
Robotics 2

Midterm test in classroom – April 29, 2019

Exercise 1

Determine which of the following four 2×2 matrices can be, under the stated conditions, the inertia
matrix associated to a real 2-dof robot with coordinates q1 and q2, and which not (and why):

MA =

(
a1 + a2q

2
1 a2

a2 a2

)
, a1 > a2 > 0;

MB =

(
a1 a3 cos(q2 − q1)

a3 cos(q2 − q1) a2

)
, a1 > 0, a1a2 > a23 > 0;

MC =

(
a1 + 2a2 cos q2 a1 + a2 cos q2

a1 + a2 cos q2 a1

)
, a1 > 2a2 > 0;

MD =

(
m1 +m2 −0.5m2

−0.5m2 m2

)
, m1 > 0, m2 > 0.

For each case that is feasible, sketch the possible structure of the associated robot.

Exercise 2

Consider the 3-dof robot in Fig. 1, moving on a horizontal plane.

• Using the generalized coordinates q ∈ R3 and the dynamic parameters defined in Fig. 1,
determine the dynamic model of this robot using a Lagrangian formulation.

• Assume that the kinematic parameters are known. Provide a linear parameterization of the
dynamic model in the form

Y (q, q̇, q̈)a = u,

being u ∈ R3 the generalized force provided by the motors at the joints, such that the vector
of dynamic coefficients a ∈ Rp has the minimum possible dimension p.
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Figure 1: A 3-dof planar PRP robot, with its associated coordinates q and dynamic data.
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Exercise 3

The nR planar robot in Fig. 2 moves in the vertical plane under gravity. Each link has length li > 0
and has its center of mass on the kinematic axis at a distance dci R 0 from the driving joint. Using
the absolute coordinates q shown in Fig. 2, determine: i) the generic expressions of the components
of the gravity vector g(q) in the robot dynamic model; ii) all equilibrium configurations of the
robot (i.e., all qe ∈ Rn such that g(qe) = 0); and, iii) the generic conditions on the center of mass
of each link such that the gravity vector vanishes identically (i.e., g(q) ≡ 0,∀q).
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Figure 2: A nR planar robot, with its associated absolute coordinates q

Exercise 4

a) A 2-dof robot has the following inertia matrix:

M(q) =

(
a1 a2 sin q2

a2 sin q2 a3

)
. (1)

Find two matrices S1 and S2 that factorize the centrifugal/Coriolis terms in c(q, q̇) (i.e., with
Si(q, q̇)q̇ = c(q, q̇), for i = 1, 2), such that Ṁ − 2S1 is skew-symmetric and Ṁ − 2S2 is not.

b) Consider a robot with n = 3 joints, inertia matrix M(q) > 0, and centrifugal/Coriolis terms
c(q, q̇) = S(q, q̇)q̇, where the 3 × 3 factorizing matrix S is obtained through the Christoffel
symbols. Show that one can always find another factorizing matrix S′ 6= S that satisfies
S′(q, q̇)q̇ = c(q, q̇) and leads to a skew-symmetric matrix Ṁ − 2S′.
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Exercise 5

For a 2R planar robot with links of length l1 and l2 and inertia matrix

M(q) =

(
a1 + 2a2 cos q2 a3 + a2 cos q2
a3 + a2 cos q2 a3

)
, (2)

the task requires the end-effector to be moved so as to change its distance ρ = ρ(q) from the base
according to a desired smooth timing law ρd(t). Define the instantaneous joint velocity q̇ that
realizes the task while minimizing the robot kinetic energy, and provide the symbolic expression
of all the terms needed for its evaluation. Compute then the numerical value of q̇ with the data:

q1 = 0, q2 =
π

2
, l1 = l2 = 1 [m], a1 = 10, a2 = 2.5, a3 =

5

3
, ρ̇d = 0.5 [m/s]. (3)

Exercise 6

A 3R planar robot with links of unitary length is at rest in the Denavit-Hartenberg config-
uration q =

(
π/6 π/6 π/6

)
[rad] and should instantaneously accelerate its end effector at

p̈ =
(

4 2
)

[m/s2]. Find, if possible, a joint acceleration q̈ ∈ R3 with the least possible norm
that perfectly realizes the task under the bounds

|q̈1| ≤ 2.8 [rad/s2], |q̈2| ≤ 3.6 [rad/s2], |q̈3| ≤ 4 [rad/s2]. (4)

[210 minutes (3.5 hours); open books, computer, but no internet and no smartphone]
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Solution
April 29, 2019

Exercise 1

A) Matrix MA is not a robot inertia matrix because it is a function of the first coordinate q1 at
the robot base. This can never be the case: the definition of q1 is in fact arbitrary, as is the
choice of a base frame for the robot. The inertia matrix is instead an intrinsic property of the
manipulator structure.

