
Robotics II
September 11, 2019

Exercise 1

Consider the 3R robot in Fig. 1, moving on a horizontal plane. The robot has identical links (each of
length L, uniformly distributed mass m, and inertia IL = mL2/12 around the barycentral vertical axis)
and is commanded at the joint level by torques τ (t) ∈ R3. Neglect in the following any dissipative/friction
effects. With the system at t = 0 in a generic initial state (q(0), q̇(0)) = (q0, q̇0) with q̇0 6= 0, we want to
control the robot so that its kinetic energy T = T (q, q̇) in the closed-loop dynamics satisfies the following
desired target equation:

dT

dt
= −γ T, with γ > 0.

Determine the expression of the control law τ = τ (q, q̇) that realizes this behavior. For L = 0.2 [m],
m = 3 [kg], q0 = (0, π/2, π/2) [rad], q̇0 = (0,−π,−π) [rad/s] and γ = 1, compute the numerical value of
such a control torque at t = 0, i.e., τ (0).
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Figure 1: A 3R robot moving on a horizontal plane, and its coordinates q = (q1, q2, q3).

Exercise 2

The RP planar robot shown in Fig. 2 should execute a rest-to-rest motion task in minimum time under
torque/force bounds |τi| ≤ τmax,i > 0, i = 1, 2, with its end-effector moving along a circular path of radius
R > d by an angle α from A to B. Determine the analytic expression of the minimum time T ∗ in terms
of the task data and of the robot dynamic parameters. Draw the profile of the two components of the
time-optimal command τ ∗(t), for t ∈ [0, T ∗].
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Figure 2: A RP robot moving its end-effector along a circular path on a horizontal plane.

Exercise 3

With reference to Fig. 3, a mass m1 is moving at constant speed v0 > 0 and collides at some time t = tc
with a mass m2 which is initially at rest. Assume a purely ideal situation: there is no dissipation due to
friction and the collision is perfectly elastic. Therefore, the total kinetic energy T and the total (scalar)
momentum P of the two masses will both remain constant over time. Determine the expressions of the
velocities v1(t+c ) and v2(t+c ) of the two masses after the collision. Describe what happens when m1 > m2,
m1 = m2, or m1 < m2, and in the limit cases when m2 → 0 or m2 →∞.
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Figure 3: A mass m1 in motion collides with a second mass m2 initially at rest.
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Solution
September 11, 2019

Exercise 1

The dynamic model of a frictionless robot in the absence of gravity is given by

M(q)q̈ + S(q, q̇) q̇ = τ , (1)

where any factorization matrix S can be used for the (quadratic) Coriolis and centrifugal terms. From the
expression of the kinetic energy T = 1

2
q̇TM(q)q̇, we obtain

Ṫ =
dT

dt
= q̇TM(q)q̈ +

1

2
q̇TṀ(q)q̇ = q̇T (τ − S(q, q̇) q̇) +

1

2
q̇TṀ(q)q̇ = q̇T τ , (2)

where we have used (1) and the principle of energy conservation (implying q̇T
(
Ṁ(q)− 2S(q, q̇)

)
q̇ ≡ 0,

∀(q, q̇)). In order to impose the desired behavior to the Kinetic energy, it follows immediately that

Ṫ = q̇T τ = −γ T = −γ
2
q̇TM(q)q̇ =⇒ τ = −γ

2
M(q)q̇. (3)

The control law should apply a torque that is the (scaled) negative value of the current generalized mo-
mentum p = M(q)q̇ of the robot.

To realize (3), one needs to derive only the inertia matrix M(q) for the 3R planar robot at hand. The
kinetic energy is given by

T =

3∑
I=1

Ti, Ti =
1

2
m ‖vci‖2 +

1

2
IL ω

2
z,i, i = 1, 2, 3.

We compute first

T1 =
1

2
m

(
L

2
q̇1

)2

+
1

2
IL q̇

2
1

(
· · · = 1

2
m
L2

3
q̇21

)
.

