
Robotics 2
Remote Exam – September 11, 2020

Exercise #1

Consider the planar 3R robot with links of equal length L in Fig. 1, driven by joint velocity
commands q̇ ∈ R3. The end effector should trace the nominal linear path from A to B with a
constant speed v > 0, while the entire robot avoids any collision with a single static obstacle O.
The obstacle is of known circular shape but uncertain radius R ≤ L/4, and is placed at least at
a distance ρmin = L from the robot base and not farther than ρmax = 3L. Its actual location
is unknown a priori, but the obstacle can be detected by an omnidirectional proximity sensor
mounted on the robot end effector and having a sensing range σ = 1.5L.

Define a sensor-based control scheme that makes the robot perform at best the assigned task, and
describe qualitatively its expected performance.
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Figure 1: The 3R robot with the nominal Cartesian path AB to be traced and the static circular
obstacle O to be avoided (several possible alternative locations of the single obstacle are shown).

Exercise #2

In an image-based visual servoing control scheme, the camera mounted on the robot end effector
(eye-in-hand) looks for three specific points in the scene, characterized by their point features in the
image plane with coordinates (ui, vi), for i = 1, 2, 3. Derive the expression of the 2× 6 interaction
matrix Jb associated to the geometric barycenter b ∈ R2 of the triangle in the image having these
point features as the three vertices, namely

ḃ = Jb

(
V

Ω

)
,

where V ∈ R3 and Ω ∈ R3 are respectively the linear and angular velocity of the camera.

Provide then an instantaneous motion of the camera such that ḃ = 0.
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Exercise #3

With reference to the planar RP robot in Fig. 2, using the symbolic parameters specified therein,
determine the complete expression of the Cartesian inertia matrix Mp(q) of the robot at the tip
p ∈ R2 as a function of the configuration q.

Provide then the numerical value of Mp(q∗) at q∗ =
(

0 3
)T

[rad, m], using the parameters:

l1 = 1, d1 = 0.5, m1 = 3, I1 = 0.25; d2 = 0.5, m2 = 0.5, I2 = 0.875.

Assuming that this robot is at rest in q∗ on a horizontal plane, check that the tip acceleration
p̈ ∈ R2 has the same direction of any force F ∈ R2 in the plane applied to the tip of the robot.
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d2l1

Figure 2: A 2-dof RP robot with its relevant kinematic and dynamic parameters.

Exercise #4

A 3R robot moves on a horizontal plane in the presence of geometric constraints in the Cartesian
space, as illustrated in Fig. 3. Assume that the distance k satisfies the inequalities l1 < k < l1 + l2.

• Determine the dimension M of the constraints and their possible expression h(q) = 0, with the
associated Jacobian matrix A(q) = ∂h(q)/∂q.

• Define the (3−M)×3 matrix D(q) to complete A(q) in a nonsingular way, as well as the blocks
E(q) and F (q) of the inverse that appear in the reduced dynamics of this constrained robot.
The reduced model should hold for any q such that the contact situation remains as in Fig. 3.

• Let mij be the elements of the (symmetric) inertia matrix M(q) of this robot in free space.
Give the full expression of the (3−M)×(3−M) reduced inertia matrix in the constrained case.
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Figure 3: A 3R robot with geometric constraints in the Cartesian space limiting its motion.
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Exercise #5

Consider a 2R robot arm of human-like size and weight moving in a vertical plane with negligible
friction. Two model-based controllers are being compared in a trajectory tracking problem in the
joint space. The first is based on feedback linearization, yielding a control torque uFBL(t), the
second is a Lyapunov-based control law with global asymptotic convergence property, yielding a
torque uGLB(t).

Assuming that the PD gain matrices are the same in both control laws, provide the explicit
expression of the torque difference ∆u(t) = uFBL(t)− uGLB(t).

Next, when the desired joint trajectory and the PD gains are respectively

qd(t) =

 π

2
+ 3 sin

πt

2

1− cos 2πt

 , KP = 100 · I2×2, KD = 20 · I2×2,

assume that at time t = 2 s, the current robot configuration is q(2) =
(
π/2 −π/2

)T
[rad] and

the velocity tracking error is zero. For each robot joint, determine which is the controller that uses
the larger instantaneous torque in absolute value.