B) MB is the inertia matrix of a 2-dof robot with a parallelogram structure (see left of Fig. 3,
which is taken from the lecture slides), in which we have a1 = Ic1,zz +m1l

2
c1 + Ic3,zz +m3l

2
c3 +

m4l
2
1, a2 = Ic2,zz + m2l

2
c2 + Ic4,zz + m4l

2
c3 + m3l

2
2, and a3 = m3l2lc3 − m4l1lc2. Absolute

coordinates have been used therein. The dependence of MB only on the difference q2 − q1
confirms that a robot inertia matrix can only be a function of the internal configuration
(thus, it does not depend on the choice of the base reference frame). This can be seen also
analytically, by applying the linear change of coordinates

p =

(
p1

p2

)
=

(
1 0

−1 1

)(
q1

q2

)
= Jq.

In the new coordinates p ∈ R2, the transformed inertia matrix becomes

M̃B = J−TMB J−1 =

(
a1 + 2a3 cos p2 a2 + a3 cos p2

a2 + a3 cos p2 a3

)
,

which is a function of the second coordinate p2 only.

C) Matrix MC resembles the inertia matrix of the usual 2R planar robot, but is not. A dynamic
coefficient a3 > 0 is missing in M(1, 1), and this destroys the positive definiteness for every q,
as it should be instead for an inertia matrix. In fact, the determinant

detMC = −a22 cos2 q2

is never positive.

D) MD is the inertia matrix of a 2P robot, with the second prismatic joint having a twist angle
of α = ±120◦ w.r.t. the first prismatic joint. The first link has mass m1 and the second link
has mass m2. A sketch of this robot is shown on the right of Fig. 3.

q2

x

q1

y

⊕

m2

m1

⊕

a  = 120o

Figure 3: [left] 2-dof parallelogram robot; [right] PP robot with second axis twisted by α = 120◦.
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Exercise 2

Following a Lagrangian approach, we derive the kinetic energy of the robot, T (q, q̇) = T1+T2+T3.
Using König theorem1,

Ti =
1

2
mi‖vci‖2 +

1

2
ωTi Iiωi,

and performing computations for each link, one has

T1 = 1
2 m1q̇

2
1 ,

pc2 =

(
dc2 cos q2

q1 + k1 + dc2 sin q2

)
⇒ vc2 = ṗc2 =

(
−dc2 sin q2 q̇2

q̇1 + dc2 cos q2 q̇2

)
,

T2 = 1
2 m2

(
q̇21 + d2c2 q̇

2
2 + 2 dc2 cos q2 q̇1q̇2

)
+ 1

2 I2 q̇
2
2 ,

where k1 is the distance from the center of mass of link 1 to the axis of joint 2 (an irrelevant
constant), and

pc3 =

(
l2 cos q2 − q3 sin q2

q1 + k1 + l2 sin q2 + q3 cos q2

)
⇒ vc3 = ṗc3 =

(
− (l2 sin q2 + q3 cos q2) q̇2 − sin q2 q̇3

q̇1 + (l2 cos q2 − q3 sin q2) q̇2 + cos q2 q̇3

)
,

T3 = 1
2 m3

(
q̇21 +

(
l22 + q23

)
q̇22 + q̇23 + 2 (l2 cos q2 − q3 sin q2) q̇1q̇2 + 2 cos q2 q̇1q̇3 + 2l2 q̇2q̇3

)
+ 1

2 I3 q̇
2
2 .

Thus

T =
1

2
q̇TM(q)q̇ =

1

2
q̇T

 m1 +m2 +m3 m3 (l2 cos q2 − q3 sin q2) +m2dc2 cos q2 m3 cos q2

I2 +m2d
2
c2 + I3 +m3

(
l22 + q23

)
m3l2

symm m3

 q̇.

