
Robotics II

July 11, 2018

Exercise 1

Consider a 2R planar robot, with the two links of length l1 and l2, having the actuating motors
mounted on the axes of the two revolute joints. Each motor delivers its torque to the driven link
through an elastic transmission, modeled as a torsional spring of stiffness ki > 0, for i = 1, 2. The
robot has no motion reduction elements. In the ith motor-link assembly, for i = 1, 2, let mmi

and Imi
be, respectively, the balanced mass and the inertia of the rotor of the motor around its

spinning axis, and mi, dci , and Ii the link mass, the distance of the center of mass of the link
from the preceding joint axis, and the link inertia around its center of mass. Using as generalized
coordinates the angle θmi of the rotor of motor i w.r.t. the preceding link axis, and the angle θi
of link i w.r.t. the preceding link axis, for i = 1, 2, define the 4 × 4 inertia matrix M(q) of the
robot, where q = (θT θTm)T . State explicitly any simplifying assumption that you may wish to
use. Moreover, find a linear parametrization of the inertial term M(q) q̈ = YM (q, q̈)a of the robot
dynamic model in terms of a minimal set of p suitable dynamic coefficients ai, i = 1, . . . , p.

Exercise 2

Consider a 4R planar robot with all links of equal length ` = 0.2 [m]. The robot is in the DH
configuration q = ( 0 π/2 0 π/2 )T [rad] and at rest (q̇ = 0). In this state, we should assign to
the end-effector a desired linear acceleration a = ( 5 0 )T [m/s2]. The joint accelerations are taken
as input commands, and are bounded as |q̈i| ≤ Ai, i = 1, . . . , 4, with the limits A1 = 9, A2 = 6,
A3 = 4, and A4 = 2 [rad/s2]. Find, if possible, a feasible joint acceleration q̈ ∈ R4 that executes
instantaneously the desired Cartesian task, while satisfying these hard bounds. A solution with a
lower norm is preferred, and could be obtained by a straightforward variation of the SNS method
moved to the acceleration level.

Exercise 3

In a visual servoing scheme, n point features with coordinates (ui, vi), for i = 1, . . . , n, can be
extracted from the image. Define the 2 × 6 interaction matrix J̄ between the 6D vector of linear
velocity V ∈ R3 and angular velocity Ω ∈ R3 of the camera and the time derivative of the
coordinates (ū, v̄) of the average position of the n point features in the image plane. State all
variables that matrix J̄ depends upon.

Exercise 4

For a robot with n degrees of freedom, partition the generalized coordinates as q = (qa, qb), where
qa has na components, qb has nb components, and na+nb = n. Provide the explicit expressions of
the na-dimensional reduced robot dynamics and of the constraint-preserving forces λ ∈ Rnb , when
the geometric constraint h(q) = qb − qb,d = 0 is imposed at all times, with qb,d being constant.

[240 minutes; open books, but no computer or smartphone]
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Solution

July 11, 2018

Exercise 1

We need to compute the kinetic energy of the two motors and the two links, all in planar motion.
For the motors, we have

Tm1
=

1

2
Im1

θ̇2m1
, Tm2

=
1

2
mm2

l21θ̇
2
1 +

1

2
Im2

(θ̇1 + θ̇m2
)2,

since the first motor is balanced and its center of mass does not move, while the center of mass of
the second motor is placed on the second joint axis at a distance equal to the link length l1.
For the links, we have

Tl1 =
1

2

(
I1 +m1d

2
c1

)
θ̇21, Tl2 =

1

2
m2‖vc2‖2 +

1

2
I2(θ̇1 + θ̇2)2,

with

pc2 =

(
l1 cos θ1 + dc2 cos(θ1 + θ2)

l1 sin θ1 + dc2 sin(θ1 + θ2)

)
, vc2 = ṗc2 =

(
−(l1θ̇1 sin θ1 + dc2(θ̇1 + θ̇2) sin(θ1 + θ2))

l1θ̇1 cos θ1 + dc2(θ̇1 + θ̇2) cos(θ1 + θ2)

)
,

and thus
‖vc2‖2 = l21θ̇

2
1 + d2c2(θ̇1 + θ̇2)2 + 2l1dc2 θ̇1(θ̇1 + θ̇2) cos θ2.

