## Robotics 2-Midterm Test

April 13, 2016

## Exercise 1

For the PRR planar robot in Fig. 1, determine the symbolic expression of the inertia matrix $\boldsymbol{B}(\boldsymbol{q})$ and of the Coriolis and centrifugal vector $\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})$. Use the generalized coordinates and the scalar parameters shown in the figure.


Figure 1: A planar PRR robot

## Exercise 2

The 4 R planar robot in Fig. 2 moves under gravity. For each link, the center of mass lies on its longitudinal axis of symmetry, at a generic distance from the driving joint. Determine: $i$ ) the expression of the gravity vector $\boldsymbol{g}(\boldsymbol{q})$ in the robot dynamic model; ii) all equilibrium configurations of the robot (i.e., all $\boldsymbol{q}_{e}$ such that $\boldsymbol{g}\left(\boldsymbol{q}_{e}\right)=\mathbf{0}$; iii) a linear parametrization of the gravity vector in the form $\boldsymbol{g}(\boldsymbol{q})=\boldsymbol{Y}_{G}(\boldsymbol{q}) \boldsymbol{a}_{G}$; the particular location of the center of masses of the links such that the gravity vector vanishes (i.e., $\boldsymbol{g}(\boldsymbol{q})=\mathbf{0}$, for all $\boldsymbol{q}$ ).


Figure 2: A 4R planar robot under gravity

## Exercise 3

The 4R planar robot with all links of equal length $\ell$ in Fig. 3 needs to realize a motion task defined by a desired linear velocity $\boldsymbol{v}_{d}$ for its end-effector position $\boldsymbol{p}_{e}$ and by a desired angular velocity $\dot{\phi}_{d}$ for the orientation $\phi$ of its end-effector frame. Characterize first all the singular configurations of the robot for this specific task.
Assume then $\ell=0.5[\mathrm{~m}], \boldsymbol{q}=(00 \pi / 20), \boldsymbol{v}_{d}=(10)[\mathrm{m} / \mathrm{s}]$, and $\dot{\phi}_{d}=0.5[\mathrm{rad} / \mathrm{s}]$. Moreover, the joints have limited motion range, i.e., $q_{i} \in[-2,2][\mathrm{rad}]$, for $i=1, \ldots, 4$. Determine the joint velocity $\dot{\boldsymbol{q}}$ that realizes the desired task while decreasing instantaneously the objective function that measures the distance from the midpoint of the joint ranges, i.e., in the form

$$
H_{\text {range }}(\boldsymbol{q})=\frac{1}{2 N} \sum_{i=1}^{N}\left(\frac{q_{i}-\bar{q}_{i}}{q_{M, i}-q_{m, i}}\right)^{2} .
$$



Figure 3: The kinematic skeleton of a planar 4R robot
[150 minutes; open books]

## Solution

April 13, 2016

## Exercise 1

Since the motion is planar, we will use two-dimensional position and velocity vectors (in the $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$ plane) and just the $z$-component of angular velocities. Also, the usual shorthand notation is adopted for trigonometric quantities, e.g., $s_{2}=\sin q_{2}, c_{23}=\cos \left(q_{2}+q_{3}\right)$.

Kinetic energy
For link 1, we have (the position of the center of mass on link 1, i.e., $d_{1}$, is irrelevant)

$$
T_{1}=\frac{1}{2} m_{1} \dot{q}_{1}^{2}
$$

For link 2, we compute first the position of the center of mass and its velocity,

$$
\boldsymbol{p}_{c 2}=\binom{q_{1}+d_{2} c_{2}}{d_{2} s_{2}} \quad \rightarrow \quad \boldsymbol{v}_{c 2}=\binom{\dot{q}_{1}-d_{2} s_{2} \dot{q}_{2}}{d_{2} c_{2} \dot{q}_{2}}
$$

and then

$$
\left\|\boldsymbol{v}_{c 2}\right\|^{2}=\dot{q}_{1}^{2}+d_{2}^{2} \dot{q}_{2}^{2}-2 d_{2} s_{2} \dot{q}_{1} \dot{q}_{2}
$$

Since $\omega_{2 z}=\dot{q}_{2}$, we obtain

$$
T_{2}=\frac{1}{2} m_{2}\left(\dot{q}_{1}^{2}+d_{2}^{2} \dot{q}_{2}^{2}-2 d_{2} s_{2} \dot{q}_{1} \dot{q}_{2}\right)+\frac{1}{2} I_{2} \dot{q}_{2}^{2} .
$$

