Robotics II

September 11, 2019

Exercise 1

Consider the 3R robot in Fig. 1. moving on a horizontal plane. The robot has identical links (each of length L, uniformly distributed mass m, and inertia $I_{L}=m L^{2} / 12$ around the barycentral vertical axis) and is commanded at the joint level by torques $\boldsymbol{\tau}(t) \in \mathbb{R}^{3}$. Neglect in the following any dissipative/friction effects. With the system at $t=0$ in a generic initial state $(\boldsymbol{q}(0), \dot{\boldsymbol{q}}(0))=\left(\boldsymbol{q}_{0}, \dot{\boldsymbol{q}}_{0}\right)$ with $\dot{\boldsymbol{q}}_{0} \neq \mathbf{0}$, we want to control the robot so that its kinetic energy $T=T(\boldsymbol{q}, \dot{\boldsymbol{q}})$ in the closed-loop dynamics satisfies the following desired target equation:

$$
\frac{d T}{d t}=-\gamma T, \quad \text { with } \gamma>0 .
$$

Determine the expression of the control law $\boldsymbol{\tau}=\boldsymbol{\tau}(\boldsymbol{q}, \dot{\boldsymbol{q}})$ that realizes this behavior. For $L=0.2[\mathrm{~m}]$, $m=3[\mathrm{~kg}], \boldsymbol{q}_{0}=(0, \pi / 2, \pi / 2)[\mathrm{rad}], \dot{\boldsymbol{q}}_{0}=(0,-\pi,-\pi)[\mathrm{rad} / \mathrm{s}]$ and $\gamma=1$, compute the numerical value of such a control torque at $t=0$, i.e., $\boldsymbol{\tau}(0)$.

Figure 1: A 3R robot moving on a horizontal plane, and its coordinates $\boldsymbol{q}=\left(q_{1}, q_{2}, q_{3}\right)$.

Exercise 2

The RP planar robot shown in Fig. 2 should execute a rest-to-rest motion task in minimum time under torque/force bounds $\left|\tau_{i}\right| \leq \tau_{\max , i}>0, i=1,2$, with its end-effector moving along a circular path of radius $R>d$ by an angle α from A to B. Determine the analytic expression of the minimum time T^{*} in terms of the task data and of the robot dynamic parameters. Draw the profile of the two components of the time-optimal command $\boldsymbol{\tau}^{*}(t)$, for $t \in\left[0, T^{*}\right]$.

Figure 2: A RP robot moving its end-effector along a circular path on a horizontal plane.

Exercise 3

With reference to Fig. 3, a mass m_{1} is moving at constant speed $v_{0}>0$ and collides at some time $t=t_{c}$ with a mass m_{2} which is initially at rest. Assume a purely ideal situation: there is no dissipation due to friction and the collision is perfectly elastic. Therefore, the total kinetic energy T and the total (scalar) momentum P of the two masses will both remain constant over time. Determine the expressions of the velocities $v_{1}\left(t_{c}^{+}\right)$and $v_{2}\left(t_{c}^{+}\right)$of the two masses after the collision. Describe what happens when $m_{1}>m_{2}$, $m_{1}=m_{2}$, or $m_{1}<m_{2}$, and in the limit cases when $m_{2} \rightarrow 0$ or $m_{2} \rightarrow \infty$.

Figure 3: A mass m_{1} in motion collides with a second mass m_{2} initially at rest.

Solution

September 11, 2019

Exercise 1

The dynamic model of a frictionless robot in the absence of gravity is given by

$$
\begin{equation*}
\boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\boldsymbol{S}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}}=\boldsymbol{\tau} \tag{1}
\end{equation*}
$$

where any factorization matrix \boldsymbol{S} can be used for the (quadratic) Coriolis and centrifugal terms. From the expression of the kinetic energy $T=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$, we obtain

$$
\begin{equation*}
\dot{T}=\frac{d T}{d t}=\dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \ddot{\boldsymbol{q}}+\frac{1}{2} \dot{\boldsymbol{q}}^{T} \dot{\boldsymbol{M}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}^{T}(\boldsymbol{\tau}-\boldsymbol{S}(\boldsymbol{q}, \dot{\boldsymbol{q}}) \dot{\boldsymbol{q}})+\frac{1}{2} \dot{\boldsymbol{q}}^{T} \dot{\boldsymbol{M}}(\boldsymbol{q}) \dot{\boldsymbol{q}}=\dot{\boldsymbol{q}}^{T} \boldsymbol{\tau} \tag{2}
\end{equation*}
$$