[240 minutes (4 hours); open books]
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Solution
September 11, 2020

Exercise #1

This is an open-ended exercise and many possible schemes could be devised. Here, we present one
where the 3R robot uses its redundancy with respect to the two-dimensional motion task assigned
to its end effector as a mean to avoid the single obstacle detected online. The end-effector motion
task has a higher priority than the collision avoidance task, as long as the minimum distance
between the robot and the obstacle O stays above some threshold ε > 0. Otherwise, the controller
switches the priority order and moves the robot primarily to avoid collision with the obstacle,
trying to keep also the tracking error as small as possible. Indeed, when the obstacle is placed on
the end-effector path, this switching will certainly happen. To implement such a control strategy,
we use the following items.

• A clearance function defined by

H(q) = min
a(q)∈ robot
b∈obstacle

‖a(q)− b‖. (1)

In this expression, the detection of points b belonging to the circular obstacle O is made by
the proximity sensor mounted on the end-effector. The sensor is able to reconstruct the entire
visible surface of the obstacle and thus determine the closest point to the robot. The range of
the proximity sensor covers the entire area of interest. The location of every point a(q) on the
robot body is known from the encoder measures of q and via the direct kinematics of the robot.

The clearance function in (1) can also be approximated by choosing a number of control points
on the robot body for robot-obstacle distance computation, rather than the entire robot skeleton.
For instance, one can use the three points P j2 = location of joint 2, P j3 = location of joint 3,
and P ee = end-effector location. Then, (1) would be replaced by the clearance function

H(q) = min
b∈obstacle

{‖P j2(q1)− b‖, ‖P j3(q1, q2)− b‖, ‖P ee(q1, q2, q3)− b‖} . (2)

In both cases, we can use the gradient ∇qH(q) = (∂H(q)/∂q)
T

in the control scheme, together
with a stepsize factor α > 0. While both clearance functions (1) and (2) are continuous (in space
and time), their gradient may have discontinuities.

• The primary task Jacobian associated to the end-effector position p, as given by

J(q) =
∂p(q)

∂q
=

(
− (l1s1 + l2s12 + l3s123) − (l2s12 + l3s123) −l3s123
l1c1 + l2c12 + l3c123 l2c12 + l3c123 l3c123

)
,

with the usual shorthand notation for trigonometric quantities (e.g., s123 = sin(q1 + q2 + q3)).
We will use the pseudoinverse J#(q) of this matrix. Moreover, the desired task velocity will be
ṗd = v (B −A) /‖B −A‖.

• A switching control law defined as

q̇ =


J#(q) (ṗd + KP (pd − p(q))) +

(
I − J#(q)J(q)

)
α∇qH(q)

= α∇qH(q) + J#(q)
(
ṗd + KP (pd − p(q))− αJ(q)∇qH(q)

)
, if H(q) > ε,

α∇qH(q), if H(q) ≤ ε.

(3)
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When the obstacle is sufficiently far, with the control law (3) the robot executes exactly the
desired end-effector trajectory pd(t), while the gradient of the clearance function is projected in
the one-dimension null space of the primary task. Instead, when the robot is getting too close
to the obstacle, the control law will move away the nearest point of the robot. In the given form
of the gradient of H(q) in the configuration space, obstacle repulsion is a three-dimensional task
which leaves no space for a secondary consideration of the original tracking task. Therefore,
during this phase, the end-effector path is typically abandoned1. When the minimum clearance
ε is recovered, the control will switch back to the previous law, trying to recover the accumulated
error with respect to the desired Cartesian trajectory. In order to do so, a position error feedback
term with (diagonal) matrix gain KP > 0 has been added in (3).

We note finally that the proposed control scheme is purely reactive (there is no planning for obstacle
avoidance) and only local in scope (we cannot exclude that the robot gets stuck before reaching
the point B). Further, there is no motion stop explicitly involved with a control switch. As a
consequence, switches are typically associated with discontinuities of the joint velocity commands.

Exercise #2

Associated to a point P i = (Xi, Yi, Zi) in the Cartesian space, with its coordinates expressed in
the camera frame, there is a point feature fpi

= (ui, vi) in the image plane whose interaction
matrix Jpi

takes the form (see the lecture slides)

Jpi(ui, vi, Zi) =

 −
λ

Zi
0

ui
Zi

uivi
λ

−u
2
i

λ
− λ vi

0 − λ

Zi

vi
Zi

v2i
λ

+ λ −uivi
λ

−ui

 ,

where λ > 0 is the focal length of the camera and the depth Zi > 0 is limited (by the visual
range of the camera). The geometric barycenter b ∈ R2 of a triangle in the image plane is simply
obtained from its three vertices, namely the coordinates of the point features fpi

, i = 1, 2, 3, as

b =

(
bu

bv

)
=

1

3

(
u1 + u2 + u3

v1 + v2 + v3

)
.