Similarly, for link 3

$$
\boldsymbol{p}_{c 3}=\binom{q_{1}+\ell_{2} c_{2}+d_{3} c_{23}}{\ell_{2} s_{2}+d_{3} s_{23}} \quad \rightarrow \quad \boldsymbol{v}_{c 3}=\binom{\dot{q}_{1}-\ell_{2} s_{2} \dot{q}_{2}-d_{3} s_{23}\left(\dot{q}_{2}+\dot{q}_{3}\right)}{\ell_{2} c_{2} \dot{q}_{2}+d_{3} c_{23}\left(\dot{q}_{2}+\dot{q}_{3}\right)}
$$

and then

$$
\left\|\boldsymbol{v}_{c 3}\right\|^{2}=\dot{q}_{1}^{2}+\ell_{2}^{2} \dot{q}_{2}^{2}+d_{3}\left(\dot{q}_{2}+\dot{q}_{3}\right)^{2}-2 \ell_{2} s_{2} \dot{q}_{1} \dot{q}_{2}-2 d_{3} s_{23} \dot{q}_{1}\left(\dot{q}_{2}+\dot{q}_{3}\right)+2 \ell_{2} d_{3}\left(s_{2} s_{23}+c_{2} c_{23}\right) \dot{q}_{2}\left(\dot{q}_{2}+\dot{q}_{3}\right)
$$

Being $\omega_{3 z}=\dot{q}_{2}+\dot{q}_{3}$, we obtain (after trigonometric simplification)
$T_{3}=\frac{1}{2} m_{3}\left(\dot{q}_{1}^{2}+\ell_{2}^{2} \dot{q}_{2}^{2}+d_{3}\left(\dot{q}_{2}+\dot{q}_{3}\right)^{2}-2 \ell_{2} s_{2} \dot{q}_{1} \dot{q}_{2}-2 d_{3} s_{23} \dot{q}_{1}\left(\dot{q}_{2}+\dot{q}_{3}\right)+2 \ell_{2} d_{3} c_{3} \dot{q}_{2}\left(\dot{q}_{2}+\dot{q}_{3}\right)\right)+\frac{1}{2} I_{3}\left(\dot{q}_{2}+\dot{q}_{3}\right)^{2}$.

Robot inertia matrix
From

$$
T=\sum_{i=1}^{3} T_{i}=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{B}(\boldsymbol{q}) \dot{\boldsymbol{q}}
$$

we obtain the (symmetric) elements $b_{i j}=b_{j i}$ of the inertia matrix $\boldsymbol{B}(\boldsymbol{q})$ as

$$
\begin{aligned}
& b_{11}=m_{1}+m_{2}+m_{3}=: a_{1} \\
& b_{22}=I_{2}+m_{2} d_{2}^{2}+I_{3}+m_{3} d_{3}^{2}+m_{3} \ell_{2}^{2}+2 m_{3} \ell_{2} d_{3} c_{3}=: a_{2}+2 a_{3} c_{3} \\
& b_{33}=I_{3}+m_{3} d_{3}^{2}=: a_{4} \\
& b_{12}=-\left(m_{2} d_{2}+m_{3} \ell_{2}\right) s_{2}-m_{3} d_{3} s_{23}=:-a_{5} s_{2}-a_{6} s_{23} \\
& b_{13}=-m_{3} d_{3} s_{23}=-a_{6} s_{23} \\
& b_{23}=I_{3}+m_{3} d_{3}^{2}+m_{3} \ell_{2} d_{3} c_{3}=a_{4}+a_{3} c_{3}
\end{aligned}
$$

where we have introduced the dynamic coefficients $a_{i}(i=1, \ldots, 6)$ for the constant factors, in order to have more compact expressions. Thus, the positive definite, symmetric robot inertia matrix can be rewritten as

$$
\boldsymbol{B}(\boldsymbol{q})=\left(\begin{array}{ccc}
a_{1} & -\left(a_{5} s_{2}+a_{6} s_{23}\right) & -a_{6} s_{23}  \tag{1}\\
-\left(a_{5} s_{2}+a_{6} s_{23}\right) & a_{2}+2 a_{3} c_{3} & a_{4}+a_{3} c_{3} \\
-a_{6} s_{23} & a_{4}+a_{3} c_{3} & a_{4}
\end{array}\right)=\left(\begin{array}{ccc}
\boldsymbol{b}_{1}(\boldsymbol{q}) & \boldsymbol{b}_{2}(\boldsymbol{q}) & \boldsymbol{b}_{3}(\boldsymbol{q})
\end{array}\right)
$$