where we have used 11 and the principle of energy conservation (implying $\dot{\boldsymbol{q}}^{T}(\dot{\boldsymbol{M}}(\boldsymbol{q})-2 \boldsymbol{S}(\boldsymbol{q}, \dot{\boldsymbol{q}})) \dot{\boldsymbol{q}} \equiv 0$, $\forall(\boldsymbol{q}, \dot{\boldsymbol{q}}))$. In order to impose the desired behavior to the Kinetic energy, it follows immediately that

$$
\begin{equation*}
\dot{T}=\dot{\boldsymbol{q}}^{T} \boldsymbol{\tau}=-\gamma T=-\frac{\gamma}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} \quad \Longrightarrow \quad \boldsymbol{\tau}=-\frac{\gamma}{2} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}} \tag{3}
\end{equation*}
$$

The control law should apply a torque that is the (scaled) negative value of the current generalized momentum $\boldsymbol{p}=\boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}}$ of the robot.
To realize (3), one needs to derive only the inertia matrix $\boldsymbol{M}(\boldsymbol{q})$ for the 3 R planar robot at hand. The kinetic energy is given by

$$
T=\sum_{I=1}^{3} T_{i}, \quad T_{i}=\frac{1}{2} m\left\|\boldsymbol{v}_{c i}\right\|^{2}+\frac{1}{2} I_{L} \omega_{z, i}^{2}, \quad i=1,2,3
$$

We compute first

$$
T_{1}=\frac{1}{2} m\left(\frac{L}{2} \dot{q}_{1}\right)^{2}+\frac{1}{2} I_{L} \dot{q}_{1}^{2} \quad\left(\cdots=\frac{1}{2} m \frac{L^{2}}{3} \dot{q}_{1}^{2}\right)
$$

Then, from

$$
\boldsymbol{p}_{c 2}=\binom{L \cos q_{1}+(L / 2) \cos \left(q_{1}+q_{2}\right)}{L \sin q_{1}+(L / 2) \sin \left(q_{1}+q_{2}\right)} \quad \Rightarrow \quad \boldsymbol{v}_{c 2}=\binom{-L \sin q_{1} \dot{q}_{1}-(L / 2) \sin \left(q_{1}+q_{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right)}{L \cos q_{1} \dot{q}_{1}+(L / 2) \cos \left(q_{1}+q_{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right)}
$$

and

$$
\begin{gathered}
\boldsymbol{p}_{c 3}=\binom{L\left(\cos q_{1}+\cos \left(q_{1}+q_{2}\right)\right)+(L / 2) \cos \left(q_{1}+q_{2}+q_{3}\right)}{L\left(\sin q_{1}+\sin \left(q_{1}+q_{2}\right)\right)+(L / 2) \sin \left(q_{1}+q_{2}+q_{3}\right)} \\
\Rightarrow \quad \boldsymbol{v}_{c 3}=\binom{-L\left(\sin q_{1} \dot{q}_{1}+\sin \left(q_{1}+q_{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right)\right)-(L / 2) \sin \left(q_{1}+q_{2}+q_{3}\right)\left(\dot{q}_{1}+\dot{q}_{2}+\dot{q}_{3}\right)}{L\left(\cos q_{1} \dot{q}_{1}+\cos \left(q_{1}+q_{2}\right)\left(\dot{q}_{1}+\dot{q}_{2}\right)\right)+(L / 2) \cos \left(q_{1}+q_{2}+q_{3}\right)\left(\dot{q}_{1}+\dot{q}_{2}+\dot{q}_{3}\right)},
\end{gathered}
$$

we obtain

$$
T_{2}=\frac{1}{2} m\left(L^{2} \dot{q}_{1}^{2}+\frac{L^{2}}{4}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+L^{2} \cos q_{2} \dot{q}_{1}\left(\dot{q}_{1}+\dot{q}_{2}\right)\right)+\frac{1}{2} I_{L}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}
$$

and

$$
\begin{aligned}
T_{3}= & \frac{1}{2} m \\
& \left(L^{2} \dot{q}_{1}^{2}+L^{2}\left(\dot{q}_{1}+\dot{q}_{2}\right)^{2}+2 L^{2} \cos q_{2} \dot{q}_{1}\left(\dot{q}_{1}+\dot{q}_{2}\right)+\frac{L^{2}}{4}\left(\dot{q}_{1}+\dot{q}_{2}+\dot{q}_{3}\right)^{2}\right. \\
& \left.+L^{2}\left(\cos \left(q_{2}+q_{3}\right) \dot{q}_{1}+\cos q_{3}\left(\dot{q}_{1}+\dot{q}_{2}\right)\right)\left(\dot{q}_{1}+\dot{q}_{2}+\dot{q}_{3}\right)\right)+\frac{1}{2} I_{L}\left(\dot{q}_{1}+\dot{q}_{2}+\dot{q}_{3}\right)^{2}
\end{aligned}
$$

