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Abstract— We consider the problem of finding the torque
commands that provide rest-to-rest motion in a given time
for the FLEXARM, a two-link planar manipulator with a
flexible forearm and nonlinear dynamics. The basic idea is
to design a set of two outputs with respect to which the sys-
tem has no zero dynamics. Planning smooth interpolating
trajectories for these outputs imposes a unique rest-to-rest
motion to the whole robot, with bounded link deformations.
The nominal rest-to-rest torque is obtained by standard in-
verse dynamics computation. In the multi-input nonlinear
case, this approach requires in general the use of a dynamic
linearizing extension. Numerical results are presented and
possible extensions discussed.

I. INTRODUCTION

Steering a robot manipulator in prescribed time between
two given configurations is a basic problem in robotics. In
the presence of link flexibility, typically encountered in long
reach and slender/lightweight robot arms [1}, the problem
is very critical since large and simultaneous motion of the
links induce oscillations that persist beyond the nominal
final completion time. When fast and precise positioning
is the highest priority of a robotic task, the vanishing of
link vibrations due to damping injected by a feedback con-
troller [2] and/or inherent in the structure [3] may not be
a satisfactory solution.

In order to cope with vibrational behavior of manipula-
tors with flexible links, it is necessary to carefully model
the distributed arm flexibility [4] and then to utilize the
complete robot dynamics in the design of feedforward com-
mands and feedback control laws [5]. This is particularly
true when trying to obtain a rest-to-rest motion in given
time. Unfortunately, a general solution technique to this
problem is not yet available in the case of multi-link flexible
manipulators.

For one-link flexible arms, characterized by linear dy-
namics, two common model-based techniques that gener-
ate the open-loop torque command for rest-to-rest maneu-
vers are input shaping [6] and inverse dynamics trajectory
design [7]. Input shaping filters the step input reference
command according to the characteristic frequencies of the
system. Being based on the properties of the impulse re-
sponse, this technique is intrinsically linear. Inverse dy-
namics trajectory design was pioneered by Bayo in the fre-
quency domain [7] and revisited later in the time domain
in [8]. It consists in the stable input-output inversion of an

end-effector trajectory so as to achieve the desired recon-
figuration with bounded link deformations. This procedure
has been extended to multi-link flexible manipulators based
on iterative algorithms (9], {10], [11] and, more in general,
to nonlinear systems with non-minimum phase zero dynam-
ics through the numerical solution of a two-point boundary
value problem [12]. However, the cosidered problem of rest-
to-rest motion in given time is only partially solved: since
the computed nominal torques are non-causal in time, ex-
tending both before start and after completion of the end-
effector trajectory, the definition of a motion interval at
end of which the robot is at rest is related in accuracy to
the finite window in time (or in the frequency domain) used
in the implementation of the method.

In [13] and [14], a different technique has been proposed
for a general linear model of a one-link flexible arm with
an arbitrary number of deformation modes. In order to
generate a rest-to-rest motion, a system output is designed
having maximum relative degree, i.e., such that no zeros
appear in the trasfer function from the input torque to
the defined output. The problem is then solved by fitting
to this output a smooth interpolating polynomial between
the start and final rest configurations and using inverse
dynamies.

In this paper, we present an extension of the result in [14]
to a multi-link flexible manipulator with nonlinear dynam-
ics. This generalization is feasible since the required com-
putations rely only on time and state-space concepts. In
particular, zero dynamics is well defined also for nonlinear
systems [15]. Therefore, one should design auxiliary out-
puts for a flexible manipulator such that the system is in-
vertible and has no associated zero dynamics. The solution
of this problem relies in general on a dynamic feedback lin-
earization scheme, which has been already used in robotics
also for manipulators with elasticity concentrated at the
joints [16].

