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June 11, 2021

Exercise #1

Suppose that a routine is available that computes numerically the pseudoinverse of a matrix A,
e.g., the pinv function in MATLAB, A# = pinv(A). Given a m × n, full rank matrix J , with
m < n, and a n × n, positive definite, symmetric weighting matrix W , prove formally that the
weighted pseudoinverse J#

W can be computed as J#
W = W−1/2 pinv(JW−1/2). As a verification,

provide a simple numerical example with m = 2, n = 3.

Exercise #2

A single link mounted on a passive elastic support is moved on a horizontal plane by a torque
τ applied by a motor to the revolute joint at its base, as sketched in Fig. 1. The generalized
coordinates q1 and q2 are defined therein, together with the relevant dynamic parameters: mass
m, distance d > 0 of the CoM from the joint, and barycentric inertia IL of the link; stiffness
k > 0 of the linear spring in the support. The spring is undeformed when q1 = 0. Derive first the
Lagrangian dynamic model of this simple robotic system. Next, address the following two dynamic
problems.

a) An input torque τ0 > 0 is applied at t = 0, with the system at q(0) = q̇(0) = 0 (zero initial
state). Determine if the spring will initially be compressed or extended and if the link will start
moving clockwise or counterclockwise. Provide the expression of the initial accelerations q̈1(0)
and q̈2(0) of the two coordinates .

b) Starting at t = 0 in a generic non-zero initial state (q(0), q̇(0)), define a control law τ = τ(q, q̇)
such that q2(t) will exponentially converge to zero. At steady state, determine the residual
dynamics of the other coordinate q1(t) and provide a physical interpretation of this result.
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Figure 1: A single-link robotic system mounted on a flexible base.

Exercise #3

Draw a 3-dof robot whose dynamic model is given by

Mq̈ + g = u, M =

 m1 +m2 +m3 0 0

0 m2 +m3 0

0 0 m3

 , g =

 0

0

−m3g0

 ,

with masses mi > 0, i = 1, 2, 3, and g0 = 9.81 [m/s2].
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Exercise #4

Consider the planar 3R robot with equal link lengths in Fig. 2 and absolute joint coordinates
q = (q1, q2, q3) defined therein. The robot is equipped with three motors producing torques u =
(u1, u2, u3) that perform work on the Denavit-Hartenberg angles θ = (θ1, θ2, θ3), respectively.
Provide the expression of the torque vector uq = (uq1, uq2, uq3) that should appear on the right-
hand side of the robot dynamic model written in terms of the absolute coordinates q (i.e., in
M(q)q̈ + n(q, q̇) = uq), as function of the components of u.
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Figure 2: A planar 3R robot, with absolute joint coordinates q and equal links of length L.

Exercise #5

With reference to Fig. 3, the end-point P of a planar 2R robot should execute a desired trajectory
pd(t) ∈ R2, specified by a circular path in the Cartesian plane with a time-varying desired tangential
velocity. Motion occurs on a horizontal plane and the circle should be traced counterclockwise.
An initial position and/or velocity error between the robot end-point and the desired trajectory is
present at t = 0. Later on, external disturbances may also affect occasionally the execution of the
desired motion task. Design a torque control law for the robot such that the trajectory tracking
error dynamics is exponentially stable, linear, and decoupled along the normal and tangential
directions to the path. The error behaviors in these two directions (represented, respectively, by
the xt and yt axes of a time-varying frame that moves with the desired task) should be critically
damped, with a dominant reaction time to position errors in the normal direction which is about
five times faster than in the tangential one. Assume that no kinematic singularities are encountered
(as suggested also by the placement of the circle in Fig. 3).
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Figure 3: Tracking a circular Cartesian trajectory with a planar 2R robot.

[240 minutes (4 hours); open books]
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Solution
June 11, 2021

Exercise #1

The weighted pseudoinverse J#
W of a m × n matrix J , with rankJ = m < n and a symmetric

matrix W > 0, is given by

J#
W = W−1JT

(
JW−1JT

)−1

,

with the three relations holding

JJ#
WJ = J , J#

WJJ
#
W = J#

W ,
(
JJ#

W

)T
= JJ#

W , (1)

but not the fourth one (i.e., in general (J#
WJ)T 6= J#

WJ). On the other hand, for a full row rank
matrix A the pinv routine provides as output

A# = pinv(A) = AT
(
AAT

)−1

.

