
Robotics 2
Midterm test in classroom – March 29, 2017

Exercise 1

For the 3R spatial robot in Fig. 1, determine the symbolic expression of the elements of the inertia matrix
B(q) using the recursive algorithm with moving frames for the computation of the kinetic energy of the
links. The coordinates q ∈ R3 to be used are those of the Denavit-Hartenberg (DH) convention.

z0

z1

z2

z3

y0

y1

y2

y3

x0

x1

x2

x3 i αi di ai θi
1 π/2 L1 0 q1

2 0 0 L2 q2

3 0 0 L3 q3

Figure 1: An elbow-type 3R robot, with associated DH frames and table of parameters.

Besides the masses mi, i = 1, 2, 3, of the links, the other constant dynamic parameters are specified as

1r1,c1 =

 A
−F
0

 , 2r2,c2 =

 −C0
0

 , 3r3,c3 =

 −D0
E

 , (1)

where A, C, D, E and F take positive values, and

iIci =

 Ixx,i 0 0
0 Iyy,i 0
0 0 Izz,i

 , i = 1, 2, 3. (2)

Once B(q) has been obtained, define a set of dynamic coefficients that linearly parametrize the inertia
matrix and is of the smallest possible cardinality.

Exercise 2

When the Jacobian J(q) is a m× n matrix with full row rank m, its weighted pseudoinverse J#
W (q) takes

the explicit form

J#
W (q) = W−1JT (q)

(
J(q)W−1JT (q)

)−1

, (3)

where W is a n × n, symmetric, and positive definite matrix. The matrix J#
W in (3) satisfies three of

the four identities that uniquely define a pseudoinverse. Prove that the weighted pseudoinverse takes the
following more general form, which holds true even when the Jacobian J(q) loses rank:

J#
W (q) = W−1/2

(
J(q)W−1/2

)#
. (4)

1

Exercise 3

Consider a 4R planar robot with all links of equal length ` = 0.5 [m]. The robot is stretched along the x0

axis, in the DH configuration q = 0. The end-effector of the robot should execute an instantaneous linear
velocity v = (0 10)T [m/s]. The joint velocities are bounded as |q̇i| ≤ Vi, i = 1, . . . , 4, with V1 = 4,
V2 = 2, and V3 = V4 = 1 [rad/s]. Find a feasible joint velocity q̇ ∈ R4 that executes the given Cartesian
task, either as such or in a scaled way, while satisfying the hard bounds on joint velocity. Scale the task
velocity v only if strictly needed. A solution with a lower norm is preferred.

Hint: The following useful expressions hold for the pseudoinverse of a block matrix A (with a submatrix
O of zeros) and of a vector u 6= 0:

A =
(
B O

)
⇒ A# =

(
B#

OT

)
, A =

(
B
O

)
⇒ A# =

(
B# OT

)
, (5)

u ∈ Rn ⇒ u# =
(
uTu

)−1

uT =
uT

‖u‖2 ,
(
uT
)#

=
u

‖u‖2 . (6)

Exercise 4

Consider a 3R planar robot with links of equal length ` = 1 [m]. The primary task for this robot is
to execute an instantaneous Cartesian velocity v ∈ R2 with its end-effector. Denote the associated task
Jacobian as J(q).

• When the robot is in the configuration q0 =
(
π/2 π/3 −2π/3

)T
, use the Reduced Gradient

(RG) method to determine the joint velocity q̇ ∈ R3 that realizes a desired Cartesian velocity

v =
(

1 −
√

3
)T

[m/s] while maximizing the objective function

H(q) = sin2 q2 + sin2 q3. (7)

• As an auxiliary task, the robot should move so as to always keep the position p2 = (x2, y2) of the
endpoint of its second link on the circle defined by

x22 + (y2 − 1.5)2 = 0.75. (8)

Determine the Jacobian Ja(q) associated to this auxiliary task. When the robot is in the configu-
ration q0 defined above, is the robot in an algorithmic singularity? Can the two requested primary
and auxiliary tasks be executed at the same time?

Exercise 5

Consider a 2R planar robot with the nominal kinematics expressed by the DH parameters in Tab. 1.

i αi di ai θi
1 0 0 L1 q1

2 0 0 L2 q2

Table 1: Nominal kinematic parameters of a 2R planar robot.