The approach is detailed here with reference to the lab-
oratory prototype FLEXARM, a two-link planar manipu-
lator with a flexible forearm. Numerical results show the
effectiveness of the method in the case of one flexible mode.
Finally, we discuss possible extensions and feedback appli-
cations of this dynamic linearization approach.
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II. DYNAMIC MODELING OF THE FLEXARM

Consider the two-link manipulator FLEXARM in Fig. 1.
Both the first rigid link and the flexible forearm move in
the horizontal plane. By its construction, the second link
can only bend in the plane of rigid motion and is stiff with
respect to axial forces and torsion. The robot is driven by
two direct-drive DC motors located at the joints. For a
detailed description of the mechanical design, sensors and
actuators, and interface electronics, see [17].

A nonlinear dynamic model of this two-link manipulator
has been derived following a Lagrangian approach. Small
deformations are assumed for the forearm, leading to a lin-
ear dynamics of the flexible part. The main nonlinearities
in the model arise then from the rigid body interaction be-
tween the two links and from the interaction of rigid and
flexible dynamics.

Let 6,(t) be the angle of the first link of length ¢; and
inertia Jy w.r.t. the first joint axis. The inertia of the first
actuator is Jp;. The actuator driving the second link has
mass moz and inertia Jo2. To compute its deformation
modes, the flexible forearm link is modeled as an Euler-
Bernoulli beam of length £3, uniform density p, Young mod-
ulus E, and inertia of the cross section I. Thus, the second
link has mass my = ply and equivalent rigid inertia w.r.t.
the second joint axis J, = myf3/3. Let 82(t) be the angle
of a line pointing from the second joint axis to the instanta-
neous center of mass of the flexible forearm (pinned angle)
w.r.t. the rotated frame associated to the first link. The
transversal bending deflection w(zx, t) at a point = € [0, ;]
along the second link is described w.r.t. this line (pinned
frame). The second link may carry a tip payload of mass
my and inertia J,.

The deformation eigenfunctions and eigenfrequencies of
the flexible forearm are computed according to [18], [19], by
including Jo2, m,, and J, in the dynamic boundary con-

Fig. 1. The FLEXARM robot

" ch = cosh(B:f2). The coefficients (4, ..

ditions associated to the partial differential equation for
w(z,t). By separation in space and time, using a finite
number n. of deformation mode shapes ¢;(x) with associ-
ated deformation coordinates 8;(t),

w(z,t) = §¢i($)5i(t),

i=1
the free evolution of the second link (when the first link is
at rest) is characterized by the solutions, fori = 1,...,n.,
to
0
0,

EI{"(z) ~ piti(z)
8i(t) +witi(t)

being w; the angular eigenfrequencies of the flexible arm,
with spatial boundary conditions

$:(0) =

EI4{(0) + w} Joz $:(0)
EI{(s) — wlJp i(£2)
EI$" (&) + wimp ¢s(€3) =

|
o o o o

where a prime denotes spatial derivative w.r.t. z. The gen-
eral solutions are in the form

¢i(z) = Aisin(Biz) + B;cos(Biz)

+ C;sinh(B;z) + D; cosh(8;x), (1)

with B} = pw?/EI and fBi,..., fn, being the first n, roots
of the following characteristic equation

(csh—sch) — 2Tmpﬂ,'ssh— %ﬂfcch

—&ﬂg(l + cch) ~ %—ﬂf(]og + Jp)(csh — s ch)

P)
+%ﬂ?(csh +sch) - Jﬂjg—mpﬁz(l —cch) =0,

where s = sin(8;f>), ¢ = cos(B:ls), sh = sinh(B;{;), and
.y D;) ineq. (1) are
determined, up to a scaling factor which is chosen through
normalization, from the imposed boundary conditions.

Starting from this analysis, the Lagrangian dynamics of
the FLEXARM is derived in the standard way as

(2)

where ¢ = (6,6) = (61,0,61,...,6,.) € R*™ with sym-
metric inertia matrix B > 0, nonlinear Coriolis and cen-
trifugal terms n, elasticity matrix K > 0, and input matrix
G which transforms the actuating torques 7 = (73, 72) into
generalized forces performing work on ¢.