Therefore, using the compact notation for trigonometric functions and substituting for $I_{L}=m L^{2} / 12$, the inertia matrix is

$$
\boldsymbol{M}(\boldsymbol{q})=m L^{2}\left(\begin{array}{ccc}
4+3 c_{2}+c_{3}+c_{23} & \frac{5}{3}+\frac{3}{2} c_{2}+c_{3}+\frac{1}{2} c_{23} & \frac{1}{3}+\frac{1}{2}\left(c_{3}+c_{23}\right) \tag{4}\\
\text { symm } & \frac{5}{3}+c_{3} & \frac{1}{3}+\frac{1}{2} c_{3} \\
& & \frac{1}{3}
\end{array}\right)
$$

Finally, evaluating the control law at $\boldsymbol{q}_{0}=(0, \pi / 2, \pi / 2)[\mathrm{rad}]$ and $\dot{\boldsymbol{q}}_{0}=(0,-\pi,-\pi)[\mathrm{rad} / \mathrm{s}]$ and with the data $L=0.2[\mathrm{~m}], m=3[\mathrm{~kg}]$ (thus $I_{L}=0.01\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$) and $\gamma=1$, gives

$$
\boldsymbol{\tau}(0)=-\frac{1}{2} \boldsymbol{M}\left(\boldsymbol{q}_{0}\right) \dot{\boldsymbol{q}}_{0}=-\frac{1}{2} \cdot \frac{3}{25}\left(\begin{array}{ccc}
3 & \frac{7}{6} & -\frac{1}{6} \tag{5}\\
\frac{7}{6} & \frac{5}{3} & \frac{1}{3} \\
-\frac{1}{6} & \frac{1}{3} & \frac{1}{3}
\end{array}\right)\left(\begin{array}{c}
0 \\
-\pi \\
-\pi
\end{array}\right)=\frac{\pi}{2}\left(\begin{array}{c}
0.12 \\
0.24 \\
0.08
\end{array}\right)=\left(\begin{array}{c}
0.1885 \\
0.3770 \\
0.1257
\end{array}\right)[\mathrm{Nm}]
$$

Exercise 2

We start by deriving the dynamic model of the RP planar robot in Fig. 22 For the kinetic energy

$$
T=T_{1}+T_{2}=\frac{1}{2} \dot{\boldsymbol{q}}^{T} \boldsymbol{M}(\boldsymbol{q}) \dot{\boldsymbol{q}},
$$

since $\boldsymbol{p}_{c 2}=\left(q_{2}-d\right)\left(\begin{array}{ll}\cos q_{1} & \sin q_{1}\end{array}\right)^{T}$ and $\boldsymbol{v}_{c 2}=\dot{\boldsymbol{p}}_{c 2}$, we have

$$
T_{1}=\frac{1}{2} I_{c 1} \dot{q}_{1}^{2}, \quad T_{2}=\frac{1}{2} I_{c 2} \dot{q}_{1}^{2}+\frac{1}{2} m_{2}\left\|\boldsymbol{v}_{c 2}\right\|^{2}=\frac{1}{2}\left(I_{c 2}+m_{2}\left(q_{2}-d\right)^{2}\right) \dot{q}_{1}^{2}+\frac{1}{2} m_{2} \dot{q}_{2}^{2},
$$

with an obvious interpretation of the dynamic parameters. The robot inertia matrix is then

$$
\boldsymbol{M}(\boldsymbol{q})=\left(\begin{array}{cc}
I_{c 1}+I_{c 2}+m_{2}\left(q_{2}-d\right)^{2} & 0 \tag{6}\\
0 & m_{2}
\end{array}\right) .
$$

From this, we compute the Coriolis/centrifugal terms using the matrices of Christoffel symbols

$$
\boldsymbol{C}_{i}(\boldsymbol{q})=\frac{1}{2}\left[\left(\frac{\partial \boldsymbol{m}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)+\left(\frac{\partial \boldsymbol{m}_{i}(\boldsymbol{q})}{\partial \boldsymbol{q}}\right)^{T}-\left(\frac{\partial \boldsymbol{M}(\boldsymbol{q})}{\partial q_{i}}\right)\right], \quad i=1,2 .
$$