Therefore,

W−1/2 pinv(JW−1/2) = W−1/2
(
JW−1/2

)T (
JW−1/2

(
JW−1/2

)T)−1

= W−1/2W−1/2JT
(
JW−1/2W−1/2JT

)−1

= W−1JT
(
JW−1JT

)−1

= J#
W .

As a numerical example with m = 2, n = 3, for

J =

(
1 2 3

4 5 6

)
, W =

 7
8

9

 ,

we obtain

W−1/2 pinv(JW−1/2) =

 −0.9792 0.4583

−0.0417 0.0833

0.6875 −0.2083

 = J#
W ,

which satisfies indeed the defining identities (1).

Note that the same formula holds also in the singular case (rankJ < m), being then

J#
W = W−1JT pinv

(
JW−1JT

)
= W−1/2 pinv(JW−1/2).

For instance, with

J =

(
1 2 3

4 8 12

)
, rankJ = 1,

and the same previous diagonal W > 0, we obtain

W−1/2 pinv(JW−1/2) =

 0.0051 0.0205

0.0090 0.0358

0.0119 0.0477

 = J#
W .
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Exercise #2

We compute the kinetic energy T of the link and the potential energy Ue due to the elastic spring.
The position and velocity of the center of mass of the link are

pc =

(
d cos q2

q1 + d sin q2

)
⇒ vc = ṗc =

(
−d sin q2 q̇2

q̇1 + d cos q2 q̇2

)
,

while the angular velocity of the link has only the z-component ωz = q̇2. Therefore, the kinetic
energy is

T =
1

2
m
(
q̇21 + d2q̇22 + 2d cos q2 q̇1q̇2

)
+

1

2
IL q̇

2
2 =

1

2
q̇TM(q)q̇,

with the inertia matrix given by

M(q) =

(
m md cos q2

md cos q2 IL +md2

)
.

The velocity terms in the dynamic model are computed through the standard Christoffel’s symbols.
We obtain

C1(q) =
1

2


(

0 0

0 −md sin q2

)
+

(
0 0

0 −md sin q2

)T
− 0

 =

(
0 0

0 −md sin q2

)
,

yielding
c1(q, q̇) = q̇TC1(q)q̇ = −md sin q2 q̇

2
2 .

On the other hand, it is easy to see that

C2(q) = 0 ⇒ c2(q, q̇) = 0.

The elastic potential Ue and its gradient are

Ue =
1

2
k q21 ⇒ ∇q Ue =

(
k q1

0

)
As a result, the dynamic model of the robotic system is(

m md cos q2

md cos q2 IL +md2

)(
q̈1

q̈2

)
+

(
−md sin q2 q̇

2
2

0

)
+

(
k q1

0

)
=

(
0

τ

)
. (2)

For case a), at the initial state q(0) = q̇(0) = 0 and with an input τ = τ0 > 0, we solve from (2)
for the acceleration q̈(0) as(

q̈1(0)

q̈2(0)

)
= M−1(q(0))

(
0

τ0

)
=

1

detM(q(0))

(
−md cos q2(0)

m

)
τ0 =

τ0
IL

(
−d
1

)
. (3)

As a consequence, the spring will be initially compressed (q̈1(0) < 0) and the link will start moving
counterclockwise (q̈2(0) > 0).

For case b), we isolate q̈1 from the first equation in (2),

q̈1 =
1

m

(
md (sin q2 q̇

2
2 − cos q2 q̈2)− k q1

)
,
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and replace it in the second, obtaining thus(
IL +md2(1− cos2 q2)

)
q̈2 +md2 sin q2 cos q2 q̇

2
2 − dk q1 cos q2 = τ. (4)

Consider now the nonlinear feedback control law

τ =
(
IL +md2(1− cos2 q2)

)
(−kd q̇2 + kp (q2d − q2)) +md2 sin q2 cos q2 q̇

2
2 − dk q1 cos q2, (5)

with kp > 0 and kd > 0, and any constant value for q2d. Note that the (inertial) factor multiplying
q̈2 in this control law is always positive. Then, plugging the torque (5) into (4) will exactly linearize
and stabilize the dynamics of the coordinate q2 in a global sense, yielding

q̈2 + kdq̇2 + kpq2 = kpq2,d ⇒ q2(t)→ q2d exponentially.