In order to express the single dynamic terms in eq. (2),
the following coefficients are defined !:

B(q)§ +n(q,9) + Kq = G,

Jie = J01+J1+[m02+m2+mp]é"1’

!Note that there was a wrong index in the definition of k; in [17].
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Joe = Joz+ Jo+ Jp+mpll
£3
v = P/ ¢i(z) dz, t=1...,m
o]
hi = [’Ui'i'm'p¢i(£2)]€1; i=1,...,n
123
hneqr = [m2§+mpe2]el-

Since the eigenfunctions ¢;(z) automatically satisfy proper
orthonormality conditions, relevant simplifications arise in
the terms of the dynamic model. In particular, by neglect-
ing in the kinetic energy of the system terms which are
quadratic in the deformation variables §;, the inertia ma-
trix becomes

b11 b1z b1z b1 net2
by Jae O ... O
B(q) = bis 0 1 : ,
: Lot . 0
bimasz O ... 0 1

with elements

Jig =+ Jor + 2hn¢+1 cos @y — 2sin b, Z h;6;

b1 =
Ne =1
biz = Jot+ hn, 4100862 —sinb, Z hié;
i=1
bis = hicosfs
bine+2z = hn, cosOs.

The definition bs = [b13 b1,n.+2]7 will also be used.
The components of the Coriolis and centrifugal vector
n(q, g) are:

n =

- (hn=+1 sin 0y + cos 8, Z h{5i> (20'192 + 9%)

i=1

—2sin62(91 + 92) Eh,&,’

i=1

Ne
ng = (hne+1sin02+cos92§:h,-6i)9%

i=1

n3 h1 sin 92 0%

Npgt2 = HAn, sinfs 9%
The elasticity matrix becomes
K = diag {0,0, K5} = diag {0,0,w?,... ,wﬁa} ,

while the input matrix takes the form

IZXZ

G= ,
Onox1 2(0)

=100 s 0l

A. Feedback transformation

Before proceeding, it is convenient to apply an invertible
static state feedback in order to simplify the system equa-
tions. The dynamic model (2) can be rewriten in block
form as

ng ng 9 + g + 0 _ T
BL, I 6 ng Ks8|~ [9(0)2 ]
partitioned according to the dimensions of @ and §. Solving

for § from the second block of equations and substituting
into the first yields

(Bag — B“Bg;)é +ng — Bags (n5 + Kg&) =T~ Bag@l(O)Tz.

Here, the matrix multiplying § is always nonsingular by the
positive definiteness of the inertia matrix. One can define
a global nonlinear feedback law for 7 so that the equations
of the joint variables @ are fully linearized and decoupled.
Exploiting the internal structure of the block elements, it
is straightforward to see that by choosing

7 = 1 b,5T<I>’(0) bu—bg‘bg b12 a;
0 1 b1 Jae az

+ ["1 8 (s +K56)]>, &)

n2

where a, and a; are new acceleration inputs, we obtain an
equivalent dynamic model of the FLEXARM in the form:

61 = Q]

02 = Qaz (4)

6 = —bsay — (715 -+ K56) + @/(0) (b12a1 + Joras + nz) .
III. REST-TO-REST MOTION OF THE FLEXARM

Consider a rest-to-rest motion task for the FLEXARM.
The manipulator should be moved from an initial unde-
formed configuration ¢; = (6;,0) at t; = 0 to a final un-
deformed configuration g5 = (65,0) at time ty = T, with
4(0) =¢(T) =0.

In order to solve this problem, extending the idea in [14],
we look for a two-dimensional design output y = (y1,%2)
associated to which the system has no zero dynamics and is
input-output invertible. This means that we should be able
to differentiate w.r.t. time a specific number of times the
output y until the available two-dimensional input finally
appears in a nonsingular way. The addition of integrators
on one of the two input channels may be needed at a given
step so as to avoid subsequent differentiation of the rela-
tive input. This extension process builds up the state of a
dynamic feedback compensator. If the total number of out-
put derivatives performed before the input appears equals
the number of states of the flexible robot plus the number
of added compensator states, then the system has no zero
dynamics and can be transformed into two independent
chains of integrators from auxiliary inputs to the chosen
design outputs. This approach is named dynamic feedback
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linearization [15] and is possibly required only for nonlin-
ear systems with more than one input. We shall present
its application to the FLEXARM using a single deflection
mode and starting from egs. (4).