In order to improve the robot accuracy, we would like to perform a large number of calibration experiments
in which the robot end-effector position p ∈ R2 (in the plane of motion) is measured by an external laser
system. To recover the residual errors of the nominal direct kinematics with respect to the external
measurements, it is assumed that we require only the fine tuning of the parameters a ∈ R2 and of the
encoder measurements θ ∈ R2, whose adjustments will be performed simultaneously. What will be the
expression of the 2× 4 regressor matrix Φ for a single calibration experiment?

[270 minutes (4.5 hours); open books, but no computer or smartphone]

2

Solution
March 29, 2017

Exercise 1

From the table of DH parameters given in Fig. 1, we compute the needed rotation matrices

0R1(q1) =

 c1 0 s1
s1 0 −c1
0 1 0

 , 1R2(q2) =

 c2 −s2 0
s2 c2 0
0 0 1

 , 2R3(q3) =

 c3 −s3 0
s3 c3 0
0 0 1

 ,

with the usual shorthand notation for trigonometric quantities, e.g., s2 = sin q2, c23 = cos(q2 + q3).
Similarly, the following kinematic quantities will be used:

1r0,1 =

 0
L1

0

 , 2r1,2 =

 L2

0
0

 , 3r2,3 =

 L3

0
0

 .

The moving frames algorithm is initialized with 0ω0 = 0 and 0v0 = 0. Also, izi = z0 =
(

0 0 1
)T

for
i = 0, 1, 2 (joint axis 1, 2, and 3, respectively).

Link i = 1

1ω1 = 0RT
1 (q1)0ω1 = 0RT

1 (q1)
(0ω0 + q̇1

0z0

)
= 0RT

1 (q1)

 0
0
q̇1

 =

 0
q̇1
0


1v1 = 0RT

1 (q1)0v1 = 0RT
1 (q1)

(
0v0 + 0ω1 × 0r0,1

)
= 0RT

1 (q1)0ω1 × 0RT
1 (q1)0r0,1 = 1ω1 × 1r0,1 =

 0
q̇1
0

×
 0
L1

0

 = 0

1vc1 = 1v1 + 1ω1 × 1r1,c1 =

 0
q̇1
0

×
 A
−F
0

 =

 0
0
−Aq̇1



⇒ T1 =
1

2
m1

∥∥1vc1

∥∥2 +
1

2
1ωT

1
1Ic1

1ω1 =
1

2

(
Iyy,1 +m1A

2) q̇21 .
Link i = 2

2ω2 = 1RT
2 (q2)1ω2 = 1RT

2 (q2)
(1ω1 + q̇2

1z1

)
= 1RT

2 (q2)

 0
q̇1
q̇2

 =

 s2 q̇1
c2 q̇1
q̇2


2v2 = 1RT

2 (q2)1v2 = 1RT
2 (q2)

(
1v1 + 1ω2 × 1r1,2

)
= 1RT

2 (q2)1ω2 × 1RT
2 (q2)1r1,2 = 2ω2 × 2r1,2 =

 s2 q̇1
c2 q̇1
q̇2

×
 L2

0
0

 =

 0
L2 q̇2
−L2c2 q̇1


2vc2 = 2v2 + 2ω2 × 2r2,c2 =

 0
L2 q̇2
−L2c2 q̇1

+

 s2 q̇1
c2 q̇1
q̇2

×
 −C0

0

 =

 0
(L2 − C) q̇2
−(L2 − C) c2 q̇1


⇒ T2 = 1

2
m2

∥∥2vc2

∥∥2 + 1
2

2ωT
2

2Ic2
2ω2

= 1
2

(
Ixx,2s

2
2 + Iyy,2c

2
2 +m2(L2 − C)2c22

)
q̇21 + 1

2

(
Izz,2 +m2(L2 − C)2

)
q̇22 .

3

Link i = 3

3ω3 = 2RT
3 (q3)2ω3 = 2RT

3 (q3)
(2ω2 + q̇3

2z2

)
= 2RT

3 (q3)

 s2 q̇1
c2 q̇1
q̇2 + q̇3

 =

 s23 q̇1
c23 q̇1
q̇2 + q̇3


3v3 = 2RT

3 (q3)2v3 = 2RT
3 (q3)

