
Robotics 2 - Final Test
June 1, 2016

A 2R robot moving in the vertical plane uses the joint coordinates defined in Fig. 1. The inertia matrix of
this robot can be written as

B(q) =

„
a1 + 2a2 cos q2 a3 + a2 cos q2
a3 + a2 cos q2 a3

«
, (1)

where the three dynamic coefficients ai, i = 1, 2, 3, satisfy a1 > a3 > a2 > 0. The robot is initially at rest
and should move under the constraint of keeping the absolute orientation of the second link at a constant
angle β w.r.t. the x0 axis, with the value 0 < β < π/2 being specified by the initial configuration.
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Figure 1: A planar 2R robot

• Derive a one-dimensional reduced dynamic model of the robot under the given geometric constraint
on its motion. Point out the features of the obtained model. Are there any special (e.g., singular)
situations from the dynamic point of view?

• With the robot at rest at t = 0 and with q(0) satisfying the geometric constraint, determine all
feasible torques u(0) that can keep the robot in static equilibrium. Which are the associated values
of the scalar constraint force λ(0)?

• Describe how a simulation with arbitrary joint torque inputs u(t) ∈ R2 should be performed when
using this model.

• Provide the symbolic expression of the joint torques u1 and u2 that should be applied when the robot
is at a given generic state (q, q̇) compatible with the constraint, so that the pseudoacceleration is
equal to a desired value v̇d ∈ R and the constraint force is λ = 0.

[150 minutes; open books]
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Solution
June 1, 2016

We first derive the Coriolis and centrifugal vector c(q.q̇) from the expression of B(q) in (1), and then
compute the potential energy U(q) due to gravity and the associated vector g(q) in the dynamic model.

From (1) and

c(q, q̇) =

„
c1(q, q̇)

c2(q, q̇)

«
, ci(q, q̇) = q̇T Ci(q)q̇, Ci(q) =

1

2

(
∂bi(q)

∂q
+

„
∂bi(q)

∂q

«T

− ∂B(q)

∂qi

)
(i = 1, 2),

we have

C1(q) =
1

2

( 
0 −2a2 sin q2

0 −a2 sin q2

!
+

 
0 0

−2a2 sin q2 −a2 sin q2

!
− 0

)

=

 
0 −a2 sin q2

−a2 sin q2 −a2 sin q2

!

C2(q) =
1

2

( 
0 −a2 sin q2

0 0

!
+

 
0 0

−a2 sin q2 0

!
−

 
−2a2 sin q2 −a2 sin q2

−a2 sin q2 0

!)

=

 
a2 sin q2 0

0 0

!

and thus

c(q, q̇) =

 
−a2 sin q2 (2q̇1 + q̇2) q̇2

a2 sin q2 q̇
2
1

!
. (2)

The potential energy is given by

U =

2X
i=1

Ui, Ui = −mig
T
0 r0,ci , i = 1, 2.

Since
gT

0 =
`
g0 0 0

´
, g0 = 9.81 [m/s2],

we need in the computations only the x-component of the position vector r0,ci of the center of mass of the
link i, for i = 1, 2. We have

U1 = −m1g0 d1 cos q1

U2 = −m2g0 (`1 cos q1 + d2 cos(q1 + q2)) ,

where mi is the mass of link i, di is the distance of the CoM of link i from the axis of joint i, and `1 is the
length of link 1. Therefore,

g(q) =

„
∂U(q)

∂q

«T

=

 
a4 sin q1 + a5 sin(q1 + q2)

a5 sin(q1 + q2)

!
,

where we have introduced the dynamic coefficients a4 = (m1d1 +m2`1)g0 and a5 = m2d2g0.

The scalar geometric constraint (m = 1) imposed on the motion of the robot (with a configuration space
of dimension n = 2) is to keep the second link oriented at a constant angle β w.r.t. the axis x0. Thus

h(q) = q1 + q2 − β = 0 ⇒ A(q)q̇ = 0, with A =
∂h(q)

∂q
=
`

1 1
´
.
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We note that matrix A is constant since the constraint is linear in q. The constrained dynamic model is
then

B(q)q̈ + c(q, q̇) + g(q) = u + ATλ, s.t. h(q) = 0.

In order to obtain a reduced dynamic model, we can define a matrix D in the following way: 
A

D

!
=

 
1 1

0 1

!
(a nonsingular matrix). (3)

From this  
A

D

!−1

=

 
1 −1

0 1

!
=
`

E F
´
,

and so we define

v = Dq̇ = q̇2, v̇ = q̈2 ⇐⇒ q̇ = F v =

 
−1

1

!
v, q̈ = F v̇ =

 
−1

1

!
v̇.