Introduce now a (minimal) parametrization of the robot inertia matrix, collecting the 4 dynamic
coefficients that appear in M(q) and defined as follows2:

a =


a1

a2

a3

a4

 =


m1 +m2 +m3

I2 +m2d
2
c2 + I3

m3

m2dc2

 . (5)

As a result, the inertia matrix M(q) takes the linearly parametrized form

M(q) =

 a1 a3 (l2 cos q2 − q3 sin q2) + a4 cos q2 a3 cos q2

a3 (l2 cos q2 − q3 sin q2) + a4 cos q2 a2 + a3
(
l22 + q23

)
a3l2

a3 cos q2 a3l2 a3

 .

(6)

The components of the Coriolis and centrifugal vector are computed from (6) using the Christoffel’s
symbols

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂M i(q)

∂q
+

(
∂M i(q)

∂q

)T
− ∂M(q)

∂qi

)
,

1Being the motion planar, we restrict all linear vectors (e.g., pc2 or vc2) to be two-dimensional (living in the
plane (x,y)), while angular velocities are just scalars (the component of ωi along the z-axis normal to the plane).

2As indicated in the text, we consider the kinematic parameter l2 to be known.
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being M i the ith column of the inertia matrix M(q). We have

C1(q) =
1

2


 0 0 0

0 −a3(l2 sin q2 + q3 cos q2)− a4 sin q2 −a3 sin q2

0 −a3 sin q2 0


+

 0 0 0

0 −a3(l2 sin q2 + q3 cos q2)− a4 sin q2 −a3 sin q2

0 −a3 sin q2 0

− 0


=

 0 0 0

0 −a3(l2 sin q2 + q3 cos q2)− a4 sin q2 −a3 sin q2

0 −a3 sin q2 0


⇒ c1(q, q̇) = − (a3(l2 sin q3 + q3 cos q2) + a4 sin q2) q̇22 − 2 a3 sin q2 q̇2q̇3.

Similarly,

C2(q) =
1

2


 0 −a3(l2 sin q2 + q3 cos q2)− a4 sin q2 −a3 sin q2

0 0 2a3q3

0 0 0


+

 0 0 0

−a3(l2 sin q2 + q3 cos q2)− a4 sin q2 0 0

−a3 sin q2 2a3q3 0


−

 0 −a3(l2 sin q2 + q3 cos q2)− a4 sin q2 −a3 sin q2

−a3(l2 sin q2 + q3 cos q2)− a4 sin q2 0 0

−a3 sin q2 0 0




=

 0 0 0

0 0 a3q3

0 a3q3 0

 ⇒ c2(q, q̇) = 2 a3q3 q̇2q̇3

and

C3(q) =
1

2


 0 −a3 sin q2 0

0 0 0

0 0 0

+

 0 0 0

−a3 sin q2 0 0

0 0 0

−
 0 −a3 sin q2 0

−a3 sin q2 2a3q3 0

0 0 0




=

 0 0 0

0 −a3q3 0

0 0 0

 ⇒ c3(q, q̇) = −a3q3 q̇22 .

Summarizing, we have the final expression:

c(q, q̇) =

 − (a3(l2 sin q2 + q3 cos q2) + a4 sin q2) q̇22 − 2 a3 sin q2 q̇2q̇3

2 a3q3 q̇2q̇3

−a3q3 q̇22

 . (7)
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Using the inertia matrix in (6) and the quadratic velocity vector in (7), the complete robot dynamic
model can be expressed in the linearly parametrized form

M(q)q̈ + c(q, q̇) = Y (q, q̇.q̈)a = u,

where a ∈ R4 is defined in (5) and the 3× 4 matrix Y is given by

Y =

 q̈1

0

0

0

q̈2

0

Y 3

cos q2 q̈2 − sin q2 q̇
2
2

cos q2 q̈1

0

 , (8)

being the third column

Y 3 =

 (l2 cos q2 − q3 sin q2) q̈2 + cos q2 q̈3 − (l2 sin q2 + q3 cos q2) q̇22 − 2 sin q2 q̇2q̇3

(l2 cos q2 − q3 sin q2) q̈1 +
(
l22 + q23

)
q̈2 + l2 q̈3 + 2q3 q̇2q̇3

cos q2 q̈1 + l2 q̈2 + q̈3 − q3 q̇22

 .