Therefore, having set q =
(
θT θTm

)T
=
(
θ1 θ2 θm1 θm2

)T
. we can write the total kinetic

energy as

T = Tm1
+ Tl1 + Tm2

+ Tl2 =
1

2
q̇TM(q)q̇,

with the 4× 4 inertia matrix of the robot given by

M(q) =


I1 +m1d

2
c1 + I2 +m2d

2
c2 +m2l

2
1

+ Im2
+mm2

l21 + 2m2l1dc2 cos θ2
I2 +m2d

2
c2 +m2l1dc2 cos θ2 0 Im2

I2 +m2d
2
c2 +m2l1dc2 cos θ2 I2 +m2d

2
c2 0 0

0 0 Im1 0

Im2 0 0 Im2

 .

Note that, if we assume that in the kinetic energy of the second motor the contribution of the
angular velocity due to the previous link carrying the motor can be neglected in comparison with
the spinning velocity of the rotor of the motor itself, we would have

Tm2
= · · ·+ 1

2
Im2

(θ̇1 + θ̇m2
)2 ' · · ·+ 1

2
Im2

θ̇2m2
, (1)

and the off-diagonal terms M14 = M41 = Im2
of the inertia matrix would disappear. As a result,

the matrix would become block diagonal, with two 2 × 2 blocks (the second being diagonal) that
pertain to the link kinetic energy and, respectively, to the motor kinetic energy. This assumption
is quite realistic when the motors are connected to the driven links via transmissions with large
reduction ratios (which is not, however, the present case), independently from the presence or not
of elasticity in the transmissions.
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The robot inertia matrix can be rewritten compactly using the following p = 5 dynamic coefficients

a1 = I1 +m1d
2
c1 + I2 +m2l

2
1 + Im2 +mm2 l

2
1

a2 = m2l1dc2

a3 = I2 +m2d
2
c2

a4 = Im1

a5 = Im2 ,

as

M(q) =


a1 + 2a2 cos θ2 a3 + a2 cos θ2 0 a5

a3 + a2 cos θ2 a3 0 0

0 0 a4 0

a5 0 0 a5

 .

Thus, the inertial terms in the robot dynamic model can be given a linearly parametrized form as

M(q)q̈ =


θ̈1 (2θ̈1 + θ̈2) cos θ2 θ̈2 0 θ̈m2

0 θ̈1 cos θ2 θ̈1 + θ̈2 0 0

0 0 0 θ̈m1 0

0 0 0 0 θ̈1 + θ̈m2



a1
a2
a3
a4
a5

 = YM (q, q̈)a.

We remark that the simplifying assumption (1) would eliminate from YM the presence of θ̈m2 in
element YM,15 and of θ̈1 in YM,45, but not reduce the number of dynamic coefficients: as a matter
of fact, p = 5 is the smallest possible number of such coefficients.

Exercise 2

The task Jacobian of the planar 4R robot is given by

J(q) = `

(
− (s1 + s12 + s123 + s1234) − (s12 + s123 + s1234) − (s123 + s1234) −s1234
c1 + c12 + c123 + c1234 c12 + c123 + c1234 c123 + c1234 c1234

)
, (2)

and is used, together with its time derivative J̇(q), in the first- and second-order differential
mappings

v = J(q)q̇, a = J(q)q̈ +J̇(q)q̇, a ∈ R2, q̈ ∈ R4.

