest slew mo-
tion of 90° in T = 2 s considering n, = 3 modes. The
design output trajectory shown in Fig. 1 is a 19th-degree
polynomial, chosen so as to guarantee continuity also of the
torque derivative. The clamped joint angle given by eq. (4)
and the tip angle given by eq. (5) have a symmetric behav-
ior in time (Fig. 2): in the first half of motion, the joint
angle leads the output trajectory while the tip angle lags
behind; the situation is reversed in the second half. The
three deformation variables § are well within the assumed
domain of linearity (Fig. 3). The input torque in Fig. 4 is
zero outside the interval [0, T].

0 02 04 08 4] 1 12 14 16 19 2

Fig. 6. Rest-to-rest torque: ne =1 (—), ne =3 (--), ne =5 (- .)

Q 02 04 08 08 1 12 14 186 18 2

Fig. 7. Clamped joint angle: ne =1 (—), ne =3 (--), ne =5 (- .)
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Fig. 8. Stroboscopic view of the flexible arm (faster motion)
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Fig. 9. Rest-to-rest motion torque (faster motion)

In Figs. 6 and 7, we compare the nominal torque and
clamped joint angle profiles for increasing number of con-
sidered modes. The torque is more concentrated in the

- middle of the time interval and has an higher peak for

larger values of n., due to the need of progressively higher
order interpolating polynomials for motion planning. The
clamped joint angles are quite similar for changing n..
Finally, Figs. 8-10 show the results of the same rest-to-
rest motion of 90° performed twice as fast with T = 1 s.
The peak torque for this rest-to-rest motion (Fig. 9) is more
than three times larger than before. The maximum angu-

<20
o

61 ©2 03 04 05 06 07 08 09 1
s

Evolution of clamped joint angle (—) and tip angle (- -)
(faster motion)
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lar deflection between the clamped joint angle at the link
link and the angle pointing at the arm tip becomes as large
as 50°: the assumption of small deformation does not hold
anymore and a practical lower bound to the motion dura-
tion can be deduced. Similar results have been obtained
for T = 2 s but payload mass increased by a factor of ten.

V. FEEDBACK CONTROL

In the presence of inaccurate information on the actual
initial state, small disturbances, or model uncertainties, the
use of the nominal feedforward command (12) is not sat-
isfactory. On the other hand, the presented method com-
putes off-line the full state evolution of the flexible arm
associated to the desired rest-to-rest reconfiguration. In
particular, the reference behavior of the clamped joint out-
put (4) and of its derivative f, are obtained from eq. (10)
as functions of the desired design output profile y4(t) and
its derivatives. The actual values of these two quantities
can be directly measured by an encoder mounted on the
actuating motor.

In order to achieve a robust behavior using a simple lin-
ear feedback controller, a joint PD scheme with feedforward
compensation can be designed as

00) + kd(éc,d h éC)i (15)
where &k, > 0, kg > 0, 73 is given by eq. (12), and 8, 4 and

éc,d are obtained by inverting the state transformation (10)
with y = y4(t) (in particular, the position reference of the
joint clamped angle is displayed in Fig. 2).

The controller (15) guarantees exponential stability of
the trajectory tracking error. In particular, once the nom-
inal time T is reached, 8. 4(t) = 05 and 74(t) = 6.4(t) =0
(for t > T), so that the final regulation is obtained through
the stabilizing PD feeback from the partial state (6., 0,;) [2].
This result holds also for more general multi-input flexible
manipulators with nonlinear dynamics [18].

T=T4+kp(0ca—

VI. CONCLUSIONS

We have presented a new method for computing the
nominal torque that achieves rest-to-rest motion (or, more
in general, state-to-state transfer) in given time for a one-
link flexible arm. It is based on a design output with max-
imum relative degree (no zeros in the associated transfer
function) and on input-output inversion of the system dy-
namics, which can be both computed in closed form.

Physically, this design output is the angle pointing to

_a specific location on the arm where there is a crossing
(through infinity) from minimum to non-minimum phase
zeros in the associated trasfer function, while moving the
output from the hub to the tip (see egs. (4) and (5)). Its
use allows to obtain very satisfactory performance with a
natural resulting motion of the flexible arm. Preliminary
results show also that the method is conveniently insensi-
tive to neglected higher order modes. The nominal state
evolution and feedforward command can be used within a
joint PD controller, for a simple but effective feedback ex-
ecution of rest-to-rest motion in the presence of moderate
uncertainties in the dynamic parameters (see [19]).

Since the concept of zero dynamics migrates also to
a nonlinear setting, the generalization of the method to
multi-link flexible arms is feasible and has been considered
in an accompanying paper [20).
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