
Robotics 2 - Midterm Test
April 13, 2016

Exercise 1

For the PRR planar robot in Fig. 1, determine the symbolic expression of the inertia matrix B(q) and
of the Coriolis and centrifugal vector c(q, q̇). Use the generalized coordinates and the scalar parameters
shown in the figure.

Figure 1: A planar PRR robot

Exercise 2

The 4R planar robot in Fig. 2 moves under gravity. For each link, the center of mass lies on its longitudinal
axis of symmetry, at a generic distance from the driving joint. Determine: i) the expression of the gravity
vector g(q) in the robot dynamic model; ii) all equilibrium configurations of the robot (i.e., all qe such that
g(qe) = 0; iii) a linear parametrization of the gravity vector in the form g(q) = Y G(q)aG; the particular
location of the center of masses of the links such that the gravity vector vanishes (i.e., g(q) = 0, for all q).

Figure 2: A 4R planar robot under gravity
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Exercise 3

The 4R planar robot with all links of equal length ` in Fig. 3 needs to realize a motion task defined by
a desired linear velocity vd for its end-effector position pe and by a desired angular velocity φ̇d for the
orientation φ of its end-effector frame. Characterize first all the singular configurations of the robot for
this specific task.

Assume then ` = 0.5 [m], q = (0 0 π/2 0), vd = (1 0) [m/s], and φ̇d = 0.5 [rad/s]. Moreover, the joints have
limited motion range, i.e., qi ∈ [−2, 2] [rad], for i = 1, . . . , 4. Determine the joint velocity q̇ that realizes
the desired task while decreasing instantaneously the objective function that measures the distance from
the midpoint of the joint ranges, i.e., in the form

Hrange(q) =
1

2N

NX
i=1

„
qi − q̄i

qM,i − qm,i

«2

.

Figure 3: The kinematic skeleton of a planar 4R robot

[150 minutes; open books]
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Solution
April 13, 2016

Exercise 1

Since the motion is planar, we will use two-dimensional position and velocity vectors (in the (x0,y0)
plane) and just the z-component of angular velocities. Also, the usual shorthand notation is adopted for
trigonometric quantities, e.g., s2 = sin q2, c23 = cos(q2 + q3).

Kinetic energy

For link 1, we have (the position of the center of mass on link 1, i.e., d1, is irrelevant)

T1 =
1

2
m1q̇

2
1 .

For link 2, we compute first the position of the center of mass and its velocity,

pc2 =

 
q1 + d2c2

d2s2

!
→ vc2 =

 
q̇1 − d2s2q̇2

d2c2q̇2

!
,

and then
‖vc2‖2 = q̇21 + d2

2q̇
2
2 − 2d2s2q̇1q̇2.

Since ω2z = q̇2, we obtain

T2 =
1

2
m2

`
q̇21 + d2

2q̇
2
2 − 2d2s2q̇1q̇2

´
+

1

2
I2q̇

2
2 .

Similarly, for link 3

pc3 =

 
q1 + `2c2 + d3c23

`2s2 + d3s23

!
→ vc3 =

 
q̇1 − `2s2q̇2 − d3s23(q̇2 + q̇3)

`2c2q̇2 + d3c23(q̇2 + q̇3)

!
,

and then

‖vc3‖2 = q̇21 + `22q̇
2
2 + d3 (q̇2 + q̇3)2 − 2`2s2q̇1q̇2 − 2d3s23q̇1(q̇2 + q̇3) + 2`2d3 (s2s23 + c2c23) q̇2(q̇2 + q̇3).

Being ω3z = q̇2 + q̇3, we obtain (after trigonometric simplification)

T3 =
1

2
m3

`
q̇21 + `22q̇

2
2 + d3 (q̇2 + q̇3)2 − 2`2s2q̇1q̇2 − 2d3s23q̇1(q̇2 + q̇3) + 2`2d3c3q̇2(q̇2 + q̇3)

´
+

1

2
I3 (q̇2 + q̇3)2 .

Robot inertia matrix

From

T =

3X
i=1

Ti =
1

2
q̇T B(q)q̇,

we obtain the (symmetric) elements bij = bji of the inertia matrix B(q) as

b11 = m1 +m2 +m3 =: a1

b22 = I2 +m2d
2
2 + I3 +m3d

2
3 +m3`

2
2 + 2m3`2d3c3 =: a2 + 2a3c3

b33 = I3 +m3d
2
3 =: a4

b12 = − (m2d2 +m3`2) s2 −m3d3s23 =: −a5s2 − a6s23

b13 = −m3d3s23 = −a6s23

b23 = I3 +m3d
2
3 +m3`2d3c3 = a4 + a3c3.

