
Robotics 2
Midterm test in classroom – April 26, 2018

Exercise 1

Consider the 4-dof planar robot in Fig. 1. The robot has the first two joints prismatic and the last
two joints revolute, and moves in a vertical plane.

• Using the generalized coordinates q ∈ R4 and the dynamic parameters defined in Fig. 1,
determine the symbolic expression of the dynamic model of this robot using a Lagrangian
formulation and considering also the presence of viscous friction at the joints.

• Assume that all kinematic parameters as well as the acceleration of gravity (g0 = 9.81) are
known. Provide a linear parameterization of the obtained dynamic model in the form

Y (q, q̇, q̈)a = u, (1)

where u ∈ R4 is the generalized force provided by the motors at the joints, and the vector of
dynamic coefficients a ∈ Rp has the minimum possible dimension p.
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Figure 1: A 4-dof planar 2P2R robot, with associated coordinates q and dynamic data.

Exercise 2

A 2-dof robot has the inertia matrix

B(q) =

(
a1 + 2a2 cos q2 a3 + a2 cos q2
a3 + a2 cos q2 a3

)
. (2)

• Find two matrices S1(q, q̇) and S2(q, q̇) factorizing the Coriolis and centrifugal terms c(q.q̇)
(i.e., Si(q, q̇)q̇ = c(q, q̇), for i = 1, 2), such that Ḃ − 2S1 is skew-symmetric, while Ḃ − 2S2

is not.

• Assume that the robot is on a horizontal plane. The second joint should be moved along a
cubic trajectory by an angle ∆q2 from rest to rest in a given time T > 0, while the first link is
kept still. Provide the symbolic expression of the torque τ (0) ∈ R2 that needs to be applied
at initial time t = 0 in order to start correctly the execution of this motion.

• Give the value of τ (0) for the following numerical data

a1 = 17, a2 = 5, a3 = 3, q2(0) = −π
2
, ∆q2 =

π

2
, T = 2 s,

and explain the physical meaning of the signs of its two components.
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Exercise 3

Having defined a n-dimensional vector q of generalized coordinates, the dynamic model of a rigid
robot in a Lagrangian formulation is obtained writing the Euler-Lagrange equations for L = T −U ,
where T is the kinetic energy and U is the potential energy of the robot. In the frictionless case,
the model takes the usual second-order differential expression

B(q)q̈ + c(q, q̇) + g(q) = u. (3)

On the other hand, one can also rely on the use of the total energy of a robot, H = T + U , the
so-called Hamiltonian of the system. Using the generalized momentum p = B(q)q̇ ∈ Rn, prove
that the (first-order) dynamic equations of the robot in a state-space format can be written in the
so-called Hamiltonian form(

q̇

ṗ

)
=

(
O In

−In O

)(
∇qH

∇pH

)
+

(
O

In

)
u, (4)

where In is the n× n identity matrix and ∇xH = (∂H/∂x)
T

is a n-dimensional (column) vector.

Exercise 4

Consider the PPR planar robot in Fig. 2 and the coordinates q ∈ R3 given therein. The length of
the third link is l > 0. Assume that the Cartesian task to be performed by this robot is defined in
terms of the position p ∈ R2 of its end effector. Denote the associated task Jacobian as J(q).
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Figure 2: A 3-dof planar PPR robot, with associated coordinates q.

• Find the joint velocity q̇ that minimizes 1
2‖q̇‖

2
while realizing a desired task velocity ṗ. When

the linear quantities in the problem are first expressed in [m] and [m/s] units and then in [cm]
and [cm/s] units, the solution does not remain the same. Why? Illustrate this by computing
the numerical solution with the following data: l = 0.5 [m] = 50 [cm], q3 = π/6 [rad],
ṗ = (−1 1)T [m/s] = (−100 100)T [cm/s].

• With a weighted pseudoinverse solution, may the above issue be resolved using a suitable
diagonal weighting matrix W > 0? Illustrate your conclusion by reconsidering the same
numerical example of the previous item. Provide also an interpretation of the role of weighting.

• Using again another weighted pseudoinverse, show than it is possible to realize a generic
Cartesian task velocity ṗ by moving almost only the first two joints of the PPR robot. Illustrate
this on the same previous numerical example.