(
2v2 + 2ω3 × 2r2,3

)
= 2RT

3 (q3)2v2 + 2RT
3 (q3)2ω3 × 2RT

3 (q3)2r2,3

= 2RT
3 (q3)2v2 + 3ω3 × 3r2,3 =

 L2s3 q̇2
L2c3 q̇2
−L2c2 q̇1

+

 s23 q̇1
c23 q̇1
q̇2 + q̇3

×
 L3

0
0

 =

 L2s3 q̇2
L2c3 q̇2 + L3 (q̇2 + q̇3)
− (L2c2 + L3c23) q̇1


3vc3 = 3v3 + 3ω3 × 3r3,c3 =

 L2s3 q̇2
L2c3 q̇2 + L3 (q̇2 + q̇3)
− (L2c2 + L3c23) q̇1

+

 s23 q̇1
c23 q̇1
q̇2 + q̇3

×
 −D0

E


=

 L2s3 q̇2 + Ec23 q̇1
L2c3 q̇2 + (L3 −D) (q̇2 + q̇3)− Es23 q̇1

− (L2c2 + (L3 −D) c23) q̇1


⇒ T3 = 1

2
m3

∥∥3vc3

∥∥2 + 1
2

3ωT
3

3Ic3
3ω3

= 1
2
m3

(
E2q̇21 + (L2c2 + (L3 −D) c23)2 q̇21 + L2

2q̇
2
2 + (L3 −D)2 (q̇2 + q̇3)2

+ 2 (L3 −D) (L2c3 q̇2 − Es23 q̇1) (q̇2 + q̇3)− 2EL2s2 q̇1q̇2
)

+ 1
2

(
Ixx,3s

2
23 + Iyy,3c

2
23

)
q̇21 + 1

2
Izz,3 (q̇2 + q̇3)2 .

Robot inertia matrix

From

T =

3∑
i=1

Ti =
1

2
q̇TB(q)q̇ =

1

2

3∑
i=1

3∑
j=1

bij(q) q̇iq̇j ,

we obtain the elements bij of the symmetric inertia matrix B(q) as

b11 = Iyy,1 +m1A
2 + Ixx,2s

2
2 +

(
Iyy,2 +m2(L2 − C)2

)
c22

+m3E
2 + Ixx,3 s

2
23 + Iyy,3 c

2
23 +m3 (L2c2 + (L3 −D) c23)2

b12 = −m3E (L2s2 + (L3 −D) s23)

b13 = −m3E (L3 −D) s23

b21 = b12

b22 = Izz,2 +m2(L2 − C)2 + Izz,3 +m3 (L3 −D)2 +m3L
2
2 + 2m3L2 (L3 −D) c3

b23 = Izz,3 +m3 (L3 −D)2 +m3L2 (L3 −D) c3

b31 = b13

b32 = b23

b33 = Izz,3 +m3 (L3 −D)2 .

Minimal parametrization

Reorganizing the squares of trigonometric functions, the element b11 can be also rewritten as

b11 = Iyy,1 +m1A
2 + Iyy,2 +m2(L2 − C)2 + Iyy,3 +m3 (L3 −D)2 +m3

(
L2

2 + E2
)

+
(
Ixx,2 − Iyy,2 −m2(L2 − C)2 −m3L

2
2

)
s22

+
(
Ixx,3 − Iyy,3 −m3 (L3 −D)2

)
s223 + 2m3L2 (L3 −D) c2c23.

(9)

4

Using the expression (9) for b11, and introducing constant dynamic coefficients ai (i = 1, . . . , 8), the inertia
matrix B(q) takes the more compact, linearly parametrized form

B(q) =

 a1 + a2s
2
2 + a3s

2
23 + 2a4c2c23 −a7s2 − a8s23 −a8s23

−a7s2 − a8s23 a5 + 2a4c3 a6 + a4c3

−a8s23 a6 + a4c3 a6

 . (10)

Note that the most notable simplification occurs when E = 0. In this case, it follows that a7 = a8 = 0 and
the inertia matrix becomes block diagonal.

Exercise 2

One needs to verify that the expression in (4) satisfies the three identities (dropping dependency on q):

(i) JJ#
WJ = J , (ii) J#

WJJ
#
W = J#

W , (iii)
(
JJ#

W

)T
= JJ#

W .

For (i), using the similar property (i) of the pseudoinverse of JW−1/2,

JJ#
WJ = J

(
W−1/2

(
JW−1/2

)#)
J = J

(
W−1/2

(
JW−1/2

)#)
J ·
(
W−1/2W 1/2

)
=

(
JW−1/2

(
JW−1/2

)#
JW−1/2

)
W 1/2 =

(
JW−1/2

)
W 1/2 = J .

