
Robotics II
June 11, 2018

Exercise 1

The dynamic model of the planar RP robot in Fig. 1 moving in a vertical plane can be written in
the usual form as

M(q)q̈ + c(q, q̇) + g(q) = τ . (1)

• Define two different matrices S1(q, q̇) and S2(q, q̇) that factorize the Coriolis and centrifugal
terms (i.e., yielding Si(q, q̇)q̇ = c(q, q̇), for i = 1, 2), such that Ṁ − 2S1 is skew-symmetric,
while Ṁ − 2S2 is not.

• Give the explicit symbolic expressions of the terms appearing in the definition of the momentum-
based residual vector r ∈ R2 that allows detection and isolation of collisions.

• Are there situations in which collision forces FK ∈ R2 in the plane of motion lead to poor or
no detection, or to incorrect isolation of the involved link? Discuss the issue.
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Figure 1: A planar RP robot, with the definition of joint variables and parameters.

Exercise 2

Consider an actuated pendulum with a link of (known) length l that moves without friction in the
vertical plane. The pendulum is driven by a DC motor at the base and carries a heavy and unknown
payload. Assume that the motor inertia and the mass and inertia of the link are negligible with
respect to the payload, which should be seen as a concentrated mass m at the tip of the pendulum.
The drive gain ki of the current-to-torque relation τ = ki im of the motor is unknown, and only
the motor current im can be commanded.

Design an adaptive control law for im that achieves global asymptotic tracking of a smooth desired
trajectory θd(t) for the joint angle θ of the pendulum. Provide a (sketch of) proof of your result.
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Exercise 3

With reference to Fig. 2, a mass m > 0 moves under the action of a control force F , in the presence
of viscous friction with coefficient d > 0, and interacts with a stiff environment. We would like to
regulate the contact force Fc to a constant desired value Fd > 0. The contact force is measured by
a load cell of stiffness ks > 0, i.e., Fc = ksx where x = 0 corresponds to the initial contact position
with the environment. Consider a class of control laws of the form

F = αkf (Fd − Fc) + βFd, (2)

where kf > 0, and with:

1. (α, β) = (0, 1) [pure feedforward];

2. (α, β) = (1, 0) [pure proportional feedback];

3. (α, β) = (1, 1) [combined feedback/feedforward].

• For each of the three above control cases, check the system equilibrium and verify its stability
properties, giving a proof of your statements (e.g., via Lyapunov/LaSalle, or using Laplace
analysis in view of the linearity of the system) and briefly discussing the benefits and limitations
of each law.

• How robust are these results with respect to uncertainty in the knowledge of the physical
parameters m. d, and ks?

• Explain what happens under the action of the above control laws when there is no environment
present (Fc ≡ 0). Would the system reach some form of steady state?
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Figure 2: A mass in contact through a load cell with a stiff environment.

[240 minutes; open books, but no computer or smartphone]
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Solution

June 11, 2018

Exercise 1

For later use, we derive the terms in the dynamic model (1) following a Lagrangian approach. The
kinetic energy of the first link is

T1 =
1

2
(I1 +m1d

2
c1)q̇21 .

The position and velocity of the center of mass of the second link are, respectively,

pc2 =

(
l1 cos q1 − (q2 − dc2) sin q1

l1 sin q1 + (q2 − dc2) cos q1

)
, vc2 = ṗc2 =

(
− sin q1(l1q̇1 + q̇2)− (q2 − dc2) cos q1 q̇1

cos q1(l1q̇1 + q̇2)− (q2 − dc2) sin q1 q̇1

)
.

Therefore, the kinetic energy of the second link is

T2 =
1

2
I2 q̇

2
1 +

1

2
m2‖vc2‖2 =

1

2
(I2 +m2(q2 − dc2)2)q̇21 +

1

2
m2(l1q̇1 + q̇2)2.

The kinetic energy of the system is

T = T1 + T2 =
1

2
q̇TM(q)q̇,

with inertia matrix

M(q) =

(
I1 +m1d

2
c1 + I2 +m2l

2
1 +m2(q2 − dc2)2 m2l1

m2l1 m2

)
.