[270 minutes (4.5 hours); open books, but no computer or smartphone]
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Solution
April 26, 2018

Exercise 1

Kinetic energy

First two links:

T1 =
1

2
m1q̇

2
1 , T2 =

1

2
m2

(
q̇21 + q̇22

)
.

Third link:

pc3 =

(
pc3,x

pc3,y

)
=

(
q1 + d3 cos q3

q2 + d3 sin q3

)
⇒ vc3 = ṗc3 =

(
q̇1 − d3 sin q3 q̇3

q̇2 + d3 cos q3 q̇3

)
, ω3 = q̇3

⇒ T3 =
1

2
m3

(
q̇21 + q̇22 + d23q̇

2
3 + 2d3q̇3 (q̇2 cos q3 − q̇1 sin q3)

)
+

1

2
I3 q̇

2
3 .

Fourth link:

pc4 =

(
pc4,x

pc4,y

)
=

(
q1 + l3 cos q3 + d4 cos(q3 + q4)

q2 + l3 sin q3 + d4 sin(q3 + q4)

)

⇒ vc4 = ṗc4 =

(
q̇1 − l3 sin q3 q̇3 − d4 sin(q3 + q4)(q̇3 + q̇4)

q̇2 + l3 cos q3 q̇3 + d4 cos(q3 + q4)(q̇3 + q̇4)

)
, ω4 = q̇3 + q̇4

⇒ T4 =
1

2
m4

(
q̇21 + q̇22 + l23 q̇

2
3 + d24 (q̇3 + q̇4)

2
+ 2l3q̇3 (q̇2 cos q3 − q̇1 sin q3) + 2l3d4 cos q4 q̇3 (q̇3 + q̇4)

+ 2d4 (q̇3 + q̇4) (q̇2 cos(q3 + q4)− q̇1 sin(q3 + q4))
)

+ 1
2I4 (q̇3 + q̇4)

2
.

Robot inertia matrix

From

T =

4∑
i=1

Ti =
1

2
q̇TB(q)q̇ =

1

2

4∑
i=1

4∑
j=1

bij(q) q̇iq̇j ,

we obtain the elements bij = bji of the symmetric inertia matrix B(q) as

b11 =m1 +m2 +m3 +m4

b12 = 0

b13 =− (m3d3 +m4l3) sin q3 −m4d4 sin(q3 + q4)

b14 =−m4d4 sin(q3 + q4)

b22 =m2 +m3 +m4

b23 = (m3d3 +m4l3) cos q3 +m4d4 cos(q3 + q4)

b24 =m4d4 cos(q3 + q4)

b33 = I3 +m3d
2
3 + I4 +m4d

2
4 +m4l

2
3 + 2m4d4l3 cos q4

b34 = I4 +m4d
2
4 +m4d4l3 cos q4

b44 = I4 +m4d
2
4.

Note that the inertia matrix is only a function of q3 and q4.
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Minimal parametrization of the inertia matrix

We can collect the dynamic parameters appearing in the robot inertia matrix into 6 dynamic
coefficients, which are defined as follows:

a1 =m1 +m2 +m3 +m4

a2 =m2 +m3 +m4

a3 = I3 +m3d
2
3 + I4 +m4d

2
4 +m4l

2
3

a4 = I4 +m4d
2
4

a5 =m4d4

a6 =m3d3 +m4l3.

(5)

As a result, the inertia matrix B(q) takes the more compact, linearly parametrized form

B(q) =


a1 0 −a6s3 − a5s34 −a5s34
0 a2 a6c3 + a5c34 a5c34

−a6s3 − a5s34 a6c3 + a5c34 a3 + 2a5l3c4 a4 + a5l3c4

−a5s34 a5c34 a4 + a5l3c4 a4

 , (6)

where the shorthand notation for trigonometric functions was used (e.g., s34 = sin(q3 + q4)).
Indeed, l3 could also be incorporated into the coefficient a6, but this would lead, as we shall see,
to an additional dynamic coefficient in the definition of the gravity terms.

Coriolis and centrifugal terms

Defining by bi the ith column of the inertia matrix B(q), we compute the components of the
Coriolis and centrifugal vector c(q, q̇) using the Christoffel symbols:

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂bi
∂q

+

(
∂bi
∂q

)T

− ∂B

∂qi

)
, i = 1, . . . , 4.