For (ii), using the property (ii) in the definition of the pseudoinverse of JW−1/2,

J#
WJJ

#
W =

(
W−1/2

(
JW−1/2

)#)
J

(
W−1/2

(
JW−1/2

)#)
= W−1/2

((
JW−1/2

)#
JW−1/2

(
JW−1/2

)#)
= W−1/2

(
JW−1/2

)#
= J#

W .

Finally for (iii), the symmetry of the matrix

JJ#
W = J

(
W−1/2

(
JW−1/2

)#)
=
(
JW−1/2

)(
JW−1/2

)#
follows from the same property of symmetry holding for the pseudoinverse of JW−1/2.

Exercise 3

The task Jacobian of the planar 4R robot is given by

J(q) =

(
−` (s1 + s12 + s123 + s1234) −` (s12 + s123 + s1234) −` (s123 + s1234) −` s1234
` (c1 + c12 + c123 + c1234) ` (c12 + c123 + c1234) ` (c123 + c1234) ` c1234

)
(11)

with
v = J(q)q̇, v ∈ R2, q̇ ∈ R4.

When q = 0 and for ` = 0.5 [m], the Jacobian becomes

J := J(0) =

(
0 0 0 0

2 1.5 1 0.5

)

and is clearly not full rank. However, the desired task velocity lies in the range of J ,

v =

(
0
10

)
∈ R{J} = α

(
0
1

)
,

5

so that it will be realizable at least in direction, possibly in a scaled form in case the joint velocity bounds
cannot be satisfied.

Looking for a minimum norm joint velocity, to start with, we derive first the pseudoinverse solution. Using
the hints in the text, it is easy to compute the pseudoinverse of J without resorting to a SVD. We have

q̇PS = J#v =


0 2

7.5

0 1.5
7.5

0 1
7.5

0 0.5
7.5


(

0
10

)
=


2.6667
2.0000
1.3333
0.6667

 [rad/s].

The third joint velocity violates the maximum bound, q̇PS,3 = 1.3333 > 1 = V3, so this is not a feasible
solution. Thus, we search for an equivalent but feasible solution by using the SNS (Saturation in the Null
Space) method, which is particularly simple to apply here.

In step 1 of the SNS method, we saturate the (single) overdriven joint by setting q̇3 = V3 = 1 [rad/s]. Then,
the original task is modified by removing the saturated contribution of the third joint velocity (discarding
the associated column of J). We rewrite this as

v1 = v − J3V3 =

(
0
10

)
−
(

0
1

)
=

(
0
9

)
=

(
0 0 0

2 1.5 0.5

) q̇1
q̇2
q̇4

 = J−3 q̇−3,

where J−i is the Jacobian obtained by deleting the ith column and, similarly, q̇−i is the vector of joint
velocity without the ith component. We recompute next the contribution of the remaining active joints,
by pseudoinverting the J−3 matrix for the modified task. We obtain

q̇PS−3
= J#

−3v1 =

 0 2
6.5

0 1.5
6.5

0 0.5
6.5

(0
9

)
=

 2.7692
2.0769
0.6923

 [rad/s], (with the additional q̇3 = 1 = V3).

The second joint velocity violates the maximum bound, q̇PS−3,2 = 2.0769 > 2 = V2, so this is not yet a
feasible solution and we proceed with the SNS method.

In step 2, we saturate also the second overdriven joint by setting q̇2 = V2 = 2 [rad/s]. The original task is
modified by removing both saturated contributions of the second and third joint velocities (discarding the
two associated columns of J). We rewrite this as

v2 = v − J2V2 − J3V3 =

(
0
10

)
−
(

0
3

)
−
(

0
1

)
=

(
0
6

)
=

(
0 0

2 0.5

)(
q̇1
q̇4

)
= J−23 q̇−23,

with obvious notation. We recompute next the contribution of the remaining active joints, by pseudoin-
verting the (now square, but still singular) J−23 matrix for the modified task. We obtain

q̇PS−23
= J#

−23v2 =

(
0 2

4.25

0 0.5
4.25

)(
0
6

)
=

(
2.8235
0.7059

)
[rad/s], (with q̇2 = 2 = V2, q̇3 = 1 = V3).

All bounds are now satisfied and the obtained joint velocity is feasible. Recomposing the complete joint
velocity vector, we have the solution

q̇∗ =


2.8235
2.0000
1.0000
0.7059

 [rad/s], with Jq̇∗ = v and ‖q̇∗‖ = 3.6702.