Therefore, the interaction matrix Jb takes the form

Jb =
1

3

(
Jp1

(u1, v1, Z1) + Jp2
(u2, v2, Z2) + Jp3

(u3, v3, Z3)
)

=
1

3


−λ

3∑
i=1

1

Zi
0

3∑
i=1

ui
Zi

1

λ

3∑
i=1

uivi − 1

λ

3∑
i=1

u2i − 3λ

3∑
i=1

vi

0 −λ
3∑

i=1

1

Zi

3∑
i=1

vi
Zi

1

λ

3∑
i=1

v2i + 3λ − 1

λ

3∑
i=1

uivi −
3∑

i=1

ui


= Jb(u,v,Z),

1Other collision avoidance schemes can be defined, still using an artificial potential to keep the robot away from
the obstacle. Obstacle avoidance can be formulated as a two-dimensional task, when the repulsive action is defined
along the gradient of the Cartesian clearance, or even as a one-dimensional task, when only the projection of the
repulsive Cartesian alction along the clearance direction is specified. In both cases, it is possible to accommodate
the tracking task in the null space of the avoidance task.
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with u = (u1, u2, u3), v = (v1, v2, v3), and depths Z = (Z1, Z2, Z3). Note that the obtained
interaction matrix Jb is in general different from the interaction matrix associated to the single
point feature of the Cartesian barycenter P b = 1

3 (P 1 + P 2 + P 3) of the three points in 3D space.

Possible camera motions that belong to the null space of Jb are

V =



3∑
i=1

ui
Zi

−
3∑

i=1

vi
Zi

λ

3∑
i=1

1

Zi


, Ω = 0 (a pure linear motion),

or

V =



3∑
i=1

vi

3∑
i=1

ui

0


, Ω =


0

0

λ

3∑
i=1

1

Zi


(linear motion parallel to the image plane,

with angular motion around the optical axis).

More independent camera motions with ḃ = 0 exist, since the dimension of N {Jb} is at least 4.

Exercise #3

We compute first the kinetic energy of the RP robot. For the two links, we have

T1 =
1

2

(
I1 +m1d

2
1

)
q̇21 , T2 =

1

2
I2 q̇

2
1 +

1

2
m2 v

T
c2vc2,

with

vc2 = ṗc2 =
d

dt

(
l1 cos q1 + q2 sin q1

l1 sin q1 − q2 cos q1

)
=

(
(q2 cos q1 − l1 sin q1) q̇1 + sin q1 q̇2

(l1 cos q1 + q2 sin q1) q̇1 − cos q1 q̇2

)
.

Therefore, from T = T1 + T2 = 1
2 q̇

TM(q)q̇, we obtain the inertia matrix

M(q) =

(
I1 +m1d

2
1 + I2 +m2l

2
1 +m2q

2
2 −m2l1

−m2l1 m2

)
.

The Jacobian associated to the linear velocity v = ṗ ∈ R2 of the robot tip is computed as

ṗ =
d

dt

(
l1 cos q1 + (q2 + d2) sin q1

l1 sin q1 − (q2 + d2) cos q1

)
=
∂p(q)

∂q
q̇ = J(q)q̇

⇒ J(q) =

(
(q2 + d2) cos q1 − l1 sin q1 sin q1

l1 cos q1 + (q2 + d2) sin q1 − cos q1

)
.
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A singularity occurs when detJ(q) = − (q2 + d2) = 0. Out of this singularity, and using also a
shorthand notation for the trigonometric terms, the Cartesian inertia matrix at the robot tip is

Mp(q) = J−T (q)M(q)J−1(q)

=
1

(q2 + d2)2

(
−c1 −l1c1 − (q2 + d2)s1

−s1 (q2 + d2)c1 − l1s1

)(
I1 +m1d

2
1 + I2 +m2l

2
1 +m2q

2
2 −m2l1

−m2l1 m2

)

·
(

−c1 −s1
−l1c1 − (q2 + d2)s1 (q2 + d2)c1 − l1s1

)
,

with elements

Mp,11 =
1

(q2 + d2)2

(
I1 + I2 +m1d

2
1 +m2q

2
2 +

(
2m2d2q2 +m2d

2
2 − I1 − I2 −m1d

2
1

)
s21

)
,

Mp,12 = Mp,21 =
1

(q2 + d2)2

(
I1 + I2 +m1d

2
1 −m2d

2
2 − 2m2d2q2

)
s1c1,

Mp,22 =
1

(q2 + d2)2

(
m2(q2 + d2)2 +

(
I1 + I2 +m1d

2
1 −m2d

2
2 − 2m2d2q2

)
s21

)
.