This is tedious, but straightforward. For the four components we obtain:

C1(q) =
1

2




0 0 0 0

0 0 0 0

0 0 −a6c3 − a5c34 −a5c34
0 0 −a5c34 −a5c34

+


0 0 0 0

0 0 0 0

0 0 −a6c3 − a5c34 −a5c34
0 0 −a5c34 −a5c34

−O


=


0 0 0 0

0 0 0 0

0 0 −a6c3 − a5c34 −a5c34
0 0 −a5c34 −a5c34

 ⇒ c1(q, q̇) = −a5c34 (q̇3 + q̇4)
2 − a6c3 q̇23

C2(q) =
1

2




0 0 0 0

0 0 0 0

0 0 −a6s3 − a5s34 −a5s34
0 0 −a5s34 −a5s34

+


0 0 0 0

0 0 0 0

0 0 −a6s3 − a5s34 −a5s34
0 0 −a5s34 −a5s34

−O


=


0 0 0 0

0 0 0 0

0 0 −a6s3 − a5s34 −a5s34
0 0 −a5s34 −a5s34

 ⇒ c2(q, q̇) = −a5s34 (q̇3 + q̇4)
2 − a6s3 q̇23
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C3(q) =
1

2




0 0 −a6c3 − a5c34 −a5c34
0 0 −a6s3 − a5s34 −a5s34
0 0 0 −2a5l3s4

0 0 0 −a5l3s4



+


0 0 0 0

0 0 0 0

−a6c3 − a5c34 −a6s3 − a5s34 0 0

−a5c34 −a5s34 −2a5l3s4 −a5l3s4



−


0 0 −a6c3 − a5c34 −a5c34
0 0 −a6s3 − a5s34 −a5s34

−a6c3 − a5c34 −a6s3 − a5s34 0 0

−a5c34 −a5s34 0 0




=


0 0 0 0

0 0 0 0

0 0 0 −a5l3s4
0 0 −a5l3s4 −a5l3s4

 ⇒ c3(q, q̇) = −a5l3s4 q̇4 (2q̇3 + q̇4)

C4(q) =
1

2




0 0 −a5c34 −a5c34
0 0 −a5s34 −a5s34
0 0 0 −a5l3s4
0 0 0 0

+


0 0 0 0

0 0 0 0

−a5c34 −a5s34 0 0

−a5c34 −a5s34 −a5l3s4 0



−


0 0 −a5c34 −a5c34
0 0 −a5s34 −a5s34

−a5c34 −a5s34 −2a5l3s4 −a5l3s4
−a5c34 −a5s34 −a5l3s4 0




=


0 0 0 0

0 0 0 0

0 0 a5l3s4 0

0 0 0 0

 ⇒ c4(q, q̇) = a5l3s4 q̇
2
3 .

Summarizing, we have a very short final expression:

c(q, q̇) =


−a5c34 (q̇3 + q̇4)

2 − a6c3 q̇23
−a5s34 (q̇3 + q̇4)

2 − a6s3 q̇23
−a5l3s4 q̇4 (2q̇3 + q̇4)

a5l3s4 q̇
2
3

 . (7)

Potential energy and gravity terms

U1 = 0, U2 = m2g0(q2 − d2), U3 = m3g0 pc3,y = m3g0 (q2 + d3 sin q3) ,

U4 = m4g0 pc4,y = m4g0 (q2 + l3 sin q3 + d4 sin(q3 + q4)) [all defined up to a constant].
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From U =
∑4

1 Ui, we have

g(q) =

(
∂U

∂q

)T

=


0

(m2 +m3 +m4) g0

(m3d3 +m4l3) g0c3 +m4d4g0c34

m4d4g0c34

 =


0

a2g0

a6g0c3 + a5g0c34

a5g0c34

 , (8)

where the three previously defined dynamic coefficents a2, a5, and a6 have been used.

Complete dynamic model with viscous friction

Using the expressions eqs. (6), (7), and (8), and considering the presence of viscous friction acting
at the individual joints, we have

B(q)q̈ + c(q, q̇) + g(q) +


fv1q̇1

fv2q̇2

fv3q̇3

fv4q̇4

 = u. (9)

By defining the four more dynamic coefficients

a7 = fv1, a8 = fv2, a9 = fv3, a10 = fv4,

we conclude that the robot dynamic model depends linearly on a total of p = 10 dynamic co-
efficients, which can be organized in the vector a ∈ R10. This is also the minimal number of
coefficients in the present case.