Coriolis and centrifugal vector
From (1) and
$\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left(\begin{array}{c}c_{1}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \\ c_{2}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \\ c_{3}(\boldsymbol{q}, \dot{\boldsymbol{q}})\end{array}\right), \quad c_{i}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{i}(\boldsymbol{q}) \dot{\boldsymbol{q}}, \quad \boldsymbol{C}_{i}(\boldsymbol{q})=\frac{1}{2}\left\{\frac{\partial \boldsymbol{b}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}+\left(\frac{\partial \boldsymbol{b}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}-\frac{\partial \boldsymbol{B}(\boldsymbol{q})}{\partial q_{i}}\right\}(i=1,2,3)$,
we compute

$$
\begin{aligned}
& \boldsymbol{C}_{1}(\boldsymbol{q})=\frac{1}{2}\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\left(a_{5} c_{2}+a_{6} c_{23}\right) & -a_{6} c_{23} \\
0 & -a_{6} c_{23} & -a_{6} c_{23}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\left(a_{5} c_{2}+a_{6} c_{23}\right) & -a_{6} c_{23} \\
0 & -a_{6} c_{23} & -a_{6} c_{23}
\end{array}\right)^{T}-\mathbf{0}\right\} \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & -\left(a_{5} c_{2}+a_{6} c_{23}\right) & -a_{6} c_{23} \\
0 & -a_{6} c_{23} & -a_{6} c_{23}
\end{array}\right) \\
& \boldsymbol{C}_{2}(\boldsymbol{q})=\frac{1}{2}\left\{\left(\begin{array}{ccc}
0 & -\left(a_{5} c_{2}+a_{6} c_{23}\right) & -a_{6} c_{23} \\
0 & 0 & -2 a_{3} s_{3} \\
0 & 0 & -a_{3} s_{3}
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
-\left(a_{5} c_{2}+a_{6} c_{23}\right) & 0 & 0 \\
-a_{6} c_{23} & -2 a_{3} s_{3} & -a_{3} s_{3}
\end{array}\right)\right. \\
& \left.-\left(\begin{array}{ccc}
0 & -\left(a_{5} c_{2}+a_{6} c_{23}\right) & -a_{6} c_{23} \\
-\left(a_{5} c_{2}+a_{6} c_{23}\right) & 0 & 0 \\
-a_{6} c_{23} & 0 & 0
\end{array}\right)\right\}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -a_{3} s_{3} \\
0 & -a_{3} s_{3} & -a_{3} s_{3}
\end{array}\right) \\
& \boldsymbol{C}_{3}(\boldsymbol{q})=\frac{1}{2}\left\{\left(\begin{array}{ccc}
0 & -a_{6} c_{23} & -a_{6} c_{23} \\
0 & 0 & -a_{3} s_{3} \\
0 & 0 & 0
\end{array}\right)+\left(\begin{array}{ccc}
0 & 0 & 0 \\
-a_{6} c_{23} & 0 & 0 \\
-a_{6} c_{23} & -a_{3} s_{3} & 0
\end{array}\right)-\left(\begin{array}{ccc}
0 & -a_{6} c_{23} & -a_{6} c_{23} \\
-a_{6} c_{23} & -2 a_{3} s_{3} & -a_{3} s_{3} \\
-a_{6} c_{23} & -a_{3} s_{3} & 0
\end{array}\right)\right\} \\
& =\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & a_{3} s_{3} & 0 \\
0 & 0 & 0
\end{array}\right),
\end{aligned}
$$

and thus

$$
\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\left(\begin{array}{c}
-a_{5} c_{2} \dot{q}_{2}^{2}-a_{6} c_{23}\left(\dot{q}_{2}+\dot{q}_{3}\right)^{2}  \tag{2}\\
-a_{3} s_{3}\left(2 \dot{q}_{2}+\dot{q}_{3}\right) \dot{q}_{3} \\
a_{3} s_{3} \dot{q}_{2}^{2}
\end{array}\right)=\left(\begin{array}{c}
-\left(m_{2} d_{2}+m_{3} \ell_{2}\right) c_{2} \dot{q}_{2}^{2}-m_{3} d_{3} c_{23}\left(\dot{q}_{2}+\dot{q}_{3}\right)^{2} \\
-m_{3} \ell_{2} d_{3} s_{3}\left(2 \dot{q}_{2}+\dot{q}_{3}\right) \dot{q}_{3} \\
m_{3} \ell_{2} d_{3} s_{3} \dot{q}_{2}^{2}
\end{array}\right)
$$