Exercise 3

The use of absolute coordinates makes it simpler to derive the solution for the gravity term in the
general case of a planar (serial) robot arm with n revolute joints. Since

g0 =

 g0
0
0

 , g0 = 9.81 [m/s2],

the potential energy due to gravity of link j of the robot, for j = 1, . . . , n, is

Uj(q) = −mjg
T
0 r0,cj = −mjg0

(
j−1∑
k=1

lk cos qk + dcj cos qj

)
. (9)

The total potential energy due to gravity is then

U(q) =

n∑
j=1

Uj(q) = −g0
n∑
j=1

mj

(
j−1∑
k=1

lk cos qk + dcj cos qj

)

= −g0
n∑
i=1

 n∑
j=i+1

mj

 li +midci

 cos qi .

(10)

For instance, setting n = 5, we have from eq. (9)

U1 = −m1g0 dc1 cos q1

U2 = −m2g0 (l1 cos q1 + dc2 cos q2)

U3 = −m3g0 (l1 cos q1 + l2 cos q2 + dc3 cos q3)

U4 = −m4g0 (l1 cos q1 + l2 cos q2 + l3 cos q3 + dc4 cos q4)

U5 = −m5g0 (l1 cos q1 + l2 cos q2 + l3 cos q3 + l4 cos q4 + dc5 cos q5)

U(q) =

5∑
j=1

Uj ,

7



where the structure of the last expression of U(q) in eq. (10) can be easily recognized.

According to (10), the components gi(q) of the gravity vector g(q) ∈ Rn are

gi(q) =
∂U(q)

∂qi
= g0

 n∑
j=i+1

mj

 li +midci

 sin qi, i = 1, . . . , n. (11)

The unforced equilibrium configurations of the robot (independently of the values of kinematic and
dynamic parameters) are then characterized by

qi = qe,i = {0, π}, ∀i ∈ {1, . . . , n} ⇒ g(qe) = 0.

All these configurations correspond to the robot links being stretched or folded along the vertical
axis x. The total number of such equilibria is Ne = 2n.

In order to have a robot always balanced with respect to gravity, i.e., g(q) ≡ 0, the following
conditions should hold from (11):

 n∑
j=i+1

mj

 li +midci = 0 ⇐⇒ dci = −

 n∑
j=i+1

mj

 li

mi
< 0, i = 1, . . . , n− 1,

and
dcn = 0.

In words, the mass and location of the center of mass of each link should balance (at the associated
joint axis) the total mass of the following links in the chain, as if it were concentrated at the end
of the link. Any configuration q ∈ Rn would then be an equilibrium.

Exercise 4

a) From the inertia matrix (1) of this robot, which is a PR planar arm already treated in the
lecture slides, the matrices of Christoffel symbols and the velocity vector (containing only a
centrifugal term in the present case) are computed as

C1(q) =

(
0 0

0 a2 cos q2

)
, C2(q) = 0 ⇒ c(q, q̇) =

(
a2 cos q2 q̇

2
2

0

)
(12)

with a2 = −m2dc2. The time derivative of the inertia matrix (1) is

Ṁ =

(
0 a2 cos q2 q̇2

a2 cos q2 q̇2 0

)
.

A factorization S1q̇ of vector c in (12) leading to the skew symmetry of Ṁ − 2S1 is found by
using the matrices of Christoffel symbols (or just by trivial inspection). It is easy to check that
the matrix

S1(q, q̇) =

(
q̇TC1(q)

q̇TC2(q)

)
=

(
0 a2 cos q2 q̇2

0 0

)
(13)

provides

Ṁ − 2S1 =

(
0 −a2 cos q2 q̇2

a2 cos q2 q̇2 0

)
,
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which satisfies the desired skew-symmetric property. On the other hand, a different feasible
factorization that uses the matrix

S2(q, q̇) =

(
q̇2 a2 cos q2 q̇2 − q̇1
0 0

)
= S1(q, q̇) +

(
q̇2 −q̇1
0 0

)
= S1(q, q̇) + S0(q̇), with S0(q̇)q̇ = 0,

(14)

satisfies S2q̇ = c and provides

Ṁ − 2S2 =

(
−2q̇2 −a2 sin q2 q̇2 + 2q̇1

a2 sin q2 q̇2 0

)
,

which is clearly not a skew-symmetric matrix.