Since a minimum norm solution is being sought at the acceleration level, we solve the second-order
differential kinematics in the least squares sense using pseudoinversion as

q̈ = J#(q)
(
a−J̇(q)q̇

)
. (3)

When q = q̄ = ( 0 π/2 0 π/2 )T [rad] and for ` = 0.2 [m], the Jacobian becomes

J := J(q̄) =

(
−0.4 −0.4 −0.2 0

0 −0.2 −0.2 −0.2

)
Having J full rank1, any desired task acceleration a in (3) will be exactly realized in the absence
of bounds, or realized at least in direction (possibly in a scaled form) in case the joint accelerations

1This property is particularly strong in this case, since all 2 × 2 minors are nonsingular in this configuration.
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bounds cannot be satisfied. Moreover, since the robot is at rest (q̇ = 0) in q = q̄, the relation (3)
collapses into

q̈ = J#a. (4)

In this setting, the SNS (Saturation in the Null Space) method presented originally at the velocity
level can be applied without any modification, except for the acceleration limits Ai’s replacing the
velocity ones.
The pseudoinverse solution in (4) provides the joint acceleration with minimum norm. We have

q̈PS = J#a = JT (JJT )−1a =


−1.6667 1.6667

−0.8333 −0.8333

0 −1.6667

0.8333 −2.5


(

5

0

)
=


−8.3333

−4.1667

0

4.1667

 [rad/s2]. (5)

The fourth joint acceleration violates the maximum limit, q̈PS,4 = 4.1667 > 2 = A4, so this is not
a feasible solution. Thus, we search for a feasible solution by using the SNS method.
In step 1 of the SNS method, we saturate the overdriven joint by setting q̈4 = A3 = 2 [rad/s2].
Then, the original task is modified by removing the saturated contribution of the fourth joint
acceleration (and discarding the associated column of J). We rewrite this as

a1 = a− J4A4 =

(
5

0

)
− 2

(
0

−0.2

)
=

(
5

0.4

)
=

(
−0.4 −0.4 −0.2

0 −0.2 −0.2

) q̈1

q̈2

q̈3

 = J−4 q̈−4,

where J−i is the Jacobian obtained by deleting the ith column and, similarly, q̈−i is the vector
of joint accelerations without the ith component. We recompute next the contribution of the
remaining active joints, by pseudoinverting the J−4 matrix for the modified task. We obtain

q̈PS−4
= J#

−4 a1 =

 −2.2222 3.3333

−0.5556 −1.6667

0.5556 −3.3333

( 5

0.4

)
=

 −9.7778

−3.4444

1.4444

 [rad/s2],

to be completed with the additional choice q̈4 = A4 = 2. The first joint acceleration violates now
its limit (on the negative side), q̈PS−4,1 = −9.7778 < −9 = −A1. So. this is not yet a feasible
solution and we proceed with the SNS method.
In step 2, we saturate also the first overdriven joint by setting q̈1 = −A1 = −9 [rad/s2]. The
original task is modified by removing both saturated acceleration contributions by the first and
fourth joints (discarding the two associated columns of J). We rewrite this as

a2 = a− J4A4 − J1(−A1) = a1 + J1A1 =

(
5

0.4

)
+ 9

(
−0.4

0

)
=

(
1.4

0.4

)
and

a2 =

(
1.4
0.4

)
=

(
−0.4 −0.2

−0.2 −0.2

)(
q̈2
q̈3

)
= J−14 q̈−14,

with obvious notation. We recompute next the contribution of the remaining active joints, by
pseudoinverting the (now square and nonsingular) matrix J−23 for the modified task. We obtain

q̈PS−14
= J#

−14 a2 = J−1
−14 a2 =

(
−5 5

5 −10

)(
1.4

0.4

)
=

(
−5

3

)
[rad/s2],
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with q̈1 = −A1 = −9 and q̈4 = A4 = 2. All bounds are now satisfied and the obtained joint
acceleration is feasible. Recomposing the complete vector, we have the solution

q̈SNS =


−9

−5

3

2

 [rad/s2], with Jq̈SNS = a and ‖q̈SNS‖ = 10.9087. (6)

This feasible solution is the one having the least possible norm.

The solution (6) is not the only feasible one. As a matter of fact, one could have attempted a
heuristic procedure to find a (set of) solution(s) in a reasonable but otherwise arbitrary way, e.g.,
by fixing one component of the input acceleration to one of its (upper or lower) limits, and working
out then the rest of the solution. For this, reconsider the original equation to be solved, written
explicitly in terms of a linear system in the joint accelerations (scaling the coefficients so as to
become all integers):

J(q̄) q̈ = a ⇒
(
−0.4 −0.4 −0.2 0

0 −0.2 −0.2 −0.2

)
q̈ =

(
5

0

)
⇐⇒

2q̈1 + 2q̈2 + q̈3 = −25

q̈2 + q̈3 + q̈4 = 0.