The generallzed momentum of the robot is then

p = M(q)q̇ =

( (
I1 +m1d

2
c1 + I2 +m2(q2 − dc2)2

)
q̇1 +m2l1(l1q̇1 + q̇2)

m2(l1q̇1 + q̇2)

)
. (3)

The Coriolis and centrifugal terms c(q, q̇) are derived using the Christoffel symbols, i.e., for each
component

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T

− ∂M(q)

∂qi

)
, i = 1, 2,

being mi the ith column of the inertia matrix M . We obtain

C1(q) =

(
0 m2(q2 − dc2)

m2(q2 − dc2) 0

)
⇒ c1(q, q̇) = 2m2(q2 − dc2)q̇1q̇2

C2(q) =

(
−m2(q2 − dc2) 0

0 0

)
⇒ c2(q, q̇) = −m2(q2 − dc2)q̇21 ,

and thus

c(q, q̇) =

(
2m2(q2 − dc2)q̇1q̇2

−m2(q2 − dc2)q̇21

)
.
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The potential energy of the robot is

U = U1 + U2 = m1g0 pc1,y +m2g0 pc2,y = m1g0 dc1 sin q1 +m2g0 (l1 sin q1 + (q2 − dc2) cos q1) ,

with g0 = 9.81 [m/s2]. The associated gravity vector is

g(q) =

(
∂U(q)

∂q

)T

=

(
g0 ((m1dc1 +m2l1) cos q1 −m2(q2 − dc2) sin q1)

m2g0 cos q1

)
, (4)

As for the factorizations of the Coriolis and centrifugal terms, using again the definition of Christof-
fel symbols, we compute

S1(q, q̇) =

(
q̇TC1(q)

q̇TC2(q)

)
=

(
m2(q2 − dc2)q̇2 m2(q2 − dc2)q̇1

−m2(q2 − dc2)q̇1 0

)
, (5)

which guarantees the skew-symmetry of the matrix

Ṁ − 2S1 =

(
2m2(q2 − dc2)q̇2 0

0 0

)
−

(
2m2(q2 − dc2)q̇2 2m2(q2 − dc2)q̇1

−2m2(q2 − dc2)q̇1 0

)

=

(
0 −2m2(q2 − dc2)q̇1

2m2(q2 − dc2)q̇1 0

)
.

On the other hand, the alternative choice

S2(q, q̇) =

(
0 2m2(q2 − dc2)q̇1

−m2(q2 − dc2)q̇1 0

)
,

which produces another feasible factorization S2(q, q̇)q̇ = c(q, q̇), leads to the matrix

Ṁ − 2S2 =

(
2m2(q2 − dc2)q̇2 −4m2(q2 − dc2)q̇1

2m2(q2 − dc2)q̇1 0

)
that is clearly not skew symmetric. This implies, e.g., that matrix S2 cannot be used in the
definition of the residual vector r for collision detection and isolation.

The definition of the residual is

r(t) = KI

(
p(t)−

∫ t

0

(
τ + ST(q, q̇)q̇ − g(q) + r

)
ds− p(0)

)
, KI > 0, (6)

where p = Mq̇ is given by (3), p(0) = 0 iff q̇(0) = 0 (the robot starts at rest), g is given by (4),
and matrix S should factorize the Coriolis and centrifugal terms so that Ṁ−2S is skew symmetric.
Choosing in particular S = S1 in (5), we have in this case

ST(q, q̇)q̇ =

(
m2(q2 − dc2)q̇2 −m2(q2 − dc2)q̇1

m2(q2 − dc2)q̇1 0

)(
q̇1

q̇2

)
=

(
0

m2(q2 − dc2)q̇21

)
.

The residual r in (6) will be affected by a non-zero contact force FK ∈ R2 lying in the plane
(x,y) and acting on one of the robot links through the joint torque τK = JT

K(q)FK , except for
some singular cases. Essentially, these are directions along which the contact point cannot be given
by means of q̇ a linear velocity in the plane of motion. In the following, we distinguish between
collisions on the first or on the second link (see Fig. 3).
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• Collision on link 1. The position of the contact point along the first link and the associated
contact Jacobian are

pK1 = ρ1

(
cos q1

sin q1

)
, with ρ1 ∈ [0, l1] ⇒ JK1 =

(
− sin q1 0

cos q1 0

)
,

and thus collision is not detected when

FK1 = α

(
cos q1

sin q1

)
, for arbitrary α = ‖FK1‖ ⇒ JT

K1FK1 = 0,

namely, when the contact force is aligned with the first link (Fig. 3a). The closer is the alignment
of FK1 with the axis of link 1, the poorer will be the detection.