A. Dynamic feedback linearization
When considering only n. = 1 mode for the flexible fore-
arm, eqs. (4) becomes
b =a
Gy = ay
8 = —hy (cos 02a; + sin Ozéf) —wié+ ¢1(0) [Jzt(al + ap)

+ hy (cos 620y + sin 020'?) + h18y (cos 929§ —sin 0920,1)] . y

The expression of 8, can be rewritten as

. g2
81 = —wi61+41(0) Jos(a1+as)+[ 41 (Oh1é1  m] R(62) [ !
having set
= ¢1(0)Jp; — h R(0,) = cosf; —sinfy| (5)
7 = ¢1(0)J2; — by, (62) = b cos | F

Following [14], we choose as candidate design output

)bt

where ¢; is a coeflicient yet to be defined. Differentiating
eq. (6) once )

A

y= [92+0151] ’ @)

and twice, yields
ai
az + ¢141(0) Jae(a; + az) — Clw%é‘}

y =
+ [Cl¢’1(0)h161 cl'yl] R(Bg) {Zi }

Both inputs a; and az appear at this level, but the total
number of output derivatives (2 + 2 = 4) does not yet
cover the state space of the flexible manipulator which has
dimension 2(n, + 2) = 6. Therefore, in order to make the
matrix weighting the inputs in § singular, we can choose
the free coefficient c; as

1
1(0) /22’

so that ay disappears from the expression of §j;. The def-
inition (8) is consistent with the one made in [14] for the
linear case of a one-link flexible arm with n. = 1. In order
to proceed with output differentiation, we need then a dy-
namic extension on the first input channel (i.e., a;). Since
the robot model has a second-order dynamics, we can di-
rectly add two integrators with states denoted by &; and

&

®

Cc; =

& = &, & = o,

gl:

2,

a =
az =

©)

al} "The set of equations (6)—(7) and (10)—(11)

where o = (o, 3) is the new input. As a result of (8)
and (9),

&
y = 2 12 9’% }
=& —awib + (141 (0)h161  c1m] R(62) [51 ] ]

(10)
and the third derivative of the output is
_ & -

—& — c1w}by + [c161 (0)hidy O} R(6) [gﬂ
8 —

52
+02[c161(0)h161 c1m1] %% [gi] |
(11)
define a com-
plete state-space transformation from the original state
(61,02,61,61,05,61) of the FLEXARM and the state
(&1,&2) of the dynamic compensator to the coordinates

(w0, 9,y®) e R

By differentiating once more the output we obtain
y[4] = A(02) 61: ély El)a + f(92y 61 ) éh éZ) 511 617 &2)7 (12)

where the expressions of the so-called decoupling matrix A
and of vector f are given in the Appendix. The decoupling
matrix is nonsingular provided that its element ass does
not vanish, i.e.,

, 6}
A+ lerm —HOm) —adiOma]RE) [ ] £0.
(13)
Under this assumption, the control law defined by the feed-
back from the extended (robot+compensator) state

o= A-l(QZ)él)olygl) (’U - f(02)61;01y027 61)&1)62))
| (14)
transforms completely the extended dynamic system into
a linear controllable one made by two independent chains
of four input-output integrators from the auxiliary input
v = (vy,v2) to the output y = (y1,¥2), or

(15)

The complete expression of the two-dimensional dynamic
feedback linearizing compensator in terms of the original
torque inputs to the FLEXARM is obtained by merging
egs. (3), (9), and (14).