Linear parametrization

The robot dynamic model (9) can be expressed in the linearly parametrized form

Y (q, q̇.q̈)a = u

where the 4× 10 matrix Y is given by

Y =


q̈1

0

0

0

0

q̈2 + g0

0

0

0

0

q̈3

0

0

0

q̈4

q̈3 + q̈4

Y 5 Y 6

q̇1

0

0

0

0

q̇2

0

0

0

0

q̇3

0

0

0

0

q̇4

 . (10)

The expressions of the fifth and sixth columns of this matrix are

Y 5 =


−s34 (q̈3 + q̈4)− c34 (q̇3 + q̇4)

2

c34 (q̈3 + q̈4)− s34 (q̇3 + q̇4)
2

l3c4 (2q̈3 + q̈4) + c34 (q̈2 + g0)− s34q̈1 − l3s4q̇4 (2q̇3 + q̇4)

l3c4q̈3 + c34 (q̈2 + g0)− s34q̈1 + l3s4q̇
2
3


and

Y 6 =


−s3q̈3 − c3q̇23
c3q̈3 − s3q̇23

c3 (q̈2 + g0)− s3q̈1
0

 .
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Exercise 2

From the inertia matrix (2) of the robot, the matrices of Christoffel symbols are computed as

C1(q) =

(
0 −a2 sin q2

−a2 sin q2 −a2 sin q2

)
, C2(q) =

(
a2 sin q2 0

0 0

)
, (11)

leading to the Coriolis and centrifugal terms

c(q, q̇) =

(
q̇TC1(q) q̇

q̇TC2(q) q̇

)
=

(
−a2 sin q2

(
2q̇1q̇2 + q̇22

)
a2 sin q2 q̇

2
1

)
. (12)

Moreover, the time derivative of the inertia matrix is

Ḃ =

(
−2a2 sin q2 q̇2 −a2 sin q2 q̇2

−a2 sin q2 q̇2 0

)
. (13)

A factorization S(q, q̇)q̇ of (12) that satisfies the skew-symmetry of Ḃ−2S is found using directly
the matrices (11) of Christoffel symbols. It is easy to check that the matrix

S1(q, q̇) =

(
q̇TC1(q)

q̇TC2(q)

)
=

(
−a2 sin q2 q̇2 −a2 sin q2 (q̇1 + q̇2)

a2 sin q2 q̇1 0

)
(14)

provides

Ḃ − 2S1 =

(
0 a2 sin q2(2q̇1 + q̇2)

−a2 sin q2 (2q̇1 + q̇2) 0

)
,

satisfying the desired skew-symmetric property. On the other hand, a feasible factorization that
uses the matrix

S2(q, q̇) =

(
−2a2 sin q2 q̇2 −a2 sin q2 q̇2

a2 sin q2 q̇1 0

)
(15)

provides

Ḃ − 2S2 =

(
2a2 sin q2 q̇2 a2 sin q2 q̇2

−a2 sin q2 (2q̇1 + q̇2) 0

)
,

which is clearly not a skew-symmetric matrix.

For the second part of the exercise, we need to solve a simple inverse dynamics problem. Since
the robot moves on a horizontal plane, we have g(q) ≡ 0. Moreover, the desired motion starts at
t = 0 with zero joint velocity, so that c(q(0), q̇(0)) = 0 as well. Finally, the first link should not
move, so that q̈1 ≡ 0. The dynamic equations at the initial instant become then

B(q(0))

(
0

q̈2(0)

)
= τ (0).

Since the second joint should perform a rest-to-rest motion of ∆q2 in time T with a cubic trajectory,
we have

q2(t) = q2(0) + ∆q2

(
3

(
t

T

)2

− 2

(
t

T

)3
)

⇒ q̈2(0) =
6∆q2
T 2

.

Therefore, the required initial torque at the two joints is

τ (0) =

(
a3 + a2 cos q2(0)

a3

)
6∆q2
T 2

. (16)

7



Replacing the given numerical data in (16), we obtain

τ (0) =

(
7.0686

7.0686

)
[Nm].

Since a3 > 0 (always), the torque at the second joint will have the same sign of the desired
displacement/acceleration of that joint. In the present case, also the first torque is positive (and
equal to the second one, being cos q2(0) = 0). This positive (counterclockwise) torque is needed to
contrast the clockwise motion that the first link would otherwise have, due to the inertial coupling
with the instantaneous acceleration of the second link.