• Collision on link 2. The position of the contact point along the second link is1

pK2 =

(
l1 cos q1 − (q2 − ρ2) sin q1

l1 sin q1 + (q2 − ρ2) cos q1

)
= Rot2×2(q1)

(
l1

q2 − ρ2

)
, with ρ2 ∈ [0, l2,max]

and the associated contact Jacobian is

⇒ JK2 =

(
− (l1 sin q1 + (q2 − ρ2) cos q1) − sin q1

l1 cos q1 − (q2 − ρ2) sin q1 cos q1

)
, detJK2 = ρ2 − q2.

Thus, collision is not detected when ρ2 = q2 and

FK2 = α

(
cos q1

sin q1

)
, for arbitrary α = ±‖FK2‖ ⇒ JT

K2|q2=ρ2
FK2 = 0,

namely, when the contact occurs at the second joint location and the force is orthogonal to the
second link (Fig. 3b). On the other hand, we obtain still detection but wrong isolation when
the contact force is orthogonal to the second link, as before, and the contact point is not along
the first link axis (ρ2 6= q2). In this case (see Fig. 3c), we would have

r ' τK2 = JT
K2 FK2 = α · JT

K2

(
cos q1

sin q1

)
=

(
α (q2 − ρ2)

0

)
=

(
∗
0

)
,

indicating incorrectly that a collision occurred on link 1, rather than on link 2. Finally, if

F ′K2 = β

(
l1 cos q1 − (q2 − ρ2) sin q1

l1 sin q1 + (q2 − ρ2) cos q1

)
, for arbitrary β 6= 0,

namely, when the line of action of the contact force passes through the axis of joint 1, we obtain
(see Fig. 3d)

r ' τ ′K2 = JT
K2F

′
K2 =

(
0

β(q2 − ρ2)

)
=

(
0

∗

)
,

indicating correctly that the collision is on link 2 (the largest index with a non-zero component
in r), although the first component of the residual is vanishing (r1 = 0).

1We assume that the prismatic joint has a maximum excursion of q2 ∈ [0, l2,max].
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Figure 3: Possible collision situations leading to no detection or wrong isolation: (a) no detection
of a contact force on link 1; (b) no detection of a contact force on link 2; (c) wrong isolation of a
contact force on link 2; (d) isolation of a contact force on link 2, despite the residual at joint 1 is
not being affected.

Exercise 2

Define as coordinate of the pendulum link its angle θ from the downward vertical (positive if
counterclockwise). Under the simplifying assumptions made, the Lagrangian dynamics of the
actuated pendulum is computed from the kinetic and potential energy

T =
1

2
ml2 θ̇2, U = −mg0 l cos θ,

as
ml2θ̈ +mg0 l sin θ = τ = kiim, (7)

where the drive gain of the DC motor has been included. The unknowns in (7) are the payload
(concentrated) mass m and the drive gain ki. Dividing by ki > 0, this equation can be rewritten
in the standard linearly parametrized form (and without unknown parameters affecting the input)

m

ki
l2θ̈ +

m

ki
g0 l sin θ =

(
l2θ̈ + g0 l sin θ

) m
ki

= Y (θ, θ̈) a = im, (8)

being a = m/ki > 0 the only dynamic coefficient that matters (p = 1). We note that a plays
the role of a scaled mechanical inertia. Being the motor current im the input to the system, it is
easy to derive from eq. (8) an adaptive control law for trajectory tracking that mimics the classical
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one derived when the input is directly the motor torque τ . Given a twice-differentiable desired
trajectory θd(t) for the joint variable, define such adaptive law as

im = Y (θ, θ̈r) â+ kpe+ kdė, kp > 0, kd > 0, e = θd − θ, θ̇r = θ̇d + λe = θ̇d +
kp
kd
e,

˙̂a = γ Y (θ, θ̈r) (θ̇r − θ̇), γ > 0, θ̇r − θ̇ = ė+ λe,
(9)

with

Y (θ, θ̈r) = l2θ̈r + g0 l sin θ, â =

(̂
m

ki

)
∈ R.