By inspection, we find that choosing q̈1 = −A1 = −9 will contribute at best to the solution of
the first scalar equation, being this variable present only in this equation and having the largest
coefficient (and thus the highest sensitivity). In addition, set parametrically q̈4 = α in the second
scalar equation. We have then(

2 1

1 1

)(
q̈2

q̈3

)
=

(
−25 + 2A1

−q̈4

)
=

(
−7

−α

)
⇒

(
q̈2

q̈3

)
=

(
−7 + α

7− 2α

)
,

with the components of the parametric solution that need to satisfy the bounds

|q̈2| ≤ A2 = 6

|q̈3| ≤ A3 = 4

|q̈4| ≤ A4 = 2

⇐⇒

−6 ≤ −7 + α ≤ 6

−4 ≤ 7− 2α ≤ 4

−2 ≤ α ≤ 2

⇒ α ∈ [1.5, 2].

The feasible interval for α comes from the simultaneous intersection of the set of inequalities.
Therefore, we have a parametrized family of feasible solutions in the form

q̈(α) =


−9

−7 + α

7− 2α

α

 [rad/s2], with ‖q̈(α)‖ =
√

6α2 − 42α+ 179, α ∈ [1.5, 2]. (7)

We see immediately that q̈SNS = q̈(α= 2). Moreover, the quadratic polynomial in the norm of
q̈(α) has an unconstrained minimum at α = 3.5, which is outside the interval [1.5, 2] of feasibility
for α. Therefore, the minimum norm is obtained at the upper limit α = 2 of this closed interval,
i.e., with q̈SNS . Any other feasible solution will have a larger norm than q̈SNS .

We finally remark that, in order to find a feasible joint acceleration, a different (say, more con-
ventional) solution would have been to use pseudo-inversion with a scaling of the original task
acceleration a (in intensity, but without a change in direction). This is done as follows. From (5),
we compute the necessary scaling factor s > 1 as

s = max

{
|q̈PS,i|
Ai

, i = 1, . . . , 4

}
= max

{
8.3333

9
,

4.1667

6
,

0

4
,

4.1667

2

}
= 2.0833.
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This value is imposed by the exceeding acceleration of the fourth joint. We compute then

ascaled =
a

s
=

(
2.4

0

)
⇒ q̈PS,scaled = J#ascaled =


−4

−2

0

2

 .

Indeed, the obtained joint acceleration has lower norm than q̈SNS , but realizes in fact only 2.4/5 =
48% of the desired task acceleration of the original problem.

Exercise 3

The interaction matrix of a generic point feature with image coordinates (ui, vi) is known to be

Jpi(ui, vi, Zi) =

 −
λ

Zi
0

ui
Zi

uivi
Zi

−
(
λ+

u2i
λ

)
vi

0 − λ

Zi

vi
Zi

λ+
v2i
λ

−uivi
Zi

−ui

 ,

with (
u̇i
v̇i

)
= Jpi(ui, vi, Zi)

(
V
Ω

)
,

where the parameter λ > 0 is the constant focal length of the camera and Zi is the depth of the
Cartesian point P i ∈ R3 in the pre-image of (ui, vi). The average position of n point features in
the image plane has coordinates

(
ū

v̄

)
=


1

n

∑n
i=1 ui

1

n

∑n
i=1 vi

 =
1

n

n∑
i=1

(
ui

vi

)
.

Therefore(
˙̄u

˙̄v

)
=

1

n

n∑
i=1

(
u̇i

v̇i

)
=

(
1

n

n∑
i=1

Jpi(ui, vi, Zi)

)(
V
Ω

)
= J̄(u,v,Z)

(
V
Ω

)

=

−λn∑n
i=1

1
Zi

0 1
n

∑n
i=1

ui

Zi

1
n

∑n
i=1

uivi
Zi

−
(
λ+ 1

n

∑n
i=1

u2
i

λ

)
v̄

0 −λn
∑n
i=1

1
Zi

1
n

∑n
i=1

vi
Zi

λ+ 1
n

∑n
i=1

v2i
λ − 1

n

∑n
i=1

uivi
Zi

−ū

(V
Ω

)
,

with a dependence of the interaction matrix J̄ on the components of u = (u1 . . . un)T ∈ Rn,
v = (v1 . . . vn)T ∈ Rn, and Z = (Z1 . . . Zn)T ∈ Rn.