Exercise 3

In a Lagrangian formulation, we have

L(q, q̇) = T (q, q̇)− U(q) =
1

2
q̇TB(q)q̇ − U(q)

and thus

d

dt

(
∂L

∂q̇

)T
−
(
∂L

∂q

)T
= B(q)q̈+Ḃ(q)q̇− 1

2
col

{
q̇T

∂B

∂qi
q̇

}
+

(
∂U

∂q

)T
= B(q)q̈+c(q, q̇)+g(q) = u,

(17)
where

c(q, q̇) = Ḃ(q)q̇ − 1

2
col

{
q̇T

∂B

∂qi
q̇

}
=

1

2
col

{
q̇T

[
∂bi
∂q

+

(
∂bi
∂q

)T
− ∂B

∂qi

]
q̇

}
, g(q) =

(
∂U

∂q

)T
,

being x = col{xi} a n-dimensional column vector with xi as the ith component, for i = 1, . . . , n.

Since q̇ = B−1(q)p, it is easy to see that the Hamiltonian can be rewritten as a function of the
generalized coordinates q and the generalized momentum p only:

H(q,p) = T (q,p) + U(q) =
1

2
pTB−1(q)p+ U(q).

We compute then the partial derivatives

∇pH =

(
∂H

∂p

)T
= ∇pT = B−1(q)p,

∇qH =

(
∂H

∂q

)T
= ∇qT +∇qU =

1

2
col

{
pT

∂B−1

∂qi
p

}
+ g(q).

(18)

Differentiating w.r.t. time p = B(q)q̇ and using (17), it is

ṗ = B(q)q̈+Ḃ(q)q̇ = u+
1

2
col

{
q̇T

∂B

∂qi
q̇

}
−g(q) = u+

1

2
col

{
pTB−1 ∂B

∂qi
B−1p

}
−g(q). (19)

Moreover, from the identity

B(q)B−1(q) = I ⇒ ∂

∂qi

(
B(q)B−1(q)

)
=

(
∂

∂qi
B(q)

)
B−1(q) +B(q)

(
∂

∂qi
B−1(q)

)
= O,
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we obtain the general property
∂B−1

∂qi
= −B−1 ∂B

∂qi
B−1. (20)

Replacing (20) in (19) leads to

ṗ = u− 1

2
col

{
pT

∂B−1

∂qi
p

}
− g(q).

As a result, using also eq. (18) one can write

q̇ = B−1(q)p = ∇pH

ṗ = −
(

1

2
col

{
pT

∂B−1

∂qi
p

}
+ g(q)

)
+ u = −∇qH + u,

which can be immediately rearranged in the form of the stated equations (4).

Exercise 4

The task Jacobian of the planar PPR robot is given by

J(q) =

(
1 0 −l sin q3
0 1 l cos q3

)
, (21)

with
ṗ = J(q)q̇, ṗ ∈ R2, q̇ ∈ R3.

Clearly, the Jacobian (21) is always of maximum rank ρ = 2. Therefore, the minimum norm joint
velocity that realizes a desired ṗ is provided by

q̇ = J#(q)ṗ, (22)

where the pseudoinverse matrix takes the explicit expression

J#(q) = JT (q)
(
J(q)JT (q)

)−1

=
1

1 + l2

 1 + l2 cos2 q3 l2 sin q3 cos q3

l2 sin q3 cos q3 1 + l2 sin2 q3

−l sin q3 l cos q3

 , (23)

being det(JJT ) = 1 + l2. When looking at the elements of the matrix in (23), it is easy to realize
that there is a problem of unit inconsistency. In particular, the expression of the determinant of
JJT consists of the sum of a non-dimensional quantity and of one having dimension of length to
the square. As a matter of fact, the robot has joints of different nature. Therefore, the norm ‖q̇‖
has mixed expressions and its minimization leads in general to different solutions, depending on
the units chosen for the linear and the angular quantities.