3



where we have introduced the dynamic coefficients ai (i = 1, . . . , 6) for the constant factors, in order to have
more compact expressions. Thus, the positive definite, symmetric robot inertia matrix can be rewritten as

B(q) =

0B@ a1 − (a5s2 + a6s23) −a6s23

− (a5s2 + a6s23) a2 + 2a3c3 a4 + a3c3

−a6s23 a4 + a3c3 a4

1CA =

 
b1(q) b2(q) b3(q)

!
. (1)

Coriolis and centrifugal vector

From (1) and

c(q, q̇) =

0@ c1(q, q̇)

c2(q, q̇)

c3(q, q̇)

1A, ci(q, q̇) = q̇T Ci(q)q̇, Ci(q) =
1

2

(
∂bi(q)

∂q
+

„
∂bi(q)

∂q

«T

− ∂B(q)

∂qi

)
(i = 1, 2, 3),

we compute

C1(q) =
1

2

8><>:
0B@ 0 0 0

0 − (a5c2 + a6c23) −a6c23

0 −a6c23 −a6c23

1CA+

0B@ 0 0 0

0 − (a5c2 + a6c23) −a6c23

0 −a6c23 −a6c23

1CA
T

− 0

9>=>;
=

0B@ 0 0 0

0 − (a5c2 + a6c23) −a6c23

0 −a6c23 −a6c23

1CA

C2(q) =
1

2

8><>:
0B@ 0 − (a5c2 + a6c23) −a6c23

0 0 −2a3s3

0 0 −a3s3

1CA+

0B@ 0 0 0

− (a5c2 + a6c23) 0 0

−a6c23 −2a3s3 −a3s3

1CA

−

0B@ 0 − (a5c2 + a6c23) −a6c23

− (a5c2 + a6c23) 0 0

−a6c23 0 0

1CA
9>=>; =

0B@ 0 0 0

0 0 −a3s3

0 −a3s3 −a3s3

1CA

C3(q) =
1

2

8><>:
0B@ 0 −a6c23 −a6c23

0 0 −a3s3

0 0 0

1CA+

0B@ 0 0 0

−a6c23 0 0

−a6c23 −a3s3 0

1CA−
0B@ 0 −a6c23 −a6c23

−a6c23 −2a3s3 −a3s3

−a6c23 −a3s3 0

1CA
9>=>;

=

0B@ 0 0 0

0 a3s3 0

0 0 0

1CA,
and thus

c(q, q̇) =

0B@ −a5c2 q̇
2
2 − a6c23 (q̇2 + q̇3)2

−a3s3 (2q̇2 + q̇3) q̇3

a3s3 q̇
2
2

1CA =

0B@ − (m2d2 +m3`2) c2 q̇
2
2 −m3d3 c23 (q̇2 + q̇3)2

−m3`2d3 s3 (2q̇2 + q̇3) q̇3

m3`2d3 s3 q̇
2
2

1CA . (2)

Exercise 2

Again, the robot motion occurs in a (vertical) plane and we will use for simplicity two-dimensional position
vectors in the plane (x0,y0). The total potential energy is

U =

4X
i=1

Ui, Ui = −mig
T r0,ci , i = 1, . . . , 4.
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Since
gT =

`
0 −g0 0

´
, g0 = 9.81 [m/s2],

we need to compute only the y-component of the position vector r0,ci of the center of mass of the link i,
for i = 1, . . . , 4. We have

r0,c1,y = d1s1

r0,c2,y = `1s1 + d2s12

r0,c3,y = `1s1 + `2s12 + d3s123

r0,c4,y = `1s1 + `2s12 + `3s123 + d4s1234,

where di is the (signed) distance of the center of mass of link i from the axis of joint i (i = 1, . . . , 4). Thus

U = g0m1d1s1 + g0m2 (`1s1 + d2s12) + g0m3 (`1s1 + `2s12 + d3s123) + g0m4 (`1s1 + `2s12 + `3s123 + d4s1234)

= g0
n

[m1d1 + (m2 +m3 +m4)`1] s1 + [m2d2 + (m3 +m4)`2] s12 + [m3d3 +m4`3] s123 +m4d4s1234
o

=: aG1s1 + aG2s12 + aG3s123 + aG4s1234,

where we have introduced the dynamic coefficients aGi (i = 1, . . . , 4) for the constant factors related to
gravity.

The gravity vector of this robot is then

g(q) =

„
∂U(q)

∂q

«T

=

0BBB@
aG1c1 + aG2c12 + aG3c123 + aG4c1234

aG2c12 + aG3c123 + aG4c1234

aG3c123 + aG4c1234

aG4c1234

1CCCA , (3)

and its linear parametrization is

g(q) =

0BBB@
c1 c12 c123 c1234

0 c12 c123 c1234

0 0 c123 c1234

0 0 0 c1234

1CCCA
0BBB@

aG1

aG2

aG3

aG4

1CCCA = Y G(q)aG. (4)

All equilibrium configurations qe are found by analyzing recursively the vector equation g(qe) = 0 from
the last component backwards:

g4(qe) = 0 → c1234 = 0

g3(qe) = 0 → being already c1234 = 0 → c123 = 0

g2(qe) = 0 → being already c1234 = 0, c123 = 0 → c12 = 0

g1(qe) = 0 → being already c1234 = 0, c123 = 0, c12 = 0 → c1 = 0.