The Cartesian inertia matrix is not diagonal in general. However, when evaluating Mp(q∗) for

q∗ =
(

0 3
)T

[rad, m] and using the numerical parameters given in the text, we obtain

Mp(q∗) = J−T (q∗)M(q∗)J−1(q∗)

=

(
0.2857 0.2857

0 −1

)(
6.625 −0.5

−0.5 0.5

)(
0.2857 0

0.2857 −1

)
=

(
0.5 0

0 0.5

)
= 0.5 · I2×2

As a result, we can immediately verify that the Cartesian acceleration p̈ ∈ R2 of the robot end
effector in response to an arbitrary force F ∈ R2 applied at the tip when the robot is at rest in q∗

and in the absence of gravity is
p̈ = M−1

p (q∗)F = 2F ,

namely, p̈ has the same direction of the applied force F .

Exercise #4

The 3R robot (having N = 3 degrees of freedom) is geometrically constrained in its Cartesian
motion in two ways:

• it cannot change the absolute orientation of the last link, which remains always parallel to y0;

• it cannot move the tip of the second link away from the axis x = k.

Therefore, this situation can be modeled by M = 2 scalar constraints, written in the joint space as

h(q) =

 q1 + q2 + q3 −
π

2

l1 cos q1 + l2 cos(q1 + q2)− k

 = 0.

The Jacobian of these constraints is

A(q) =
∂h(q)

∂q
=

(
1 1 1

− (l1 sin q1 + l2 sin(q1 + q2)) −l2 sin(q1 + q2) 0

)
.
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The rank of matrix A(q) is 2, except when sin(q1 + q2) = sin q1 = 0, which occur if and only if
q1 = {0, π} and q2 = {0, π}, i.e., when the first two links are stretched or folded along the x0-axis.
However, these singular configurations are not allowed by the geometric constraints (thanks to the
two inequalities imposed on the parameter k, otherwise arbitrary).

The first step for deriving the reduced dynamics of this constrained robot is to find a matrix D(q)
of size (N −M) ×M = 1 × 3 such that it completes A(q), building a nonsingular square matrix
in the operating region. A suitable choice that satisfies this requirement is

D(q) =
(
l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2) 0

)
,

which leads to(
A(q)

D(q)

)
=

 1 1 1

− (l1 sin q1 + l2 sin(q1 + q2)) −l2 sin(q1 + q2) 0

l1 cos q1 + l2 cos(q1 + q2) l2 cos(q1 + q2) 0

, det

(
A(q)

D(q)

)
= l1l2 sin q2.

(4)
The determinant is never zero for all q such that the contact situation remains the same as in Fig. 3.
As a matter of fact, this choice of D(q) reconstructs the 2 × 2 Jacobian of the 2R substructure
made by the first two links of the 3R robot. The constrained robot has only one degree of freedom
left, which is described by the scalar term

v = D(q)q̇ = (l1 cos q1 + l2 cos(q1 + q2)) q̇1 + l2 cos(q1 + q2) q̇2.

This pseudovelocity represents the motion of the tip of the second link along the direction y0.

The second step of the procedure is to invert the matrix in (4) so as to define the blocks E(q) and
F (q) in the inverse. We obtain

(
A(q)

D(q)

)−1
=

1

l1l2 sin q2

 0 l2 cos(q1 + q2) l2 sin(q1 + q2)

0 − (l1 cos q1 + l2 cos(q1 + q2)) − (l1 sin q1 + l2 sin(q1 + q2))

l1l2 sin q2 l1 cos q1 l1 sin q1

 .

Thus, we have the partition into the first M = 2 columns

E(q) =
1

l1l2 sin q2

 0 l2 cos(q1 + q2)

0 − (l1 cos q1 + l2 cos(q1 + q2))

l1l2 sin q2 l1 cos q1


and the last N −M = 1 column

F (q) =
1

l1l2 sin q2

 l2 sin(q1 + q2)

− (l1 sin q1 + l2 sin(q1 + q2))

l1 sin q1

 .

Finally, introducing in symbolic form the elements of the robot inertia of the 3R robot in free space

M(q) =

 m11 m12 m13

m12 m22 m23

m13 m23 m33

 > 0,
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we have that the reduced inertia matrix is a scalar given by2

F T(q)M(q)F (q) = F T(q) · 1

l1l2 sin q2

 (m11 −m12) l2 sin(q1 + q2) + (m13 −m12) l1 sin q1

(m12 −m22) l2 sin(q1 + q2) + (m23 −m22) l1 sin q1

(m13 −m23) l2 sin(q1 + q2) + (m33 −m23) l1 sin q1

 .