At steady state, one has q̇2 = q̈2 = 0. Thus, the first dynamic equation in (2) provides

m q̈1 + k q1 = 0.

This is the dynamics of an undamped mass m suspended on a spring of stiffness k. If initially
excited at some t = t̄ > 0, i.e., for q1(t̄) 6= 0 and/or q̇1(t̄) 6= 0, the mass will oscillate forever as

q1(t) = q1(t̄) cosω(t− t̄) +
q̇1(t̄)

ω
sinω(t− t̄), ω =

√
k

m
> 0, ∀t ≥ t̄.

Accordingly, the control law (5) boils down at steady state to the oscillatory command

τss(t) = − (dk cos q2d) q1(t),

which will prevent the link from rotating.

Exercise #3

It is easy to recognize that the dynamic model refers to a Cartesian 3P robot with orthogonal
axes, see Fig. 4. Only the third (vertical) prismatic joint is subject to gravity. The structure is
also called a portal robot. It supports and moves heavy payloads and is usually equipped with an
additional 3R spherical wrist mounted on the end effector.

q1

⊕
q2

q3

m1
m2

m3

⊕

⊕

g0

xwyw

zw

Figure 4: A Cartesian 3P robot with a portal structure.
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Exercise #4

This is a straightforward application of the principle of virtual work. The (absolute) coordinates
qi, i = 1, 2, 3, in Fig. 2 are related to the (relative) joint variables θi, i = 1, 2, 3, of the Denavit-
Hartenberg (DH) notation by the linear transformation

q1 = θ1

q2 = θ1 + θ2

q3 = θ1 + θ2 + θ3

⇒ q =

 1 0 0

1 1 0

1 1 1

θ = Tθ.

The joint torques u produced by the three motors and performing work on the DH angles θ and
the torques uq performing work on the q coordinates that appear in the dynamic model

M(q)q̈ + n(q, q̇) = uq,

are related by the identity

uTq q̇ = uT θ̇ ⇒ uTq q̇ = uTq T θ̇ = uT θ̇, ∀θ̇

or

u = T Tuq =

 1 1 1

0 1 1

0 0 1

uq ⇒
u1 = uq1 + uq2 + uq3

u2 = uq2 + uq3

u3 = uq3

and its inverse

uq = T−Tu =

 1 −1 0

0 1 −1

0 0 1

u ⇒
uq1 = u1 − u2
uq2 = u2 − u3
uq3 = u3.

Exercise #5

The solution is provided by a feedback linearization control law designed to stabilize in a decou-
pled way the normal and tangential trajectory errors in the time-varying reference frame (xt,yt)
associated to the task. For this, having defined the position error e = pd − p, the error vector of
interest in the rotated task frame is

te = 0RT
t (t) e = 0RT

t (t) (pd − p) ,

where
0Rt(t) =

(
cosαd(t) − sinαd(t)

sinαd(t) cosαd(t)

)
is the 2× 2 (planar) rotation matrix characterizing the current orientation (by the angle αd(t)) of
the task frame (xt,yt) moving with pd(t) w.r.t. the absolute frame (x0,y0). Accordingly, the time
derivative of te is1

tė = 0RT
t (t) ė+ 0Ṙ

T

t (t) e = 0RT
t (t) ė+ 0RT

t (t)ST(α̇d(t)) e = 0RT
t (t)

(
ė+ ST(α̇d(t)) e

)
, (6)

1In the following, the two formats of the expression of tė in (6), and later of të in (7), can be used equivalently:
either the one containing time derivatives of the rotation matrix, or the one where these are substituted by their
explicit computation.
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with

S(α̇d(t)) =

(
0 −α̇d(t)

α̇d(t) 0

)
.

Similarly, its second time derivative is

të = 0RT
t (t) ë+ 2 0Ṙ

T

t (t) ė+ 0R̈
T

t (t) e

= 0RT
t (t) ë+ 2 0RT

t (t)ST(α̇d(t)) ė+ 0RT
t (t)ST(α̈d(t)) e− 0RT

t (t)D(α̇d(t)) e

= 0RT
t (t)

(
ë+ 2ST(α̇d(t)) ė+

(
ST(α̈d(t))−D(α̇d(t))

)
e
)
,

(7)

being

D(α̇2
d(t)) = −

(
ST(α̇d(t))

)2
=

(
α̇2
d(t) 0

0 α̇2
d(t)

)
.