We obtain

$$
\boldsymbol{C}_{1}(\boldsymbol{q})=\left(\begin{array}{cc}
0 & m_{2}\left(q_{2}-d\right) \\
m_{2}\left(q_{2}-d\right) & 0
\end{array}\right), \quad \boldsymbol{C}_{2}(\boldsymbol{q})=\left(\begin{array}{cc}
-m_{2}\left(q_{2}-d\right) & 0 \\
0 & 0
\end{array}\right),
$$

and thus

$$
\begin{equation*}
\boldsymbol{c}(\boldsymbol{q}, \dot{\boldsymbol{q}})=\binom{\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{1}(\boldsymbol{q}) \dot{\boldsymbol{q}}}{\dot{\boldsymbol{q}}^{T} \boldsymbol{C}_{2}(\boldsymbol{q}) \dot{\boldsymbol{q}}}=\binom{2 m_{2}\left(q_{2}-d\right) \dot{q}_{1} \dot{q}_{2}}{-m_{2}\left(q_{2}-d\right) \dot{q}_{1}^{2}} . \tag{7}
\end{equation*}
$$

From (6) and (7), we write the (unconstrained) dynamic equations in their scalar form as

$$
\begin{align*}
\left.\left(I_{c 1}+I_{c 2}+m_{2}\left(q_{2}-d\right)^{2}\right)\right) \ddot{q}_{1}+2 m_{2}\left(q_{2}-d\right) \dot{q}_{1} \dot{q}_{2} & =\tau_{1}, \tag{8}\\
m_{2} \ddot{q}_{2}-m_{2}\left(q_{2}-d\right) \dot{q}_{1}^{2} & =\tau_{2} . \tag{9}
\end{align*}
$$

In order to execute the task, the second joint variable should remain constant at all times, namely $q_{2}=R$, $\dot{q}_{2}=\ddot{q}_{2}=0$. Therefore, from (8) with $q_{2}=R$ and $\dot{q}_{2}=0$, the robot dynamics along the path can be described by

$$
\begin{equation*}
I_{0} \ddot{q}_{1}=\tau_{1}, \quad \text { with } I_{0}=I_{c 1}+I_{c 2}+m_{2}(R-d)^{2}>0, \tag{10}
\end{equation*}
$$

whereas, from (9) used as inverse dynamics with $q_{2}=R$ and $\ddot{q}_{2}=0$, the second motor should apply the force

$$
\begin{equation*}
\tau_{2}(t)=-m_{2}(R-d) \dot{q}_{1}^{2}(t) \tag{11}
\end{equation*}
$$

in order to have the end-effector remaining perfectly on the path. Equations 10 11) are the core of the solution. Based on the linear dynamics 10, to perform the desired rest-to-rest motion task in minimum time, the first motor should apply a bang-bang torque profile $\tau_{1}(t)$ (with maximum positive and negative torque $\pm \tau_{\max , 1}$, each applied for half of the motion interval). The total motion time should be sufficient to complete the rotation $\Delta q_{1}=\alpha>0$. Again from 10 , this corresponds to using a maximum (absolute) acceleration bound in the definition of the time-optimal motion of joint 1, i.e,

$$
\begin{equation*}
\left|\ddot{q}_{1}\right| \leq A_{\max , 1}=\frac{\tau_{\max , 1}}{I_{0}} . \tag{12}
\end{equation*}
$$

While doing so, however, the velocity $\dot{q}_{1}(t)$ of the first joint will increase linearly and, according to 11), the force that the second motor needs to apply in order to keep the robot end-effector on the path will increase quadratically. As a result, the second actuator may exceed its dynamic capabilities. Therefore, the bound $\left|\tau_{2}\right| \leq \tau_{\max , 2}$ will impose also a bound $V_{\max , 1}$ on the (absolute) velocity that the first joint can reach. We have1

$$
\begin{equation*}
\left|\tau_{2}\right|=m_{2}(R-d) \dot{q}_{1}^{2} \leq \tau_{\max , 2} \quad \Longrightarrow \quad\left|\dot{q}_{1}\right| \leq V_{\max , 1}=\sqrt{\frac{\tau_{\max , 2}}{m_{2}(R-d)}} \tag{13}
\end{equation*}
$$

Under the combined velocity/torque (viz. velocity/acceleration) bounds for the motion of joint 1, the minimum time solution will have in general a bang-coast-bang profile for the first torque (and its acceleration as well). The motion time T^{*} is computed then from known formulas.