For illustration, if we evaluate the solution (22) with the given numerical data using [m] as linear
unit,

l = 0.5 [m], q3 = π/6 [rad], ṗ =

(
−1

1

)
[m/s],

we obtain

q̇ =

 0.95 0.0866

0.0866 0.85

−0.2 0.3464

( −1

1

)
=

 −0.8634

0.7634

0.5464

 [m/s]

[m/s]

[rad/s]

. (24)
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Instead, when using [cm] as the linear unit,

l = 50 [cm], q3 = π/6 [rad], ṗ =

(
−100

100

)
[cm/s],

we obtain

q̇ =

 0.7501 0.4328

0.4328 0.2503

−0.01 0.0173

( −100

100

)
=

 −31.72

−18.25

2.731

 [cm/s]

[cm/s]

[rad/s]

=

 −0.3172

−0.1825

2.731

 [m/s]

[m/s]

[rad/s]

, (25)

which is completely different (in all components) with respect to (24).

Consider now the use of a weighted pseudoinverse to define a solution as

q̇ = J#
W (q)ṗ, (26)

where, being the task Jacobian always of full rank, we can use the explicit expression

J#
W (q) = W−1JT (q)

(
J(q)W−1JT (q)

)−1

. (27)

Since the issue here is the different nature of the first two joints (prismatic) with respect to the last
one (revolute), it makes sense to focus our attention to a diagonal weighting matrix of the form

W =

 1

1

w

 , with w > 0. (28)

When computing the inverse matrix in (27), one gets

(
J(q)W−1JT (q)

)−1

=

 1 +
l2

w
sin2 q3

l2

w
sin q3 cos q3

l2

w
sin q3 cos q3 1 +

l2

w
cos2 q3

 and det
(
JW−1JT

)
= 1 +

l2

w
.

Therefore, the choice w = l2 in (28) would eliminate the presence of terms with dimensional units
in this key expression (in particular, the determinant would become equal to 2). In fact, with this
choice the final expression of such a properly weighted pseudoinverse is

J#
W (q) =

1

2


1 + cos2 q3 sin q3 cos q3

sin q3 cos q3 1 + sin2 q3

− sin q3
l

cos q3
l

 . (29)

Evaluating the solution (26) with w = l2 in the previous numerical example, and using [m] as
linear unit,

l = 0.5 [m], q3 = π/6 [rad], ṗ =

(
−1

1

)
[m/s],

we obtain

q̇ =

 0.875 0.2165

0.2165 0.625

−0.5 0.866

( −1

1

)
=

 −0.6585

0.4085

1.366

 [m/s]

[m/s]

[rad/s]

. (30)
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When using [cm] as the linear unit,

l = 50 [cm], q3 = π/6 [rad], ṗ =

(
−100

100

)
[cm/s],

we obtain in this case

q̇ =

 0.875 0.2165

0.2165 0.625

−0.005 0.0087

( −100

100

)
=

 −65.8484

−40.8494

1.366

 [cm/s]

[cm/s]

[rad/s]

=

 −0.6585

0.4085

1.366

 [m/s]

[m/s]

[rad/s]

, (31)

which is exactly the solution (30) already obtained with the other linear units.

The role of the suitable weighting w = l2 on the velocity of the third joint can be given the following
interpretation. The general solution (26) minimizes the objective

H =
1

2
‖q̇‖2W =

1

2
q̇TWq̇ =

1

2

(
q̇21 + q̇22 + wq̇23

)
=

1

2

(
q̇21 + q̇22 + (lq̇3)

2
)
,

subject to the task constraint J(q)q̇ = ṗ. Therefore, this (unique!) weight will equalize the cost for
a Cartesian displacement of the robot end-effector of a given length, no matter if this is achieved
by one of the two prismatic joints or by the third revolute joint. Stated differently, a linear path
achieved by translating along the first or second prismatic joint at 1 [m/s] for 1 second will cost in
the objective function H the same as an arc of a circle of radius l achieved by rotating the third
joint at 1/l [rad/s] for 1 second.

On the other hand, selecting a very large weight w � 1 in (28) will penalize the motion of the
third (revolute) joint with respect to the prismatic ones. The PPR robot will then try to achieve
the desired Cartesian velocity moving mainly the first two joints. For instance, using w = 1000 in
the previous numerical example (and using [m] for the linear units) provides

q̇ =

 0.9999 0.0001

0.0001 0.9998

−0.0002 0.0004

( −1

1

)
=

 −0.9998

0.9997

0.0007

 [m/s]

[m/s]

[rad/s]

, (32)

namely a velocity that involves in practice only the first two prismatic joints.

∗ ∗ ∗ ∗ ∗
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