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Exercise 1

The 3R planar robot in Fig. 1 is commanded at the joint velocity level. The robot has to perform two
tasks simultaneously, if possible. The first task is to keep the second link vertical and upwards at any time.
The second task is to follow a desired cyclic Cartesian trajectory pd(t) ∈ R2, t ∈ [0, T ], for the end-effector
position. Provide the actual expressions of all terms in a task priority control law, with the given order
of tasks. Determine the robot configurations for which both tasks can be perfectly executed together, and
define accordingly the region of the plane where this can happen. Which would be the control law in this
case? With link lengths L1 = L2 = L3 = 0.5 [m], compute the numerical value of q̇ ∈ R3 using the task

priority law at q0 =
(

0 π/2 −π/2
)T

[rad] for ṗd =
(

0.1 −0.5
)T

[m/s]. Finally, when errors are present
during the execution of these tasks, how should the control law be modified in order to reduce them?
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Figure 1: A 3R planar robot with its joint variables and generic link lengths.

Exercise 2

The RP planar robot shown in Fig. 2 lives in a vertical plane and may collide with some (human) obstacle
when in motion. Its controller is therefore equipped with a momentum-based collision detection algorithm
that generates a residual vector r ∈ R2 as monitoring signal. Provide the explicit symbolic expressions
of the two scalar components of r (introduce the needed kinematic and/or dynamic quantities). Suppose
that, at time t = tc, a collision occurs on the robot tip with an impact force F c that is purely normal to
the second link. What will be the instantaneous value of the time derivative of the residual vector ṙ(tc)?
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Figure 2: A RP robot moving in a vertical plane.

Exercise 3

An actuated pendulum under gravity should perform a rest-to-rest swing-up maneuver from the downward
position θ(0) = 0 to the upward position θ(T ) = π in a total time T , using a bang-coast-bang acceleration
profile with symmetric acceleration and deceleration phases, each of duration Ts = T/4. The link of
the pendulum is a thin rod of length l = 2 [m], with uniformly distributed mass m = 10 [kg] and
baricentral inertia Ic = ml2/12 [kg·m2]. The motor at the link base can deliver a maximum absolute
torque τmax = 200 [Nm]. Determine the minimum time Tmin in the chosen class of trajectories such that
the motion is feasible. Sketch the resulting angular position, velocity, acceleration, and torque profiles.

[open books, 210 minutes]



Solution
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Exercise 1

We will use throughout the DH coordinates indicated in Fig. 2. The first task, i.e., keeping the second link
vertical and upwards, is one-dimensional (m1 = 1) and is specified by

f1(q) = q1 + q2 = rd1 =
π

2
⇒ J1 =

∂f1(q)

∂q
=
(

1 1 0
)T
, ṙd1 = 0.

The second task, i.e., following a desired cyclic Cartesian trajectory pd(t) with the robot tip, is two-
dimensional (m2 = 2) and is specified by

f2(q) =

(
L1c1 + L2c12 + L3c123

L1s1 + L2s12 + L3s123

)
= rd2 = pd(t)

⇒ J2(q) =
∂f2(q)

∂q
=

(
−(L1s1 + L2s12 + L3s123) −(L2s12 + L3s123) −L3s123

L1c1 + L2c12 + L3c123 L2c12 + L3c123 L3c123

)
, ṙd2 = ṗd.

with the usual compact notation for the trigonometric functions (e.g., c12 = cos(q1 + q2)).

The basic Task Priority (TP) method for two ordered tasks provides

q̇ = J#
1 ṙd1 +

(
I − J#

1 J1

)
v1, with v1 =

(
J2(q)(I − J#

1 J1)
)# (

ṙd2 − J2(q)J#
1 ṙd1

)
, (1)

where P 1 = I − J#
1 J1 is the (here, constant) projection matrix in the null space of the first task and no

extra term has been used in the null space of the second task (v2 = 0). Since ṙd1 = 0 in this case, and
being P (JP )# = (JP )# for any projection matrix P , equation (1) simplifies to

q̇ = (J2(q)P 1)# ṗd. (2)

From

J#
1 =

 0.5

0.5

0

 , P 1 =

 0.5 −0.5 0

−0.5 0.5 0

0 0 1

 ,

we have

J2(q)P 1 =

(
−0.5L1s1 0.5L1s1 −L3s123

0.5L1c1 −0.5L1c1 L3c123

)
. (3)

While the first two columns of the matrix in (3) are always dependent, it is easy to see that its rank is
full unless sin(q2 + q3) = 0. With the joint velocity command (2), the first task will always be satisfied if
the constraint f1(q) = π/2 holds at the start, whereas the second task will be satisfied either exactly or
in a least squares sense, depending on the current robot configuration and on the direction of the desired
velocity ṗd.