b) We use here the simple fact that, when q̇ ∈ R3, one has

q̇ × q̇ = S0(q̇)q̇ =

 0 −q̇3 q̇2

q̇3 0 −q̇1
−q̇2 q̇1 0


 q̇1

q̇2

q̇3

 = 0,

where S0 is by construction a skew-symmetric matrix. If a factorization c(q, q̇) = S(q, q̇)q̇
leading to a skew symmetric matrix Ṁ − 2S is available, then matrix S′ = S + S0 6= S will
be another feasible factorization, since

S′(q, q̇)q̇ = (S(q, q̇) + S0(q̇)) q̇ = S(q, q̇)q̇ = c(q, q̇).

Moreover, the matrix

Ṁ − 2S′ =
(
Ṁ − 2S

)
+ (−2S0)

is also skew symmetric, being the sum of two skew-symmetric matrices. Indeed, matrix S′ is
not obtained using the Christoffel symbols only, and it is also clear that an infinite number of
such feasible factorizations exists, all leading to the skew-symmetric property.

This construction can be easily generalized to the case of arbitrary n ≥ 3, by considering for
instance a velocity vector q̇0 ∈ Rn with all zero components but three consecutive ones, and
an associated n × n skew-symmetric matrix S0(q̇0) with a single non-zero 3 × 3 block at the
proper place on the diagonal, constructed as in the three-dimensional case.

Exercise 5

The direct kinematics of the 2R planar robot is

p =

(
l1 cos q1 + l2 cos(q1 + q2)

l1 sin q1 + l2 sin(q1 + q2)

)
.

Therefore, the distance of the robot end effector from the base is

ρ(q) = ‖p‖ =
√
l21 + l22 + 2 l1l2 cos q2.

The task Jacobian is then a 1× 2 matrix

J(q) =
∂ρ(q)

∂q
=

(
0 − l1l2 sin q2

‖p‖

)
, (15)
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which, for l1 6= l2, is full rank except when q2 = {0, π}. For l1 = l2, the rank of J drops only at
q2 = 0, whereas the element J12(q2) has a discontinuity at q2 = ±π (the two limits for q2 → +π
and q2 → −π are non-zero and different).

A joint velocity q̇ that realizes the task while minimizing the robot kinetic energy uses the inertia-
weighted pseudoinverse of the task Jacobian,

q̇ = q̇WPs = J#
M (q) ρ̇d = M−1(q)JT (q)

(
J(q)M−1(q)JT (q)

)−1
ρ̇d, (16)

where the last equality holds provided that J is full rank. In this case, using in (16) the symbolic
expressions (2) and (15), we obtain

q̇WPs = − l1l2 sin q2
‖p‖ · detM(q)

(
−(a3 + a2 cos q2)

a1 + 2a2 cos q2

)
·

(
(l1l2 sin q2)2(a1 + 2a2 cos q2)

‖p‖2 · detM(q)

)−1
ρ̇d,

where detM(q) = a3(a1 − a3)− a22 cos2 q2 > 0. Simplifying, this yields

q̇WPs =
‖p‖

l1l2 sin q2

 a3 + a2 cos q2
a1 + 2a2 cos q2

−1

 ρ̇d. (17)

Substituting in (17) the numerical data of the problem, we obtain finally

q̇WPs =

(
0.1179

−0.7071

)
. (18)

An alternative (and simpler) solution would have been to seek for the minimum norm joint velocity,
i.e., using the pseudoinverse of J ,

q̇Ps = J#(q) ρ̇d =

 0

− ‖p‖
l1l2 sin q2

 ρ̇d,

leading to the numerical value

q̇Ps =

(
0

−0.7071

)
. (19)

Indeed, a different target is reached by the two solutions q̇WPs in (18) and q̇Ps in (19) in terms of
the objective function that is being minimized. We have in fact

1

2
q̇TWPsM q̇WPs = min

q̇:Jq̇= ρ̇d

1

2
q̇TM q̇ = 0.3472 < 0.4167 =

1

2
q̇TPsM q̇Ps

and, viceversa,

1

2
q̇TPs q̇Ps = min

q̇:Jq̇= ρ̇d

1

2
q̇T q̇ = 0.25 < 0.2569 =

1

2
q̇TWPs q̇WPs.