Therefore, there was no need to scale the original task velocity v in order to find a feasible joint velocity
solution. Note that the solution q̇∗ can be rewritten in the general form

q̇∗ = (JW)# v +
(
I − (JW)# J

)
q̇N ,

6

with

W = diag{1, 0, 0, 1} (the selected active joints), q̇N =


0
V2

V3

0

 =


0
2
1
0

 (the saturated joint velocities),

which explains also the name given to the method. Indeed, this solution is not unique. However, the
SNS method (actually a variant of it, Opt-SNS, which is not needed in this simple case) guarantees also
that a feasible minimum norm solution is obtained. For example, another feasible solution is obtained by
saturating the first joint velocity to its maximum value (q̇1 = V1 = 4 [rad/s]) and adjusting the other three
joint velocities accordingly. We have

q̇PS−1
= J#

−1 (v − J1V1) =

 0 1.5
3.5

0 1
3.5

0 0.5
3.5

(0
2

)
=

 0.8571
0.5714
0.2857

 [rad/s], (with q̇1 = 4 = V1).

The complete solution q̇� is feasible, but has a larger norm than the SNS solution q̇∗:

q̇� =


4.0000
0.8571
0.5714
0.2857

 [rad/s], with Jq̇� = v and ‖q̇�‖ = 4.1404.

Exercise 4

Reduced Gradient

The Jacobian of the primary task is similar to that of the previous exercise, see (11)

J(q) =

(
−` (s1 + s12 + s123) −` (s12 + s123) −`s123
` (c1 + c12 + c123) ` (c12 + c123) `c123

)
. (12)

When evaluated at q = q0 =
(
π/2 π/3 −2π/3

)T
and for ` = 1 [m], the Jacobian (12) becomes

J := J(q0) =

(
−2 −1 −0.5

0 0
√

3/2

)

and is clearly full row rank. However, for the purpose of designing a RG solution, we need to extract
from J a non-singular 2 × 2 submatrix Ja, and not every selection will work. In fact, the three possible
alternatives (i.e., deleting respectively column 1, 2, or 3) yield

detJ−1 = −.8660, detJ−2 = −1.7321, detJ−3 = 0 (singular!).

We will choose as Ja the minor with the largest determinant (presumably, the best conditioned solution).
Thus, qa = (q1, q3), qb = q2. Accordingly, after a reordering of variables obtained by the unitary matrix
T (with T−1 = T T)

T =

 1 0 0

0 0 1

0 1 0

 , q → T q̇ =

 q̇1
q̇3

q̇2

 =

(
q̇a
q̇b

)
, J → JT =

(
J1 J3 J2

)
=
(
Ja Jb

)
,

we have

Ja =

(
−2 −0.5

0
√

3/2

)
⇒ J−1

a =

(
−0.5 −0.2887

0 1.1547

)
, Jb =

(
−1

0

)
.

7

The gradient of the objective function H in (7) evaluated at q = q0 is

∇qH(q) =

 0
2 sin q2 cos q2
2 sin q3 cos q3

 ⇒ ∇qH := ∇qH(q0) =

 0
0.8660
0.8660

 .

The reduced gradient is thus

∇qbH
′ := ∇qbH

′(q0) =
(
−
(
J−1

a Jb

)T
1
)
T∇qH =

(
−0.5 0 1

) 0
0.8660
0.8660

 = 0.8660.

The solution to the first item is thus

q̇RG = T T

(
q̇a

q̇b

)
= T T

(
J−1

a (v − Jb∇qbH
′)

∇qbH
′

)
=

 −0.4330
0.8660
−2.0000

 [rad/s].

Task augmentation

We consider next the auxiliary task of keeping the endpoint of the second robot link on the circle (8). The
endpoint position is

p2 =

(
x2
y2

)
=

(
`(c1 + c12)

`(s1 + s12)

)
and its associated Jacobian is

J2(q) =
∂p2(q)

∂q
=

(
−` (s1 + s12) −`s12 0

` (c1 + c12) `c12 0

)
. (13)

We first note that when the robot is in the configuration q0 =
(
π/2 π/3 −2π/3

)T
, the position p2

satisfies already the constraint (8), see Fig. 2. Thus, the auxiliary task should constrain the joint velocities
so that p2 (when moving or not) will remain on the assigned circle.

y0

v = (1, －√3)

q1 = !/2

q2 = !/3

q3 = －2!/3

R = √0.75

x0

p2 = (－√0.75,1.5)
(xc, yc)
= (0, 1.5)

Figure 2: The primary task (in red) and the auxiliary task (in green) for the 3R planar robot.