Y =,

B. Rest-to-rest trajectory generation
From the initial rest state of the FLEXARM at t =0, -

61(0)
6:(0)

?u, 65(0) = 6y,
0:(0) = 6,(0) = 0,

5,(0) = 0,

il
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the desired rest state at t =T,

6:1(T)
6:(T)

615, 62(T) = Oy,
6:(T) = 6(T) =

and from £,(0) = &(0) = &(T) = &(T) = 0, by us-
ing egs. (6)—(7) and (10)~(11) one can derive two sets of
boundary conditions for the reference output trajectory
ya(t) = (y1a(t),y24(t)) and its derivatives up to the third
one. These values can be simply interpolated by a poly-
normial trajectory of (at least) 7-th degree (one polynomial
for each output) defined for ¢ € [0, T].
From eqgs. (14)—(15), setting v = y‘[f], we have

§,(T) = 0,

A™Y(024, 614,614, 10) -
(yﬁf“ — f(824, 814,614,624, 614, 14, 524))

ag =

_ where desired values of the extended state are obtained
by inverting the transformation given by eas. (6)—(7) and
(10)—(11), in which y = y4(t) is used at each ¢ € [0, 7. This
inversion can be performed almost in closed form. It can
be shown that the only solution variable that needs special
attention is 624 which is computed solving (at every t) the
nonlinear equation

9(024) = Yoa + wfyu + §i1g — wilag
—[ #1(0)h1 (y2a — 02a) c1m1 | R(B2q) [ yld ] 0

with an efficient Newton method. All remaining variables
are then determined analytically.

The whole process is feasible provided that the regularity
condition (13) holds along the reference output trajectory.
Noting that 614 = 914 and &4 = {14, We can give the
following lover bound on as3 4 = a32(024, 614,014, 14):

od = ot [y ORI lre.s [?f:] |
- - ||| e

Therefore, the condition |azz,4| > 0 can be enforced by
accurate planning of the reference output trajectory so as
to satisfy the positivity of the above right-hand side. Since
the only available parameter left is usually the transfer time
T, it is clear that by slowing down the motion transfer,
the nominal deformation 814 will also be reduced and the
regularity condition will be enforced.

After substitutions, the nominal rest-to-rest torques for
the FLEXARM with n, = 1 mode are given by

Tia = (bll,d - bfs,.i)éld +bizaa2a +n1a
—biaq (ns,.i + w%w)
+b13,a $7(0) (bm,d &1a+ Jor aoa + nz,d)
T2a = bizai,a+ Joroza+ 124,

where the added subscript d means that all dynamic model
quantities are evaluated along the nominal state trajectory.
We finally note that by choosing 9th-order polynomial tra-
Jectorles we can also give continuity to the torques att=0
and t =

IV. NUMERICAL RESULTS
The FLEXARM is characterized by the following data:

Joo = 16.2- 10™4 kg m?
6, = 03m

m; = Jl ~ 0

mgy = 3.118 kg

ng = 6.35. 10—4 kg n‘l2
¢ = 0.7m

my; = 1.853kg
Jo» = 0.1483 kg m?

EI = 2.4507N m?

mp = JP = 07

where the mass of the first link has been neglected in com-
parison to the mass of the second actuator carried at its
end. The associated frequency of the first mode of the
flexible forearm is f; = 3.7631 Hz.

We have considered the following rest-to-rest task:

61; =02 =0, 615 = 05 = 90°, T=2s.
For each output component in eq. (6), an 11-th order poly-
nomial, with zero symmetric boundary conditions on its
derivatives up to the fifth one, has been selected as refer-
ence trajectory. This guarantees also boundary continuity
of the first derivative of the rest-to-rest torques.