The global asymptotic tracking of the smooth trajectory θd(t) can be proven by following the same
arguments as in the classical case, i.e., via a Lyapunov candidate and the use of Barbalat lemma
and LaSalle theorem. However, one should carefully define the candidate by considering the scaled
mechanical inertia of the system. Therefore, noting the absence of dissipative terms, define the
candidate function

V =
1

2

ml2

ki
(θ̇r − θ̇)2 +

1

2
Re2 +

1

2γ
ã2 ≥ 0,

with R = 2kp > 0 and ã = a − â. We have that V = 0 iff e = ė = ã = 0. For the closed-loop
system (8–9), we can write

Y (θ, θ̈) a =
(
l2θ̈ + g0 l sin θ

) m
ki

=
(
l2θ̈r + g0 l sin θ

) (̂m
ki

)
+ kpe+ kdė = Y (θ, θ̈r) â+ kpe+ kdė.

Subtracting both sides of this equality from Y (θ, θ̈r) a, one obtains

Y (θ, θ̈r) a−Y (θ, θ̈) a =
ml2

ki
(θ̈r− θ̈) =

(
l2θ̈r + g0 l sin θ

)
ã−kpe−kdė = Y (θ, θ̈r) ã−kpe−kdė. (10)

Using (10), the time derivative of V computed along the trajectories of the closed-loop system (8–9)
is evaluated as

V̇ =
ml2

ki
(θ̈r − θ̈) (θ̇r − θ̇) + 2kp e ė−

1

γ
ã ˙̂a

=
(
Y (θ, θ̈r) ã− kpe− kdė

)
(θ̇r − θ̇) + 2kp e ė−

1

γ
γ Y (θ, θ̈r) ã (θ̇r − θ̇)

= − (kpe+ kdė) (ė+
kp
kd
e) + 2kp e ė

= − kd ė2 −
k2p
kd
e2 ≤ 0.

The rest of the proof is completed just like in the classical case.

Exercise 3

The dynamic model of the system in Fig. 2 is

mẍ = F − Fc − dẋ,

with all non-conservative forces performing work on x on the right-hand side. Since Fc = ksx (as
the single compliant element in the contact), this equation can be rewritten as

mẍ+ dẋ+ ksx = F, (11)
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with all physical coefficients being positive. Applying the class of force control laws (2) yields

mẍ+ dẋ+ ksx = αkf (Fd − Fc) + βFd = αkf (Fd − ksx) + βFd. (12)

At the equilibrium, ẋ = ẍ = 0, we have

ksx = αkf (Fd − ksx) + βFd,

which is solved for a position x = xe and an associated contact force Fc = Fe = ksxe as

xe =
β + αkf

ks(1 + αkf )
Fd, Fe =

β + αkf
1 + αkf

Fd ⇒ ef = Fd − Fe =
1− β

1 + αkf
Fd. (13)

Therefore, the correct desired contact force Fd is obtained at the equilibrium if and only if β = 1
(presence of the constant feedforward), no matter if α = 0 (no feedback) or α = 1 (combined
situation). In such case, it is in fact

xe =
1

ks
Fd, Fe = Fd ⇒ ef = 0. (14)

On the other hand, for β = 0 and α = 1 (pure proportional feedback), we have at the equilibrium

xe =
kf

ks(1 + kf )
Fd, Fe =

kf
1 + kf

Fd ⇒ ef =
1

1 + kf
Fd, (15)

which shows that only for kf → ∞ (or, for large proportional gains) we can drive the force error
to zero (or, below a given tolerance).

Indeed, we need to show that the above equilibria are asymptotically stable. In view of the linearity
of the system, whenever this property holds, the equilibrium will also be a global, exponentially
stable one.