Exercise 4

The nb-dimensional geometric constraint

h(q) = qb − qb,d = 0 (8)

has a simple associated Jacobian

A(q) =
∂h(q)

∂q
=
(
O I

)
.
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Therefore, considering the decomposition q = (qa, qb), the dynamic model of the constrained robot
can be partitioned as follows

M(q)q̈+n(q, q̇) = τ+AT(q)λ ⇒

(
Maa(q) Mab(q)

MT
ab(q) M bb(q)

)(
q̈a
q̈b

)
+

(
na(q, q̇)

nb(q, q̇)

)
=

(
τ a

τ b

)
+

(
0

λ

)
,

where n(q, q̇) collects all non-inertial terms in the model and λ ∈ Rnb is the vector of Lagrange
multipliers associated to the geometric constraints.
To obtain a reduced dynamic model (with only n−nb = na independent coordinates), we proceed
in the general way by bordering A(q) with the rows of a matrix D(q), so as to obtain a square
and nonsingular transformation matrix. The situation is particularly simple since A is constant,
and so can be chosen D. A globally valid choice is then(

A

D

)
=

(
O I

I O

)
⇒

(
A

D

)−1

=

(
O I

I O

)
=
(
E F

)
.

Thus, the following bidirectional mappings are established between the generalized velocity q̇ (and
acceleration q̈) and the pseudo-velocity v (and pseudo-acceleration v̇):

v = Dq̇ =
(
I O

)
q̇ = q̇a, v̇ = q̈a ⇐⇒ q̇ = Fv =

(
I

O

)
v, q̈ =

(
I

O

)
v̇.

Dropping dependencies, the reduced inertia matrix and the reduced non-inertial dynamic terms
are computed as

F TMF =
(
I O

)
M

(
I

O

)
= Maa,

F T (τ − n) =
(
I O

)( τ a − na
τ b − nb

)
= τ a − na.

Therefore, taking into account that qb = qb,d and q̇b = q̈b = 0 from (8), the reduced dynamic
model becomes

Maa(qa, qb,d) q̈a + na(qa, qb,d, q̇a,0) = τ a,

while the Lagrange multipliers (i.e., the forces that will preserve the geometric constraints when
attempting their violation) takes the expression

λ = ET (MFv̇ + n− τ ) =
(
O I

)(( ∗
MT

ab

)
q̈a +

(
∗
nb

)
−
(
∗
τ b

))
,

or, by expliciting the dependencies,

λ = MT
ab(qa, qb,d) q̈a + nb(qa, qb,d, q̇a,0)− τ b.

We conclude with two extra comments. The following torque command, expressed as a function
of the constrained robot state and of the arbitrary input torque τ a,

τ b = MT
ab(qa, qb,d) q̈a + nb(qa, qb,d, q̇a,0)

= MT
ab(qa, qb,d)M

−1
aa (qa, qb,d)

(
τ a − na(qa, qb,d, q̇a,0)

)
+ nb(qa, qb,d, q̇a,0),

will guarantee λ ≡ 0 at all times, resulting in a feasible motion with minimal internal effort. On
the other hand, the feedback linearizing control law that achieves (in a decoupled way) a desired
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value a for the acceleration q̈a of the free variables and a desired constraint force λ = λd is given
by

τ =

(
Maa(qa, qb,d)

MT
abqa, qb,d)

)
a+

(
O

I

)
λd + n(qa, qb,d, q̇a,0),

or
τ a = Maa(qa, qb,d)a+ na(qa, qb,d, q̇a,0),

τ b = MT
ab(qa, qb,d)a+ nb(qa, qb,d, q̇a,0) + λd.

∗ ∗ ∗ ∗ ∗
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