In order to verify when both tasks can be achieved simultaneously, we impose q1(t) + q2(t) ≡ π/2 at all
times. From the direct kinematics of the robot tip p = f2(q), one obtains then the reduced form

pred = f2(q)|q1+q2=π/2 =

(
L1c1 − L3s3

L1s1 + L2 + L3c3

)
= pred(q1, q3).

In order to keep the constraint on the first task satisfied, we need to have q̇2 = −q̇1 for the second joint

command. The two remaining joints qred =
(
q1 q3

)T
will produce a tip velocity

ṗred = J red(qred)q̇red, with J red(qred) =
∂pred(qred)

∂qred
=

(
−L1s1 −L3c3

L1c1 −L3s3

)
, q̇red =

(
q̇1

q̇3

)
.
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As a result, the robot will be able to generate also any desired ṗred = ṗd ∈ R2, provided that

detJ red = L1L3 cos(q3 − q1) 6= 0 ⇐⇒ q3 6= q1 ±
π

2
. (4)

The actual region of the plane where the two tasks can be performed simultaneously is illustrated in Fig. 3
for some specific but arbitrary values of the link lengths. The second link is always kept vertical and
upwards. The circular annulus has outer radius Rout, inner radius Rin, and center CWS on the axis y0,
computed by simple geometric reasoning as

Rout =
(L1 + L2 + L3)− (−L1 + L2 − L3)

2
= L1 + L3, Rin = Rout − 2L3 = |L1 − L3| ,

and

CWS =
(L1 + L2 + L3) + (−L1 + L2 − L3)

2
= L2.

For L1 =L2 =L3 =L, this is a full circle (Rin = 0) of radius Rout = 2L, centered at CWS = L on axis y0.
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Figure 3: The Cartesian region of compatibility for both tasks (drawn for a specific set of link lengths).

As mentioned, when q1 + q2 = π/2 and (4) hold, then the TP method (2) will generate the exact (and
unique) solution for both tasks. In these conditions, the same solution is obtained with q̇red = J−1

red(qred)ṗd
and q̇2 = −q̇red,1. Equivalently, because of the assumed consistency of the two tasks, the problem can be
solved also by the Extended Jacobian method (since n = m1 +m2 = 3):

ṙ =

(
ṗ1

ṗ2

)
=

(
J1

J2(q)

)
q̇ = JE(q)q̇ ⇒ q̇ = J−1

E (q)ṙd = J−1
E (q)

(
0

ṗd

)
. (5)

We have in fact detJE(q) = −L1L3 sin(q2 + q3). So, when the second link is kept vertical and upwards
(q1 + q2 = π/2), the two singularities of the Extended Jacobian matrix (q2 + q3 = {0, π}) correspond
exactly to having q3 = q1 ± π/2, i.e., the violation of condition (4).

With the link lengths L1 = L2 = L3 = 0.5 [m] and for the given desired tip velocity ṗd =
(

0.1 −0.5
)T

[m/s],

when the robot is, e.g., in the configuration qb =
(

0 π/2 π/3
)T

(condition (4) holds), then

JE(qb) =

(
J1

J2(qb)

)
=

 1 1 0

−0.75 −0.75 −0.25

0.067 −0.433 −0.433

 , (J2(qb)P 1)# =

 −3.4641 2

3.4641 −2

−4 0

 ,
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and the joint velocity provided by (2) or by (5) is

q̇b = (J2(qb)P 1)# ṗd = J−1
E (qb)

(
0

ṗd

)
=

−1.3464

1.3464

−0.4

 [rad/s] ⇒


J1q̇b = 0 = ṙd1

J2(qb)q̇b =

(
0.1

−0.5

)
= ṙd2.

On the other hand, when the robot is in the requested configuration q0 =
(

0 π/2 −π/2
)T

[rad], the two
tasks are inconsistent (condition (4) is violated). In this situation, the robot end effector is on the outer
boundary of the Cartesian region of compatibility, and the desired tip velocity points outside. The task
priority law (2) provides in this case

q̇0 = (J2(q0)P 1)# ṗd =

 0 2/3

0 −2/3

0 4/3

( 0.1

−0.5

)
=

−1/3

1/3

−2/3

 [rad/s] ⇒


J1q̇0 = 0 = ṗd1

J2(q0)q̇0 =

(
0

−0.5

)
= ṗ0 6= ṗd.

Note that the computed solution q̇0 will realize only part of the desired tip velocity ṗd requested as
secondary task, namely the component of ṗd ∈ R{J2(q0)} (see Fig. 4).
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Figure 4: The specified secondary task velocity ṗd for the actual 3R planar robot in the configuration q0
and the realized one ṗ0.