The results in Figs. 2-6 indicate a natural behavior, with
bounded deformation in the assumed linearity domain and
maximum torques within the actuators capabilities. In par-
ticular, Fig. 3 shows the evolution of two variables of the
flexible forearm that are of interest for feedback control so-
lutions: the clamped joint angle 8.5 = 8, + ¢7(0)6;, which
is the angular position that can be directly measured by
an encoder mounted on the actuator at the link base, and
the tip angle yeo = 62 + (¢1(¢2)/42)61, which is the angle
between a line pointing at the forearm tip and the z-axis of
the pinned frame. In the experimental setup, the angular
deflection at the tip y:z — 0.2 can be directly measured by
an optical sensor (see [13]). In the first half of the motion
the clamped angle leads over the second output reference
trajectory and the tip lags behind, while the situation is
reversed in the second half. The maximum transversal dis-
placement at the forearm tip is about 12 cm.

V. CONCLUSIONS

A method has been presented for generating the nomi-
nal torques needed to perform a rest-to-rest motion task in
given time with the FLEXARM, a two-link planar manipu-
lator with a flexible forearm. Although the result is specific,
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Fig. 2. Motion of first joint of FLEXARM

theta2e vs tip angle

0 02 0.4 0.8 08 1 12
8

Fig. 3. Motion of clamped joint angle (—) and tip angle (- -) of the
forearm

8 H H ;i H H H i H H H
o 02 o4 08 o08 1 12 14 16 18 2

Fig. 4. Rest-to-rest torques for FLEXARM: 114 (—) and 74 (- -)

0.2 04 08

1 0.5 o 05 1
m

Fig. 6. Stroboscopic view of the FLEXARM motion

and limited to a single flexible mode, to the authors’ knowl-
edge this is the first available result in the literature solv-
ing the rest-to-rest motion problem for a multi-link flexible
manipulator with nonlinear dynamics.

The method is based on the design of suitable outputs
with no associated zero dynamics. When the input-output
mapping is invertible, this is a sufficient condition for trans-
forming the system into a linear controllable and input-
output decoupled one by means of a nonlinear dynamic
feedback compensator. This general result has been used
here for motion planning of rest-to-rest maneuvers.

The computed nominal torques can also be incorporated
as feedforward terms in a simple PD feedback controller,
aimed at robustyfying the behavior in the presence of in-
accurate information on the actual initial state and small
disturbances. Only joint position and velocity measure-
ments are needed, while the computed motion of the joints
are used as references [13]. The resulting scheme, which fol-
lows the so-called nonlinear regulation paradigm for nonlin-
ear systems, can be considered the counterpart for flexible
manipulators of the widespread pre-computed torque plus
joint PD feedback control of rigid robots.

The main current limitation of our approach is the con-
sideration of only one deformation mode for the flexible
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forearm. We have applied this technique with satisfactory
performance also to other simple nonlinear flexible struc-
tures finding the same obstruction. The use of a linear
output function, which is the direct outgrow of the one
designed for an arbitrary number of modes in a one-link
flexible arm with linear dynamics [14], may indeed not be
the right solution. More sophisticated choices should be
explored in order to cover the case of multiple flexible links
and/or multiple deformation modes.

Finally, experimental verification of the method is cur-
rently under way on the FLEXARM manipulator available
at DIA, Universita di Roma Tre, for rest-to-rest maneuvers
of both the single flexible forearm alone (linear dynamics)
and the full two-link flexible robot (nonlinear dynamics).
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APPENDIX

The expression of the decoupling matrix A and of vector
f in eq. (12) are given, after simplifications, by

(s8]
a2 a2

with
a1z = —1+[c)y(0)h61 c1m ] R(82) [(1’]
om = o+ [(erm = $(O) —diOhisi] RE:) [ |
and by
f = cwib +wi +([T1 T2] R(62) [gf]
+2[(c1di(Ohids + eambs)  ~62c161 (061 ]
-R(8) [26;1251}
+2[c1¢1(0hb1 eim] R(?:) [(E% +091§2)] )
with
[y = —cidh(0)haéy (202 +63)
+80m (<6 +adkOmt R [Z])
T2 = —am (w§+é§) — 202¢; 6, (0)hy by

In the above expressions, ¢; is given by eq. (8) and v, and
R(6;) are defined in eq. (5).
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