Thus, the unforced equilibria of the robot (assuming a generic mass distribution) are characterized by

qe1 = ±π
2
∩ qe2 = {0, π} ∩ qe3 = {0, π} ∩ qe4 = {0, π} ,

namely with the robot being stretched or folded along the vertical direction only.

Finally, perfect balancing in all configurations (i.e., g(q) = 0) is obtained for when the mass distribution
zeroes the vector of dynamic coefficients, namely aG = 0. Starting again from the last component and
proceeding backwards, we obtain

aG4 = 0 → d4 = 0

aG3 = 0 → m3d3 +m4`3 = 0 → d3 = −m4

m3
`3

aG2 = 0 → m2d2 + (m3 +m4)`2 = 0 → d2 = −m3 +m4

m2
`2

aG1 = 0 → m1d1 + (m2 +m3 +m4)`1 = 0 → d1 = −m2 +m3 +m4

m1
`1.
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Exercise 3

The task vector for this 4R planar robot is defined as

r =

 
pe

φ

!
=

0B@ px

py

φ

1CA =

0B@ ` (c1 + c12 + c123 + c1234)

` (s1 + s12 + s123 + s1234)

q1 + q2 + q3 + q4

1CA = f(q).

Differentiating r w.r.t. to time yields

ṙ =

 
v

φ̇

!
=
∂f(q)

∂q
q̇ = J(q)q̇,

with the task Jacobian given by

J(q) =

0B@ −` (s1 + s12 + s123 + s1234) −` (s12 + s123 + s1234) −` (s123 + s1234) −` s1234
` (c1 + c12 + c123 + c1234) ` (c12 + c123 + c1234) ` (c123 + c1234) ` c1234

1 1 1 1

1CA . (5)

For the purpose of singularity analysis, the matrix J(q) can be rewritten as

J(q) =

0B@ −` s1 −` s12 −` s123 −` s1234
` c1 ` c12 ` c123 ` c1234

0 0 0 1

1CA
0BBB@

1 0 0 0

1 1 0 0

1 1 1 0

1 1 1 1

1CCCA = Ja(q) T ,

where the square matrix T is clearly nonsingular. Thus, J and Ja have always the same rank. In particular,
the Jacobian J will be full (row) rank if and only if the 2× 3 upper left block of matrix Ja will have rank
equal to 2. This matrix block corresponds to the well-known Jacobian of a planar 3R robot (with equal
links of length `) performing a positional task with its end-effector. The singularities of the 4R arm for
the given task occur then if and only if

q2 = {0, π} ∩ q3 = {0, π} ,

namely when its first three links are stretched or folded along a single direction.

Plugging the link length ` = 0.5 [m] and the given configuration q = (0 0 π/2 0) in (5) provides

J =

0B@ −1 −1 −1 −0.5

1 0.5 0 0

1 1 1 1

1CA .

whose pseudoinverse is computed (by hand or using Matlab) as

J# = JT
“
JJT

”−1

=

0BBB@
−1 1 1

−1 0.5 1

−1 0 1

−0.5 0 1

1CCCA
0B@ 3.25 −1.5 −3.5

−1.5 1.25 1.5

−3.5 1.5 4

1CA
−1

=

0BBB@
1/3 1 1/6

−2/3 0 −1/3

−5/3 −1 −5/6

2 0 2

1CCCA .

The desired velocity task is specified by

ṙd =

 
vd

φd

!
=

0@ 1

0

0.5

1A .
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In view of the separability of the objective function Hrange(q) =
PN

i=1Hrange,i(qi) that measures the
distance from the midpoint of the joint ranges, its gradient takes the form

∇qHrange(q) =

„
∂Hrange(q)

∂q

«T

, with
∂Hrange(q)

∂qi
=
∂Hrange,i(qi)

∂qi
=

1

N

qi − q̄i

(qM,i − qm,i)
2 .

With the data N = 4, qM,i = −qm,i = 2, and thus q̄i = 0, for i = 1, . . . , 4, the gradient at the given
configuration q = (0 0 π/2 0) is

∇qHrange =
1

64

0BBB@
0

0

π/2

0

1CCCA
The joint velocity solution that realizes the desired task while decreasing instantaneously the objective
function Hrange is evaluated then as

q̇ = J#ṙd −
“
I − J#J

”
∇qHrange = −∇qHrange + J# (ṙd + J ∇qHrange) =

0BBB@
0.4126

−0.8252

−2.0874

3

1CCCA [rad/s].

∗ ∗ ∗ ∗ ∗
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