Finally, suppose that errors e1 = rd1−f1(q) = π/2−(q1+q2) 6= 0 and/or e2 = rd2−f2(q) = pd−f2(q) 6= 0
are present during the simultaneous execution of the tasks. The task priority scheme (1) will be modified
by introducing an error feedback term in both tasks as

q̇c = J#
1 (ṙd1 + k1e1) + P 1 (J2(q)P 1)#

(
ṙd2 +K2e2 − J2(q)J#

1 (ṙd1 + k1e1)
)

= J#
1 k1e1 + (J2(q)P 1)#

(
ṗd +K2e2 − J2(q)J#

1 k1e1
)
,

(6)

with a scalar gain k1 > 0 and a (typically, diagonal) matrix gain K2 > 0. Since J1q̇c = k1e1, we always
have ė1 = −k1e1 and the error on the first task will exponentially converge to zero. On the other hand,
the control law (6) will generate the largest possible reduction (or, in the worst case, the smallest increase)
of the error on the second task, without ever affecting the first task.

Exercise 2

Based on the dynamic model of the RP planar robot

M(q)q̈ + c(q, q̇) + g(q) = τ , with c(q, q̇) = S(q, q̇) q̇, (7)
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we need to derive the dynamic elements that appear in the expression of the residual vector

r(t) = KI

[
p(t)−

∫ t

0

(
τ + S T(q, q̇) q̇ − g(q) + r

)
ds− p(0)

]
, (8)

where p = M(q)q̇ is the generalized momentum and matrixKI > 0 is diagonal. Without loss of generality,
we can assume that the robot is at rest at the beginning of the experiment, i.e, p(0) = 0.
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Figure 5: Definition of the relevant dynamic parameters for the RP robot of Fig. 2. Also shown is a
collision force F c acting at the tip along the normal direction to the second link.

With reference to the dynamic parameters defined in Fig. 5, for the kinetic energy

T = T1 + T2 =
1

2
q̇TM(q)q̇,

since pc2 = (q2 − dc2)
(

cos q1 sin q1
)T

and vc2 = ṗc2, we have

T1 =
1

2
Ic1 q̇

2
1 , T2 =

1

2
Ic2 q̇

2
1 +

1

2
m2‖vc2‖2 =

1

2

(
Ic2 +m2(q2 − dc2)2

)
q̇21 +

1

2
m2 q̇

2
2 .

The robot inertia matrix is then

M(q) =

(
Ic1 + Ic2 +m2(q2 − dc2)2 0

0 m2

)
. (9)

From this, we compute the Coriolis/centrifugal terms using the matrices of Christoffel symbols

Ci(q) =
1

2

[(
∂mi(q)

∂q

)
+

(
∂mi(q)

∂q

)T
−
(
∂M(q)

∂qi

)]
, i = 1, 2.

We obtain

C1(q) =

(
0 m2(q2 − dc2)

m2(q2 − dc2) 0

)
, C2(q) =

(
−m2(q2 − dc2) 0

0 0

)
,

and thus

c(q, q̇) =

(
q̇TC1(q)q̇

q̇TC2(q)q̇

)
=

(
2m2 (q2 − dc2) q̇1q̇2

−m2 (q2 − dc2) q̇21

)
. (10)

A factorization c(q.q̇) = S(q, q̇) q̇ in (7) such that Ṁ − 2S is skew-symmetric is given by

S(q, q̇) =

(
q̇TC1(q)

q̇TC2(q)

)
=

(
m2 (q2 − dc2) q̇2 m2 (q2 − dc2) q̇1

−m2 (q2 − dc2) q̇1 0

)
. (11)

For the potential energy
U = U1 + U2 = U(q),

we have
U1 = constant, U2 = m2g0 (q2 − dc2) sin q1,
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and so

g(q) =

(
∂U(q)

∂q

)T
=

(
m2g0 (q2 − dc2) cos q1

m2g0 sin q1

)
. (12)

From the expressions (9) and (11–12), we finally obtain

r1(t) = kI1

[(
Ic1 + Ic2 +m2(q2 − dc2)2

)
q̇1 −

∫ t

0

(τ1 −m2g0 (q2 − dc2) cos q1 + r1) ds

]
,

and

r2(t) = kI2

[
m2q̇2 −

∫ t

0

(
τ2 +m2 (q2 − dc2) q̇21 −m2g0 sin q1 + r2

)
ds

]
.