## Exercise 2

Again, the robot motion occurs in a (vertical) plane and we will use for simplicity two-dimensional position vectors in the plane $\left(\boldsymbol{x}_{0}, \boldsymbol{y}_{0}\right)$. The total potential energy is

$$
U=\sum_{i=1}^{4} U_{i}, \quad U_{i}=-m_{i} \boldsymbol{g}^{T} \boldsymbol{r}_{0, c_{i}}, \quad i=1, \ldots, 4
$$

Since

$$
\boldsymbol{g}^{T}=\left(\begin{array}{lll}
0 & -g_{0} & 0
\end{array}\right), \quad g_{0}=9.81\left[\mathrm{~m} / \mathrm{s}^{2}\right],
$$

we need to compute only the $y$-component of the position vector $\boldsymbol{r}_{0, c_{i}}$ of the center of mass of the link $i$, for $i=1, \ldots, 4$. We have

$$
\begin{aligned}
& r_{0, c_{1, y}}=d_{1} s_{1} \\
& r_{0, c_{2, y}}=\ell_{1} s_{1}+d_{2} s_{12} \\
& r_{0, c_{3, y}}=\ell_{1} s_{1}+\ell_{2} s_{12}+d_{3} s_{123} \\
& r_{0, c_{4, y}}=\ell_{1} s_{1}+\ell_{2} s_{12}+\ell_{3} s_{123}+d_{4} s_{1234}
\end{aligned}
$$

where $d_{i}$ is the (signed) distance of the center of mass of link $i$ from the axis of joint $i(i=1, \ldots, 4)$. Thus

$$
\begin{aligned}
U & =g_{0} m_{1} d_{1} s_{1}+g_{0} m_{2}\left(\ell_{1} s_{1}+d_{2} s_{12}\right)+g_{0} m_{3}\left(\ell_{1} s_{1}+\ell_{2} s_{12}+d_{3} s_{123}\right)+g_{0} m_{4}\left(\ell_{1} s_{1}+\ell_{2} s_{12}+\ell_{3} s_{123}+d_{4} s_{1234}\right) \\
& =g_{0}\left\{\left[m_{1} d_{1}+\left(m_{2}+m_{3}+m_{4}\right) \ell_{1}\right] s_{1}+\left[m_{2} d_{2}+\left(m_{3}+m_{4}\right) \ell_{2}\right] s_{12}+\left[m_{3} d_{3}+m_{4} \ell_{3}\right] s_{123}+m_{4} d_{4} s_{1234}\right\} \\
& =: a_{G 1} s_{1}+a_{G 2} s_{12}+a_{G 3} s_{123}+a_{G 4} s_{1234},
\end{aligned}
$$

where we have introduced the dynamic coefficients $a_{G i}(i=1, \ldots, 4)$ for the constant factors related to gravity.

The gravity vector of this robot is then

$$
\boldsymbol{g}(\boldsymbol{q})=\left(\frac{\partial U(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}=\left(\begin{array}{c}
a_{G 1} c_{1}+a_{G 2} c_{12}+a_{G 3} c_{123}+a_{G 4} c_{1234}  \tag{3}\\
a_{G 2} c_{12}+a_{G 3} c_{123}+a_{G 4} c_{1234} \\
a_{G 3} c_{123}+a_{G 4} c_{1234} \\
a_{G 4} c_{1234}
\end{array}\right)
$$

and its linear parametrization is

$$
\boldsymbol{g}(\boldsymbol{q})=\left(\begin{array}{cccc}
c_{1} & c_{12} & c_{123} & c_{1234}  \tag{4}\\
0 & c_{12} & c_{123} & c_{1234} \\
0 & 0 & c_{123} & c_{1234} \\
0 & 0 & 0 & c_{1234}
\end{array}\right)\left(\begin{array}{c}
a_{G 1} \\
a_{G 2} \\
a_{G 3} \\
a_{G 4}
\end{array}\right)=\boldsymbol{Y}_{G}(\boldsymbol{q}) \boldsymbol{a}_{G}
$$