Differentiating (8) with respect to time yields

2x2 ẋ2 + 2(y2 − 1.5) ẏ2 = 0.

8

Rearranging this equation so as to isolate the velocity ṗ2 and using (13) leads to(
2x2 2(y2 − 1.5)

)(ẋ2
ẏ2

)
=
(

2x2 2(y2 − 1.5)
)
J2(q)q̇ = 0.

The auxiliary task Jacobian is then the 1× 3 row vector

Ja(q) =
(

2x2 2(y2 − 1.5)
)
J2(q) =

(
2`(c1 + c12) 2(`(s1 + s12)− 1.5)

)(−` (s1 + s12) −`s12 0

` (c1 + c12) `c12 0

)
=
(
−3` (c1 + c12) −2`2s2 − 3`c12 0

)
.

(14)
Augmenting the primary task Jacobian (12) with the auxiliary task Jacobian (14) leads to a square, 3× 3
extended Jacobian Je(q) and to an extended task vector ve ∈ R3:

Je(q) =

(
J(q)

Ja(q)

)
=

 −` (s1 + s12 + s123) −` (s12 + s123) −`s123
` (c1 + c12 + c123) ` (c12 + c123) `c123

−3` (c1 + c12) −2`2s2 − 3`c12 0

 , ve =

(
v

0

)
, Je(q)q̇ = ve.

At the configuration q0, using also ` = 1, we have

Je := Je(q0) =

 −2 −1 −0.5

0 0 0.8660

2.5981 0.8660 0

 . (15)

It is easy to see that q0 is not a singularity for the extended task, and thus in particular not an algorithmic
singularity. In fact,

rank(J) = 2, rank(Ja) = 1, and rank(Je) = 3 = 2 + 1.

Therefore, in this configuration the robot can realize any generic extended task velocity ve ∈ R3 (in
particular, with an arbitrary top part v ∈ R2). Therefore, the joint velocity

q̇† = J−1
e ve = J−1

e

 1

−
√

3

0

 =

 0

0

−2

 [rad/s]

will instantaneously realize both tasks at the same time. For the particular numerical value assigned as
v, the simple rotation of the third link around its joint axis will realize the primary task. In this case,
the endpoint of the second link will remain at rest, thus satisfying in a trivial way the auxiliary task. In
general, with a different desired value of v, all robot joints will move so as to realize the extended task,
instantaneously keeping the endpoint of the second link on the circle (i.e., its velocity will be tangential to
the circle in the current position). For instance,

q̇†′ = J−1
e v′e = J−1

e

 1

1

0

 =

 1.5774

−4.7321

1.1547

 [rad/s].

Exercise 5

For the direct kinematics, using the homogeneous transformations defined through Tab. 1, we obtain

0p0,2 = 0A1(q1)1p1,2 = 0A1(q1)
(
1A2(q2)2p2,2

)

= 0A1(q1)


c2 −s2 0 a2c2
s2 c2 0 a2s2
0 0 1 0
0 0 0 1




0
0
0
1

 =


c1 −s1 0 a1c1
s1 c1 0 a1s1
0 0 1 0
0 0 0 1



a2c2
a2s2

0
1

 =


a1c1 + a2c12
a1s1 + a2s12

0
1

 .

9

The planar position p ∈ R2 is given by the (x, y) components extracted from the position vector 0p0,2.
Thus, from

p =

(
a1c1 + a2c12
a1s1 + a2s12

)
= f(a,θ)

we obtain

Ja =
∂f

∂a
=

(
c1 c12
s1 s12

)
, Jθ =

∂f

∂θ
=

(
−a1s1 − a2s12 −a2s12
a1c1 + a2c12 a2c12

)
.

The regressor equation is then

∆p = Ja∆a+ Jθ∆θ = Φ∆φ, ∆p = pm − p = pm − f(an,θn),

with

∆φ =

(
∆a
∆θ

)
∈ R4, Φ =

(
Ja(θ) Jθ(a,θ)

)
a=an,θ=θn

, an =

(
L1

L2

)
, θn =

(
q1
q2

)
.

∗ ∗ ∗ ∗ ∗

10