Since all these matrices are constant, many simplifications will occur. In particular, the reduced dynamic
model (of dimension n−m = 1) is expressed by a single differential equation of the form“

F T B(q)F
”
v̇ = F T (u− c(q, q̇)− g(q)) , (4)

while the expression of the scalar constraint force will be given by

λ = ET (B(q)F v̇ + c(q, q̇) + g(q)− u) . (5)

These model expressions will hold everywhere, thanks to the global invertibility of the matrix in (3); no
singularity will occur with the chosen representation of the reduced dynamics.

Performing computations, we have

F T B(q)F = a1 − a3 > 0 (constant!),

F T u = u2 − u1,

−F T (c(q, q̇) + g(q)) = −a2 sin q2 (q̇1 + q̇2)2 + a4 sin q1,

ET B(q)F = a3 − a1 − a2 cos q2,

ET u = u1,

ET (c(q, q̇) + g(q)) = c1(q, q̇) + g1(q) = −a2 sin q2 (2q̇1 + q̇2)q̇2 + a4 sin q1 + a5 sin(q1 + q2).

The reduced model (4) has to be initialized at a state (q(0), q̇(0)) that is compatible with the constraint,
or

q1(0) + q2(0) = β, q̇1(0) + q̇2(0) = 0. (6)

The velocity constraint is indeed satisfied if the robot is initially at rest (although this is not the only case).
The constraints (6) will propagate then for all t > 0, if we proceed by integrating (4). Thus, q̇1 + q̇2 = 0
will hold at any time, and the dynamics (4) simplifies finally to

(a1 − a3) v̇ = u2 − u1 + a4 sin q1, (7)

while the expression (5) of the constraint force (multiplier) becomes

λ = (a3 − a1 − a2 cos q2) v̇ − a2 sin q2 q̇1q̇2 + a4 sin q1 + a5 sinβ − u1. (8)

The pseudoinertia in (7) is now constant, and the quadratic velocity terms have disappeared as expected.
The only residual nonlinearity is due to the gravity.
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If the robot starts at rest (q̇1(0) = q̇2(0) = 0) and satisfies the constraints (6), in order to keep the static
equilibrium (v̇ = 0), from (7) we need to have

u1(0)− u2(0) = a4 sin q1(0),

so that there is (apparently) an infinity of joint torque combinations that will preserve the equilibrium.
Associated to each of these, from (8) there is a single constraint force given by

λ(0) = a4 sin q1(0) + a5 sinβ − u1(0) = a5 sinβ − u2(0).

Note however that if the constraint h(q) = 0 is a virtual one, namely it is not imposed by a mechanism
but it is enforced only through a control action, then there can be no real constraint forces generated, i.e.,
λ(0) should vanish. In particular, this happens only with the natural choice

u(0) =

 
u1(0)

u2(0)

!
=

 
a4 sin q1(0) + a5 sinβ

a5 sinβ

!
= g(q(0)).

More in general, a simulation with the reduced dynamic model (7) and an arbitrary input torque u(t)
proceeds, with an integration step T > 0, as follows1:

1. The initial state (q0, q̇0) = (q(0), q̇(0)) should satisfy (6). Set k = 0.

2. At every sampling instant tk = kT , compute v̇k = v̇(tk) as

v̇k =
uk,2 − uk,1 + a4 sin qk,1

a1 − a3
,

evaluate q̈k = F v̇k, and use your preferred integration routine to obtain (qk+1, q̇k+1).

2’. In alternative to step 2, since v̇ = q̈2, compute

q̈k,2 =
uk,2 − uk,1 + a4 sin(β − qk,2)

a1 − a3
,

use your preferred integration routine to obtain (qk+1,2, q̇k+1,2), and evaluate the remaining compo-
nents of the state as

qk+1,1 = β − qk+1,2, q̇k+1,1 = −q̇k+1,2.

3. Set k = k + 1, and cycle over step 2 (or 2’).

Finally, to address the last control problem, we evaluate eqs. (7–8) for v̇ = v̇d and λ = 0 at a generic state
(q, q̇) obtaining the (unique) needed joint torque

u =

 
u1

u2

!
=

 
(a3 − a1 − a2 cos q2) v̇d − a2 sin q2 q̇1q̇2 + a4 sin q1 + a5 sinβ

u1 + (a1 − a3) v̇d − a4 sin q1

!
. (9)

∗ ∗ ∗ ∗ ∗

1We use the notation xk,i to denote the i-th component of a vector x(t) evaluated at time tk = kT .
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