All equilibrium configurations $\boldsymbol{q}_{e}$ are found by analyzing recursively the vector equation $\boldsymbol{g}\left(\boldsymbol{q}_{e}\right)=\mathbf{0}$ from the last component backwards:

$$
\begin{array}{lll}
g_{4}\left(\boldsymbol{q}_{e}\right)=0 & \rightarrow & c_{1234}=0 \\
g_{3}\left(\boldsymbol{q}_{e}\right)=0 & \rightarrow & \text { being already } c_{1234}=0 \quad \rightarrow \quad c_{123}=0 \\
g_{2}\left(\boldsymbol{q}_{e}\right)=0 & \rightarrow & \text { being already } c_{1234}=0, c_{123}=0 \quad \rightarrow \quad c_{12}=0 \\
g_{1}\left(\boldsymbol{q}_{e}\right)=0 & \rightarrow & \text { being already } c_{1234}=0, c_{123}=0, c_{12}=0 \quad \rightarrow \quad c_{1}=0 .
\end{array}
$$

Thus, the unforced equilibria of the robot (assuming a generic mass distribution) are characterized by

$$
q_{e 1}= \pm \frac{\pi}{2} \cap q_{e 2}=\{0, \pi\} \cap q_{e 3}=\{0, \pi\} \cap q_{e 4}=\{0, \pi\}
$$

namely with the robot being stretched or folded along the vertical direction only.
Finally, perfect balancing in all configurations (i.e., $\boldsymbol{g}(\boldsymbol{q})=\mathbf{0}$ ) is obtained for when the mass distribution zeroes the vector of dynamic coefficients, namely $\boldsymbol{a}_{G}=\mathbf{0}$. Starting again from the last component and proceeding backwards, we obtain

$$
\begin{aligned}
& a_{G 4}=0 \rightarrow \\
& d_{4}=0 \\
& a_{G 3}=0 \rightarrow \\
& m_{3} d_{3}+m_{4} \ell_{3}=0 \quad \rightarrow \quad d_{3}=-\frac{m_{4}}{m_{3}} \ell_{3} \\
& a_{G 2}=0 \rightarrow \quad m_{2} d_{2}+\left(m_{3}+m_{4}\right) \ell_{2}=0 \quad \rightarrow \quad d_{2}=-\frac{m_{3}+m_{4}}{m_{2}} \ell_{2} \\
& a_{G 1}=0 \rightarrow \quad m_{1} d_{1}+\left(m_{2}+m_{3}+m_{4}\right) \ell_{1}=0 \quad \rightarrow \quad d_{1}=-\frac{m_{2}+m_{3}+m_{4}}{m_{1}} \ell_{1} .
\end{aligned}
$$

## Exercise 3

The task vector for this 4 R planar robot is defined as

$$
\boldsymbol{r}=\binom{\boldsymbol{p}_{e}}{\phi}=\left(\begin{array}{c}
p_{x} \\
p_{y} \\
\phi
\end{array}\right)=\left(\begin{array}{c}
\ell\left(c_{1}+c_{12}+c_{123}+c_{1234}\right) \\
\ell\left(s_{1}+s_{12}+s_{123}+s_{1234}\right) \\
q_{1}+q_{2}+q_{3}+q_{4}
\end{array}\right)=\boldsymbol{f}(\boldsymbol{q}) .
$$

Differentiating $r$ w.r.t. to time yields

$$
\dot{\boldsymbol{r}}=\binom{\boldsymbol{v}}{\dot{\phi}}=\frac{\partial \boldsymbol{f}(\boldsymbol{q})}{\partial \boldsymbol{q}} \dot{\boldsymbol{q}}=\boldsymbol{J}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

with the task Jacobian given by

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{cccc}
-\ell\left(s_{1}+s_{12}+s_{123}+s_{1234}\right) & -\ell\left(s_{12}+s_{123}+s_{1234}\right) & -\ell\left(s_{123}+s_{1234}\right) & -\ell s_{1234}  \tag{5}\\
\ell\left(c_{1}+c_{12}+c_{123}+c_{1234}\right) & \ell\left(c_{12}+c_{123}+c_{1234}\right) & \ell\left(c_{123}+c_{1234}\right) & \ell c_{1234} \\
1 & 1 & 1 & 1
\end{array}\right)
$$