Suppose now that, at time t = tc, a collision force F c acts at the robot tip in the orthogonal direction
to the second link and with an intensity F 6= 0 (see again Fig. 5). The Jacobian Jc(q) associated to the
contact point and the contact force are then

Jc(q) =

(
−q2 sin q1 cos q1

q2 cos q1 sin q1

)
, F c = F

(
− sin q1

cos q1

)
,

while the resulting torque at the joint is computed as

τ c = JTc (q)F c =

(
F q2

0

)
.

From the nominal behavior of the residual vector r, being r(t) = 0 for all t ∈ [0, tc], it follows that

ṙ(tc) = KI (τ c(tc)− r(tc)) ⇒

{
ṙ1(tc) = kI1F (tc) q2(tc)

ṙ2(tc) = 0.

Although the collision occurs on the second link, the second component of the residual will not be affected
immediately; in fact, F c is not producing work on q2, due to the specific direction assumed for the impact
force.

Exercise 3

The acceleration profile for the rest-to-rest motion trajectory θ(t) is assigned to be of the bang-coast-bang
type, having symmetric initial and final acceleration/deceleration phases, each of duration Ts = T/4 and
with θ̈ = ±A, and a cruising phase that lasts for half of the motion time, i.e., T/2, with constant velocity
θ̇ = V . From this motion structure, it is easy to compute the following quantities:

V = θ̇

(
T

4

)
= A

T

4
, ∆θs = θ

(
T

4

)
=

1

2
A

(
T

4

)2

=
AT 2

32
, ∆θ = θ(T ) = 2∆θs + V

T

2
=

3AT 2

16
.

Thus, for a desired total displacement ∆θ > 0 and a given motion time T , we have for the acceleration A
and cruise velocity V

A =
16∆θ

3T 2
> 0 ⇒ V =

4∆θ

3T
> 0. (13)

The swing-up maneuver from θ(0) = 0 to ∆θ = θ(T ) = π in time T needs then an acceleration/deceleration
A = ±16π/(3T 2) in the first and third motion phases. Note that, when the acceleration phase ends
at time t = Ts = T/4, the performed motion will be ∆θs = ∆θ/6 = π/6. By symmetry, when the
deceleration phase begins at time t = T − Ts = 3T/4, the performed motion completed so far will be
∆θ −∆θs = 5∆θ/6 = 5π/6.

With the above in mind, consider the dynamics of the actuated pendulum

Iθ̈ +mg0d sin θ = τ, (14)
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where θ = 0 corresponds to the downward equilibrium and the dynamic parameters are given by

d =
l

2
= 1 [m], mg0d = 98.1 [kg·m2], I = Ic +md2 =

ml2

12
+m

(
l

2

)2

=
ml2

3
=

40

3
= 13.33 [kg·m2].

By inverse dynamics on (14), the torque needed to perform the desired motion during the three phases is:

τ(t) =


IA+mg0d sin θ(t), θ ∈ [0, π/6), phase I: t ∈ [0, T/4),

mg0d sin θ(t), θ ∈ [π/6, 5π/6), phase II: t ∈ [T/4, 3T/4),

−IA+mg0d sin θ(t), θ ∈ [π/6, π], phase III: t ∈ [3T/4, T ].

(15)

The gravity contribution to the inverse dynamics torque is maximum at the midpoint of motion, i.e., at
θ = π/2, is independent of the total motion time, and is equal to τg = mg0d < τmax. Note that if it
were τg > τmax, then actuation would be too weak to perform the intended task (even when moving the
pendulum very slowly, with an arbitrarily long motion time T ).

Further, from (13) and (15) it is easy to see that, when speeding up motion by uniformly reducing T , the
inertial torque component in the first phase will increase quadratically and the maximum required torque
will be attained at the end of the first phase, where the gravity contribution is the largest (and has the
same sign of the acceleration). Thus, for feasibility we require that

IA+mg0d sin ∆θs =
16πI

3T 2
+mg0d sin

π

6
≤ τmax,

and the optimal motion time will be defined as the lower bound for all feasible motion times,

T ≥

√
16πI

3 (τmax −mg0d sin(π/6))
= Tmin.
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Figure 6: Kinematic (position, velocity, and acceleration) and dynamic (torque) profiles of the minimum
time rest-to-rest swing-up maneuver.

Plugging in the numerical data, we find the optimal time Tmin = 1.2165 [s]. The maximum torque during
motion is indeed τmax = 200 [Nm], reached at the single instant t = Tmin/4 = 0.3041 [s]. Accordingly, we
obtain from (13) A = 11.3212 [rad/s2] and V = 3.4432 [rad/s]. Figure 6 shows the resulting time profiles
of the angular position, velocity and acceleration, and of the commanded torque τ(t).

∗ ∗ ∗ ∗ ∗
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