Then, from

pc2 =

(
L cos q1 + (L/2) cos(q1 + q2)

L sin q1 + (L/2) sin(q1 + q2)

)
⇒ vc2 =

(
−L sin q1 q̇1 − (L/2) sin(q1 + q2)(q̇1 + q̇2)

L cos q1 q̇1 + (L/2) cos(q1 + q2)(q̇1 + q̇2)

)
and

pc3 =

(
L(cos q1 + cos(q1 + q2)) + (L/2) cos(q1 + q2 + q3)

L(sin q1 + sin(q1 + q2)) + (L/2) sin(q1 + q2 + q3)

)

⇒ vc3 =

(
−L(sin q1 q̇1 + sin(q1 + q2)(q̇1 + q̇2))− (L/2) sin(q1 + q2 + q3)(q̇1 + q̇2 + q̇3)

L(cos q1 q̇1 + cos(q1 + q2)(q̇1 + q̇2)) + (L/2) cos(q1 + q2 + q3)(q̇1 + q̇2 + q̇3)

)
,

we obtain

T2 =
1

2
m

(
L2q̇21 +

L2

4
(q̇1 + q̇2)2 + L2 cos q2 q̇1(q̇1 + q̇2)

)
+

1

2
IL (q̇1 + q̇2)2

and

T3 =
1

2
m
(
L2q̇21 + L2(q̇1 + q̇2)2 + 2L2 cos q2 q̇1(q̇1 + q̇2) +

L2

4
(q̇1 + q̇2 + q̇3)2

+L2 (cos(q2 + q3)q̇1 + cos q3(q̇1 + q̇2)) (q̇1 + q̇2 + q̇3)
)

+
1

2
IL (q̇1 + q̇2 + q̇3)2 .

Therefore, using the compact notation for trigonometric functions and substituting for IL = mL2/12, the
inertia matrix is

M(q) = mL2


4 + 3c2 + c3 + c23

5
3

+ 3
2
c2 + c3 + 1

2
c23

1
3

+ 1
2

(c3 + c23)

5
3

+ c3
1
3

+ 1
2
c3

symm 1
3

 . (4)

Finally, evaluating the control law at q0 = (0, π/2, π/2) [rad] and q̇0 = (0,−π,−π) [rad/s] and with the
data L = 0.2 [m], m = 3 [kg] (thus IL = 0.01 [kg·m2]) and γ = 1, gives

τ (0) = −1

2
M(q0) q̇0 = −1

2
· 3

25

 3 7
6
− 1

6

7
6

5
3

1
3

− 1
6

1
3

1
3


 0

−π
−π

 =
π

2

 0.12

0.24

0.08

 =

 0.1885

0.3770

0.1257

 [Nm]. (5)
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Exercise 2

We start by deriving the dynamic model of the RP planar robot in Fig. 2. For the kinetic energy

T = T1 + T2 =
1

2
q̇TM(q)q̇,

since pc2 = (q2 − d)
(

cos q1 sin q1
)T

and vc2 = ṗc2, we have

T1 =
1

2
Ic1 q̇

2
1 , T2 =

1

2
Ic2 q̇

2
1 +

1

2
m2 ‖vc2‖2 =

1

2

(
Ic2 +m2(q2 − d)2

)
q̇21 +

1

2
m2 q̇

2
2 ,

with an obvious interpretation of the dynamic parameters. The robot inertia matrix is then

M(q) =

(
Ic1 + Ic2 +m2(q2 − d)2 0

0 m2

)
. (6)

From this, we compute the Coriolis/centrifugal terms using the matrices of Christoffel symbols

Ci(q) =
1

2

[(
∂mi(q)

∂q

)
+

(
∂mi(q)

∂q

)T

−
(
∂M(q)

∂qi

)]
, i = 1, 2.

We obtain

C1(q) =

(
0 m2(q2 − d)

m2(q2 − d) 0

)
, C2(q) =

(
−m2(q2 − d) 0

0 0

)
,

and thus

c(q, q̇) =

(
q̇TC1(q)q̇

q̇TC2(q)q̇

)
=

(
2m2 (q2 − d) q̇1q̇2

−m2 (q2 − d) q̇21

)
. (7)

From (6) and (7), we write the (unconstrained) dynamic equations in their scalar form as(
Ic1 + Ic2 +m2(q2 − d)2)

)
q̈1 + 2m2 (q2 − d) q̇1q̇2 = τ1, (8)

m2q̈2 −m2 (q2 − d) q̇21 = τ2. (9)

In order to execute the task, the second joint variable should remain constant at all times, namely q2 = R,
q̇2 = q̈2 = 0. Therefore, from (8) with q2 = R and q̇2 = 0, the robot dynamics along the path can be
described by

I0 q̈1 = τ1, with I0 = Ic1 + Ic2 +m2(R− d)2 > 0, (10)

whereas, from (9) used as inverse dynamics with q2 = R and q̈2 = 0, the second motor should apply the
force