[^0]If $\alpha>V_{\max , 1}^{2} / A_{\max , 1}$, a coast phase will exist. Then

$$
\begin{equation*}
T_{s}=\frac{V_{\max , 1}}{A_{\max , 1}} \quad \Longrightarrow \quad\left(T^{*}-T_{s}\right) V_{\max , 1}=\alpha \quad \Longrightarrow \quad T^{*}=\frac{\alpha}{V_{\max , 1}}+\frac{V_{\max , 1}}{A_{\max , 1}}, \tag{14}
\end{equation*}
$$

where one should replace the definitions of bounds in (12) and 13). The (qualitative) plots of the resulting torque/force vector $\boldsymbol{\tau}^{*}(t)$ are reported in Fig. 4 The second joint force $\tau_{2}^{*}(t)$ follows from (11), with a quadratic time profile where the velocity of the first joint is linear in time and a constant value where \dot{q}_{1} is constant. The other special cases (with pure bang-bang commands) are treated similarly.

Figure 4: Optimal profiles of the torque τ_{1}^{*}, of the related velocity \dot{q}_{1}^{*}, and of the force τ_{2}^{*} for the requested rest-to-rest minimum time motion of the RP robot in Fig. 2 .

Exercise 3

This is a simple application of conservation principles of the total kinetic energy T and total momentum P (along the direction x) for the system with the two masses m_{1} and m_{2}. In formulas,

$$
T(t)=\frac{1}{2} m_{1} v_{1}^{2}(t)+\frac{1}{2} m_{2} v_{2}^{2}(t)=\text { constant }, \quad P(t)=m_{1} v_{1}(t)+m_{2} v_{2}(t)=\text { constant }, \quad \forall t .
$$

We apply these identities around the collision time $t=t_{c}$, just before ($t=t_{c}^{-}$) and just after $\left(t=t_{c}^{+}\right)$. Let

$$
v_{1}=v_{1}\left(t_{c}^{+}\right), \quad v_{1}\left(t_{c}^{-}\right)=v_{0}>0, \quad v_{2}=v_{2}\left(t_{c}^{+}\right), \quad v_{2}\left(t_{c}^{-}\right)=0,
$$

where v_{1} and v_{2} are the unknowns of our problem. Thus,

$$
\begin{equation*}
\frac{1}{2} m_{1} v_{1}^{2}+\frac{1}{2} m_{2} v_{2}^{2}=\frac{1}{2} m_{1} v_{0}^{2} \tag{15}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1} v_{1}+m_{2} v_{2}=m_{1} v_{0} \tag{16}
\end{equation*}
$$

Equations (15) and 16) are rewritten respectively as

$$
\begin{equation*}
m_{1}\left(v_{1}^{2}-v_{0}^{2}\right)+m_{2} v_{2}^{2}=m_{1}\left(v_{1}-v_{0}\right)\left(v_{1}+v_{0}\right)+m_{2} v_{2}^{2}=0 \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
m_{1}\left(v_{1}-v_{0}\right)=-m_{2} v_{2} . \tag{18}
\end{equation*}
$$

Substituting (18) in 17) and simplifying yields

$$
\begin{equation*}
v_{2}=v_{1}+v_{0} . \tag{19}
\end{equation*}
$$

Plugging 19 back into 16 leads to

$$
\begin{equation*}
m_{1} v_{1}+m_{2}\left(v_{1}+v_{0}\right)=m_{1} v_{0} \quad \Longrightarrow \quad v_{1}=\frac{m_{1}-m_{2}}{m_{1}+m_{2}} v_{0} . \tag{20}
\end{equation*}
$$

Finally, substituting v_{1} in gives

$$
\begin{equation*}
v_{2}=\frac{2 m_{1}}{m_{1}+m_{2}} v_{0} . \tag{21}
\end{equation*}
$$

From 20 21, we conclude that:

$$
\left\{\begin{array}{llll}
m_{2} \rightarrow 0 & \Longrightarrow & v_{1}=v_{0}>0, & v_{2}=2 v_{0}>0 \\
m_{2}<m_{1} & \Longrightarrow & v_{0}>v_{1}>0, & v_{2}>v_{0}>0 \\
m_{2}=m_{1} & \Longrightarrow & v_{1}=0, & v_{2}=v_{0}>0 \\
m_{2}>m_{1} & \Longrightarrow & -v_{0}<v_{1}<0, & 0<v_{2}<v_{0} \\
m_{2} \rightarrow \infty & \Longrightarrow & v_{1}=-v_{0}<0, & v_{2}=0
\end{array}\right.
$$

[^0]: ${ }^{1}$ Note that $R-d>0$ by assumption, so the argument of the square root is positive.