Exercise 6

Using Denavit-Hartenberg coordinates, the Jacobian of a 3R planar robot with unitary links is

J(q) =

(
− (s1 + s12 + s123) − (s12 + s123) −s123
c1 + c12 + c123 c12 + c123 c123

)
,
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with the usual compact notation. At the configuration q =
(
π/6 π/6 π/6

)T
[rad], it becomes

J =

(
−2.3660 −1.8660 −1

1.3660 0.5 0

)
=
(
J1 J2 J3

)
. (20)

Note that rank J = 2. Moreover, its three 2 × 2 minors are all different from zero in this case.
Since the robot is at rest (q̇ = 0), the second-order differential mapping to be inverted is simply

p̈ = Jq̈, for p̈ =

(
4

2

)
[m/s2].

In order to get a solution that is feasible with respect to the hard bounds (4) and has the least
possible norm, we can apply the SNS (Saturation in the Null Space) method on joint accelerations3.

To start with, we look for a solution with minimum acceleration norm,

q̈PS = J#p̈ =

 0.1715 0.9832

−0.4686 −0.6861

−0.5314 −1.0460

( 4

2

)
=

 2.6524

−3.2466

−4.2175

 . (21)

The third joint acceleration violates its maximum bound, q̈PS,3 = −4.2175 < −4 = −A3, so this
solution is not feasible. Next, we search for a feasible solution by saturating the (single) overdriven
joint, i.e., setting q̈3 = −A3 = −4 [rad/s2] (this is step 1 of the SNS algorithm). The original task
is modified by removing the contribution of the saturated acceleration of the third joint (and by
discarding the associated column of J). We rewrite this as

p̈1 = p̈−J3(−A3) =

(
4
2

)
−
(
−1
0

)
·(−4) =

(
0
2

)
=

(
−2.3660 −1.8660

1.3660 0.5

)(
q̈1
q̈2

)
= J−3 q̈−3,

where J−i is the matrix obtained by deleting the ith column from the Jacobian in (20) and,
accordingly, q̈−i is the vector of joint accelerations without the ith component. For the modified
task, we compute the contribution of the two active joints by inverting matrix J−3, which is now
square and nonsingular. Thus, we obtain the unique solution

q̈−3 = (J−3)
−1

p̈1 =

(
0.3660 1.3660

−1 −1.7321

)(
0
2

)
=

(
2.7321
−3.4641

)
[rad/s2].

All bounds are now satisfied and the resulting joint acceleration, with the third component fixed
at q̈3 = −4 = −A3, is feasible. Thus, there is no need to scale down the original task acceleration
p̈. Recomposing the complete joint acceleration vector, we have the solution

q̈∗ =

 2.7321
−3.4641
−4

 [rad/s2], with Jq̈∗ = p̈ and ‖q̈∗‖ = 5.9552. (22)

This solution is not unique, but the underlying SNS method which has been followed guarantees
that a feasible solution of minimum norm has been obtained.

For instance, another feasible solution can be obtained by setting the acceleration of the second
joint to its lower bound (q̈2 = −A2 = −3.6 [rad/s2]), which is the saturation level that is closer

3The solution is quite intuitive in this case and could also be obtained without any knowledge of the SNS method.
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to the value of this component in the unconstrained minimum norm solution (21), and adjusting
accordingly the other two joint accelerations. Since

q̈−2 = (J−2)
−1

(p̈− J2 · (−A2)) =

(
0 0.7321

−1 −1.7321

)(
−2.7177

3.8

)
=

(
2.7818
−3.8641

)
[rad/s2],

the complete solution q̈� is feasible but has slightly larger norm than the SNS solution q̈∗ in (22):

q̈� =

 2.7818
−3.6
−3.8641

 [rad/s], with Jq̈� = p̈ and ‖q̇�‖ = 5.9691.

Finally, it is easy to see that a solution having the acceleration of the first joint saturated at its

upper bound, q̈ =
(

2.8 −3.6497 −3.8144
)T

, would instead be unfeasible (the second component
is out of bounds).

∗ ∗ ∗ ∗ ∗
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