τ2(t) = −m2 (R− d) q̇21(t) (11)

in order to have the end-effector remaining perfectly on the path. Equations (10–11) are the core of the
solution. Based on the linear dynamics (10), to perform the desired rest-to-rest motion task in minimum
time, the first motor should apply a bang-bang torque profile τ1(t) (with maximum positive and negative
torque ±τmax,1, each applied for half of the motion interval). The total motion time should be sufficient
to complete the rotation ∆q1 = α > 0. Again from (10), this corresponds to using a maximum (absolute)
acceleration bound in the definition of the time-optimal motion of joint 1, i.e,

|q̈1| ≤ Amax,1 =
τmax,1

I0
. (12)

While doing so, however, the velocity q̇1(t) of the first joint will increase linearly and, according to (11),
the force that the second motor needs to apply in order to keep the robot end-effector on the path will
increase quadratically. As a result, the second actuator may exceed its dynamic capabilities. Therefore,
the bound |τ2| ≤ τmax,2 will impose also a bound Vmax,1 on the (absolute) velocity that the first joint can
reach. We have1

|τ2| = m2 (R− d) q̇21 ≤ τmax,2 =⇒ |q̇1| ≤ Vmax,1 =

√
τmax,2

m2 (R− d)
. (13)

Under the combined velocity/torque (viz. velocity/acceleration) bounds for the motion of joint 1, the min-
imum time solution will have in general a bang-coast-bang profile for the first torque (and its acceleration
as well). The motion time T ∗ is computed then from known formulas.

1Note that R− d > 0 by assumption, so the argument of the square root is positive.
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If α > V 2
max,1/Amax,1, a coast phase will exist. Then

Ts =
Vmax,1

Amax,1
=⇒ (T ∗ − Ts)Vmax,1 = α =⇒ T ∗ =

α

Vmax,1
+
Vmax,1

Amax,1
, (14)

where one should replace the definitions of bounds in (12) and (13). The (qualitative) plots of the resulting
torque/force vector τ ∗(t) are reported in Fig. 4. The second joint force τ∗2 (t) follows from (11), with a
quadratic time profile where the velocity of the first joint is linear in time and a constant value where q̇1
is constant. The other special cases (with pure bang-bang commands) are treated similarly.
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Figure 4: Optimal profiles of the torque τ∗1 , of the related velocity q̇∗1 , and of the force τ∗2 for the requested
rest-to-rest minimum time motion of the RP robot in Fig. 2.

Exercise 3

This is a simple application of conservation principles of the total kinetic energy T and total momentum P
(along the direction x) for the system with the two masses m1 and m2. In formulas,

T (t) =
1

2
m1v

2
1(t) +

1

2
m2v

2
2(t) = constant, P (t) = m1v1(t) +m2v2(t) = constant, ∀t.

We apply these identities around the collision time t = tc, just before (t = t−c ) and just after (t = t+c ). Let

v1 = v1(t+c ), v1(t−c ) = v0 > 0, v2 = v2(t+c ), v2(t−c ) = 0,

where v1 and v2 are the unknowns of our problem. Thus,

1

2
m1v

2
1 +

1

2
m2v

2
2 =

1

2
m1v

2
0 (15)

and
m1v1 +m2v2 = m1v0. (16)

Equations (15) and (16) are rewritten respectively as

m1(v21 − v20) +m2v
2
2 = m1(v1 − v0)(v1 + v0) +m2v

2
2 = 0 (17)

and
m1(v1 − v0) = −m2v2. (18)

Substituting (18) in (17) and simplifying yields

v2 = v1 + v0. (19)

Plugging (19) back into (16) leads to

m1v1 +m2(v1 + v0) = m1v0 =⇒ v1 =
m1 −m2

m1 +m2
v0. (20)

Finally, substituting v1 in (19) gives

v2 =
2m1

m1 +m2
v0. (21)
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From (20–21), we conclude that:

m2 → 0 =⇒ v1 = v0 > 0, v2 = 2v0 > 0,

m2 < m1 =⇒ v0 > v1 > 0, v2 > v0 > 0,

m2 = m1 =⇒ v1 = 0, v2 = v0 > 0,

m2 > m1 =⇒ −v0 < v1 < 0, 0 < v2 < v0,

m2 →∞ =⇒ v1 = −v0 < 0, v2 = 0.

∗ ∗ ∗ ∗ ∗
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