=
1

(l1l2 sin q2)
2

(
(m11 +m22 − 2m12) l22 sin2(q1 + q2)

+ (m22 +m33 − 2m23) l21 sin2 q1

+ 2 (m22 −m12 +m13 −m23) l1l2 sin q1 sin(q1 + q2)
)
.

Exercise #5

The trajectory tracking control law based on feedback linearization is

uFBL = M(q)
(
q̈d + KD(q̇d − q̇) + KP (qd − q)

)
+ c(q, q̇) + g(q). (5)

The Lyapunov-based control law with global asymptotic convergence property is

uGLB = M(q)q̈d + S(q, q̇)q̇d + g(q) + KD(q̇d − q̇) + KP (qd − q), (6)

where Ṁ −2S is a skew symmetric matrix and the PD gains are by hypothesis the same as in (5).
Since the Coriolis and centrifugal terms in (5) can always be rewritten as c(q, q̇) = S(q, q̇)q̇ using
the same factorization used in (6), the difference between the two control torques can be written
in general as

∆u = uFBL − uGLB = (M(q)− I) (KD(q̇d − q̇) + KP (qd − q)) + S(q, q̇) (q̇ − q̇d) . (7)

From the desired joint trajectory, we obtain

q̇d(t) =

 3π

2
cos

πt

2

2π sin 2πt

 , q̈d(t) =

 −3π2

4
sin

πt

2

4π2 cos 2πt

 .

At time t = 2 s, we have thus

qd(2) =

 π

2

0

 , q̇d(2) =

 −3π

2

0

 , q̇d(2) =

(
0

4π2

)
,

while the robot state and the position and velocity errors are

q(2) =


π

2

−π
2

 ⇒ e(2) =

 0

π

2

 , q̇(2) = q̇d(2) ⇒ ė(2) = 0.

In this case, the only information needed in eq. (7) is the inertia matrix of the 2R robot. From the
lecture slides, this matrix has the form

M(q) =

(
a1 + 2a2 cos q2 a3 + a2 cos q2

a3 + a2 cos q2 a3

)
,

2Performing computations by hand in the given sequence is surprisingly faster than setting up a similarly efficient
code using symbolic programming!
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with dynamic coefficients ai > 0, i = 1, 2, 3. Using the PD gains given in the text, we finally obtain

∆u(2) = (M(q(2))− I) ·KP e(2) =

(
a1 − 1 a3

a3 a3 − 1

)
· 100

 0

π

2

 = 50π ·

(
a3

a3 − 1

)
.

It is quite reasonably to assume that a3 = I2 + m2d
2
c2 > 1, being the robot arm of human-like

size and weight. Thus, both components of ∆u(2) are positive. However, to determine which
controller is using the larger torques in absolute value at t = 2 s, we need to assess also the
signs of the components of at least one of the two torque commands3. We evaluate then the
Lyapunov-based tracking controller under the assumed conditions, obtaining

uGLB(2) = M(q(2)) q̈d(2) + S(q(2), q̇d(2)) q̇d(2) + g(q(2)) + KP e(2).

For each term in the expression of uGLB(2), the following can be easily observed:

M(q(2)) q̈d(2) =

(
a1 a3

a3 a3

)(
0

4π2

)
= 4π2a3

(
1

1

)
> 0,

S(q(2), q̇d(2)) q̇d(2) = c(q(2), q̇d(2)) =

(
−a2 sin q2(2)

(
q̇2d2(2)− 2 q̇d1(2)q̇d2(2)

)
a2 sin q2(2) q̇2d1(2)

)

= −9π2

4
a2

(
0

1

)
≤ 0,

g(q(2)) =

(
a4 cos q1(2) + a5 cos(q1(2) + q2(2))

a5 cos(q1(2) + q2(2))

)
= a5

(
1

1

)
> 0,

KP e(2) = 50

(
0

π

)
≥ 0.

Despite of the negative addend in the second component of the velocity term, it can be safely
concluded that this single term is compensated by the multiple other positive ones, so that
uGLB(2) > 0 holds componentwise. Thus, it is also uFBL(2) = uGLB(2) + ∆u(2) > 0 com-
ponentwise. For both two components, the feedback linearization law requires at t = 2 s a larger
torque (in absolute value, but in fact positive) than the Lyapunov-based control law.

∗ ∗ ∗ ∗ ∗

3Suppose that ∆u = a− b > 0. If b > 0, both a and b will be positive and a is certainly larger than b. If instead
b < 0, we could have both |b| > |a| or viceversa in absolute value, and thus also the sign of a should be checked.
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