For the purpose of singularity analysis, the matrix $\boldsymbol{J}(\boldsymbol{q})$ can be rewritten as

$$
\boldsymbol{J}(\boldsymbol{q})=\left(\begin{array}{cccc}
-\ell s_{1} & -\ell s_{12} & -\ell s_{123} & -\ell s_{1234} \\
\ell c_{1} & \ell c_{12} & \ell c_{123} & \ell c_{1234} \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)=\boldsymbol{J}_{a}(\boldsymbol{q}) \boldsymbol{T},
$$

where the square matrix $\boldsymbol{T}$ is clearly nonsingular. Thus, $\boldsymbol{J}$ and $\boldsymbol{J}_{a}$ have always the same rank. In particular, the Jacobian $\boldsymbol{J}$ will be full (row) rank if and only if the $2 \times 3$ upper left block of matrix $\boldsymbol{J}_{a}$ will have rank equal to 2. This matrix block corresponds to the well-known Jacobian of a planar 3R robot (with equal links of length $\ell$ ) performing a positional task with its end-effector. The singularities of the 4 R arm for the given task occur then if and only if

$$
q_{2}=\{0, \pi\} \cap q_{3}=\{0, \pi\},
$$

namely when its first three links are stretched or folded along a single direction.
Plugging the link length $\ell=0.5[\mathrm{~m}]$ and the given configuration $\boldsymbol{q}=(00 \pi / 20)$ in (5) provides

$$
\boldsymbol{J}=\left(\begin{array}{rrrr}
-1 & -1 & -1 & -0.5 \\
1 & 0.5 & 0 & 0 \\
1 & 1 & 1 & 1
\end{array}\right)
$$

whose pseudoinverse is computed (by hand or using Matlab) as

$$
\boldsymbol{J}^{\#}=\boldsymbol{J}^{T}\left(\boldsymbol{J} \boldsymbol{J}^{T}\right)^{-1}=\left(\begin{array}{rrr}
-1 & 1 & 1 \\
-1 & 0.5 & 1 \\
-1 & 0 & 1 \\
-0.5 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
3.25 & -1.5 & -3.5 \\
-1.5 & 1.25 & 1.5 \\
-3.5 & 1.5 & 4
\end{array}\right)^{-1}=\left(\begin{array}{rrr}
1 / 3 & 1 & 1 / 6 \\
-2 / 3 & 0 & -1 / 3 \\
-5 / 3 & -1 & -5 / 6 \\
2 & 0 & 2
\end{array}\right)
$$

The desired velocity task is specified by

$$
\dot{\boldsymbol{r}}_{d}=\binom{\boldsymbol{v}_{d}}{\phi_{d}}=\left(\begin{array}{c}
1 \\
0 \\
0.5
\end{array}\right) .
$$

In view of the separability of the objective function $H_{\text {range }}(\boldsymbol{q})=\sum_{i=1}^{N} H_{\text {range }, i}\left(q_{i}\right)$ that measures the distance from the midpoint of the joint ranges, its gradient takes the form

$$
\nabla_{\boldsymbol{q}} H_{\text {range }}(\boldsymbol{q})=\left(\frac{\partial H_{\text {range }}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}, \quad \text { with } \quad \frac{\partial H_{\text {range }}(\boldsymbol{q})}{\partial q_{i}}=\frac{\partial H_{\text {range }, i}\left(q_{i}\right)}{\partial q_{i}}=\frac{1}{N} \frac{q_{i}-\bar{q}_{i}}{\left(q_{M, i}-q_{m, i}\right)^{2}} .
$$

With the data $N=4, q_{M, i}=-q_{m, i}=2$, and thus $\bar{q}_{i}=0$, for $i=1, \ldots, 4$, the gradient at the given configuration $\boldsymbol{q}=(00 \pi / 20)$ is

$$
\nabla_{\boldsymbol{q}} H_{\text {range }}=\frac{1}{64}\left(\begin{array}{c}
0 \\
0 \\
\pi / 2 \\
0
\end{array}\right)
$$

The joint velocity solution that realizes the desired task while decreasing instantaneously the objective function $H_{\text {range }}$ is evaluated then as

$$
\dot{\boldsymbol{q}}=\boldsymbol{J}^{\#} \dot{\boldsymbol{r}}_{d}-\left(\boldsymbol{I}-\boldsymbol{J}^{\#} \boldsymbol{J}\right) \nabla_{\boldsymbol{q}} H_{\text {range }}=-\nabla_{\boldsymbol{q}} H_{\text {range }}+\boldsymbol{J}^{\#}\left(\dot{\boldsymbol{r}}_{d}+\boldsymbol{J} \nabla_{\boldsymbol{q}} H_{\text {range }}\right)=\left(\begin{array}{c}
0.4126 \\
-0.8252 \\
-2.0874 \\
3
\end{array}\right)[\mathrm{rad} / \mathrm{s}] .
$$