Consider first the case of a pure feedforward command F = Fd (α = 0, β = 1). The system
dynamics is

mẍ+ dẋ+ ksx = Fd

In order to study the asymptotic stability of the equilibrium (14), we choose as Lyapunov candidate

V1 =
1

2
mẋ2 +

1

2
ks(x− xe)2 ≥ 0 (16)

Its time derivative is evaluated on the controlled system as

V̇1 = mẋẍ+ ks(x− xe)ẋ = ẋ(−dẋ− ksxe + Fd) = −dẋ2 ≤ 0.

We have V̇1 = 0 if and only if ẋ = 0. The system behaves then as mẍ = Fd − ksx, showing that
there will be an acceleration iff the contact force Fc = ksx is different from the desired one. By
LaSalle theorem, we conclude the asymptotic stability of the equilibrium state x = xe, ẋ = 0.
Stated differently, by pushing constantly on the mass with the desired force Fd > 0, a steady
state is reached with the desired contact force (thanks to the asymptotic stability of the original
open-loop system). However, the transient behavior will be specified only by the actual physical
mass m, sensor stiffness ks, and viscous (damping) coefficient d. Moreover, the pure feedforward
scheme is highly sensitive to unmodeled disturbance forces acting on the system.

Consider now the case of a pure proportional feedback of the force error, namely F = kf (Fd −Fc)
(α = 1, β = 0). The closed-loop system is then

mẍ+ dẋ+ ksx = kf (Fd − Fc) = kf (Fd − ksx) ⇒ mẍ+ dẋ+ ks(1 + kf )x = kfFd
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In order to study the asymptotic stability of the (incorrect) equilibrium (15), we choose as Lyapunov
candidate

V2 =
1

2
mẋ2 +

1

2
ks(1 + kf )(x− xe)2 ≥ 0. (17)

Its time derivative, evaluated along the trajectories of the closed-loop system, is

V̇2 = mẋẍ+ks(1+kf )(x−xe)ẋ = ẋ (−dẋ− ks(1 + kf )x+ kfFd + ks(1 + kf )(x− xe)) = −dẋ2 ≤ 0,

where we replaced the expression of xe in (15) in order to simplify terms. The conclusion about
asymptotic stability follows from a LaSalle analysis similar to the previous case. Indeed, the
steady-state force error ef 6= 0 can be decreased by increasing kf , modifying accordingly the
transient behavior. However, when increasing kf the system response will become faster but soon
underdamped. As a matter of fact, a useful additional damping action of the form −dcẋ, with
dc > 0, is actually missing in the considered control law.

On the other hand, when combining the feedforward and feedback actions in the control law
(α = β = 1), the steady-state error will vanish without the need of increasing the feedback gain
kf . As a result, this can be tuned so as to obtain the best transient behavior and possibly reduce
the effects of extra disturbing forces. The analysis of the asymptotic stability of xe in (14) can be
conducted as before, using the same Lyapunov candidate V2 in (17).

For those more acquainted with Laplace transformation methods in linear control systems, it is
worth mentioning that the above stability analyses could have been conducted more easily (and
quickly) by looking at the location of poles (with Routh criterion, or even with simpler methods)
of suitable transfer functions in the Laplace domain s, both for the open-loop system

Fc(s)

F (s)
=

ks
ms2 + ds+ ks

,

and for the closed-loop system, e.g., under combined feedback/feedforward

Fc(s)

Fd(s)
=

ks(1 + kf )

ms2 + ds+ ks(1 + kf )
.

We note also that all the obtained stability results are completely independent from the parameters
m, d, and ks (as long as they remain physically meaningful, i.e., positive). These quantities were
invoked in the analysis, but are never used for force control design, which inherits therefore some
intrinsic robustness. Nonetheless, the values of these parameters will affect the quality of the
transient behavior in response to reference values Fd.

At last, when Fc = 0 (no interaction with the environment), all controllers will behave in a similar
way. We would have in that case

mẍ+ dẋ = F =


Fd [pure feedforward]

kfFd [pure proportional feedback]

(1 + kf )Fd [combined feedback/feedforward]

(18)

and the mass would always reach a constant steady-state velocity (with ẍ = 0) equal to

ẋss =
F

d

with the constant F as specified in (18).

∗ ∗ ∗ ∗ ∗
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