Therefore, to satisfy the problem specifications, we should impose to the controlled robot the
following linear and decoupled error dynamics

të+ tKD
tė+ tKP

te = 0, (8)

with diagonal, positive definite gain matrices (task gains)

tKP =

(
kP,norm 0

0 kP,tang

)
> 0, tKD =

(
kD,norm 0

0 kD,tang

)
> 0,

where the subscripts norm and tang are used to denote, respectively, the normal direction xt and
the tangential direction yt of the current task frame.

Consider the dynamic model of the planar 2R robot (without gravity term, being this on a hori-
zontal plane)

M(q)q̈ + c(q, q̇) = τ

and the direct (and first- and second-order differential) kinematics of the robot

p = f(q), ṗ =
∂f(q)

∂q
q̇ = J(q)q̇, p̈ = J(q)q̈ + J̇(q)q̇.

Assuming no singularities of the Jacobian matrix J(q) are encountered, we apply the control law

τ = M(q)J−1(q)
(
a− J̇(q)q̇

)
+ c(q, q̇), (9)

with

a = p̈d + 0Rt(t)
(
tKD

tė+ tKP
te
)

+ 2ST(α̇d(t)) ė+
(
ST(α̈d(t))−D(α̇d(t))

)
e. (10)

This gives

p̈ = p̈d + 0Rt(t)
(
tKD

tė+ tKP
te
)

+ 2ST(α̇d(t)) ė+
(
ST(α̈d(t))−D(α̇d(t))

)
e

or
0RT

t (t)
(
ë+ ST(α̇d(t)) 2 ė+

(
ST(α̈d(t))−D(α̇d(t))

)
e
)

+ tKD
tė+ tKP

te = 0,

which is equivalent to the expression (8) of the desired behavior for the task error te(t).
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Note that the commanded acceleration a in (10) can be equivalently written using the time deriva-
tives of the task rotation matrix 0Rt(t) within the expressions of tė in (6) and të in (7). This
would lead to

a = p̈d + 0Rt(t)
(
tKD

tė+ tKP
te+ 2 0Ṙ

T

t (t) ė+ 0R̈
T

t (t) e
)
, (11)

which produces indeed the same target result (8). Moreover, equation (10) can be rewritten only
in terms of the position and velocity errors e and ė expressed in the base frame as

a = p̈d +KD(t) ė+KP (t) e = p̈d +KD(t) (ṗd − ṗ) +KP (t) (pd − p) , (12)

where we defined the two time-varying gain matrices associated to the task

KP (t) = 0Rt(t)
tKP

0RT
t (t) + 0Rt(t)

tKD
0RT

t (t)ST(α̇d(t)) + ST(α̈d(t))−D(α̇d(t))

and
KD(t) = 0Rt(t)

tKD
0RT

t (t) + 2ST(α̇d(t)).

We note that the desired task acceleration p̈d needs not to be rotated in the expression (12), and
that extra terms appear in these time-varying gain matrices, related to the changing orientation
of the task frame. If the same trajectory were assigned along a linear path, then α̇d = α̈d = 0 and
these gain matrices would become constant

tKP = 0RtKP
0RT

t ,
tKD = 0RtKD

0RT
t .

Finally, in order to assign a critical damping and the desired time scale separation between the
normal and tangential error components, we use standard results on linear second-order dynamic
systems. In order to impose two asymptotically stable eigenvalues/poles in

−a± i b = −ω
(
ζ ± i

√
1− ζ2

)
with ω > 0, ζ > 0, a = ζω > 0, b =

√
1− ζ2ω ≥ 0,

to the characteristic equation s2 + kDs+ kP = 0 that governs the dynamics of each component of
the tracking error in the task frame, one needs to choose

kD = 2ζω, kP = ω2.

The coefficient ζ affects the way oscillations at the natural frequency ω are damped. Moreover,
the error response over time is enveloped by a decaying exponential e−ζωt. Therefore, to achieve
our design target for the transient errors, we choose first a common critical damping ζ = 0.7 (or
larger) for both the tangential and normal directions. Then, once a sufficiently high frequency
ωtang > 0 has been selected for the tangential direction, we set

kP,tang = ω2
tang, kD,tang = 2ζωtang,

and
kP,norm = ω2

norm = (5ωtang)
2 = 25ω2

tang, kD,norm = 2ζωnorm = 10ζωtang.

∗ ∗ ∗ ∗ ∗
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