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Exercise 1

Consider a robot manipulator with q ∈ Rn joint variables that is redundant with respect to a task
described by r ∈ Rm variables, with m < n. The m×n task Jacobian matrix J(q) relates task and
joint velocities, i.e., ṙ = J(q)q̇. For task regulation problems, kinematic control typically defines
a law of the form

q̇ = J#(q)Ke+
(
I − J#(q)J(q)

)
q̇0, K > 0 (diagonal), e = rd − r, (1)

where rd is the desired value for the task variables. The first term in (1) leads to ė = −Ke, so that
exponential convergence of the error e to zero is guaranteed (out of task singularities). The second
term allows shaping the robot configuration during motion without affecting task execution, using
a joint velocity q̇0 ∈ Rn projected in the null space of the task Jacobian. When m = n, there
is no null space to explore (the second term vanishes); when m > n, the pseudoinverse command
q̇ = J#(q)Ke guarantees only that a minimum error (in norm) is achieved, but still with e 6= 0.

With the above in mind, consider a visual servoing problem that uses as task variables M point
features, namely the coordinates f i = (ui vi)

T ∈ R2, i = 1, . . . ,M , of M points on the 2D image
plane of an eye-in-hand camera. Let the task vector be r = f ∈ Rm, with m = 2M , while vectors u
and v (both in RM ) collect the coordinates of the image points. The task Jacobian J is the product
Jp(u,v,Z)Jm(q), where Jp is the m × 6 interaction matrix of the M point features (depending
on the sensed image and on the depths Zi > 0 of the 3D points), and Jm is the 6 × n geometric
Jacobian of the manipulator carrying the camera. The rank of J will be equal to ρ ≤ min{m, 6, n},
no matter how large n is, and the dimension of the null space N{J} will be n− ρ.

To handle critical issues related to the lack of full row rank for the task Jacobian, it was recently
proposed to modify the way the regulation task is accomplished. Instead of considering the original
task as a m-dimensional vector, so as to achieve the goal r = rd, or e = 0, by driving each and
every component to its desired value, we can define the task as the norm of the error e ∈ Rm,

η = ‖e‖, (2)

and achieve the goal by specifying η = 0 as the desired task value. This is indeed equivalent to
obtaining e = 0. Thanks to the modified definition, the task is one-dimensional and the null space
of the associated task Jacobian will always be of dimension equal to (at least) n− 1.

Formulate and address the problem of task-based kinematic control for η ∈ R. In particular:

• determine the general form of the 1× n task Jacobian matrix Jη associated to (2);

• analyze the singularities and/or the problems of definition of Jη;

• write the explicit expression of the pseudoinverse J#
η in the control law (1), assuming that

e 6= 0 and Jη is full (row) rank;

• specify the main terms needed in this type of task-based kinematic control for the case of a
visual servoing task with M = 2 point features.

[Turn sheet for next exercises]
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Exercise 2

For a robot of the cylindrical type with a sequence PRP of joints and mounted on a vertical wall,
provide the dynamic model in the usual form

M(q)q̈ + c(q, q̇) + g(q) + F q̇ = τ , (3)

using the generalized coordinates q ∈ R3 and the dynamic coefficients defined in Fig. 1. In (3),
F > 0 is a diagonal matrix of viscous coefficients. Make reasonable assumptions on the zero values
of the variables qi, i = 1, 2, 3, and neglect the small offset between joint axes 2 and 3 (i.e., assume
that these two axes intersect). Moreover, assume that the center of mass of each link is placed on
the joint axis having the same index.

Without any a priori knowledge of dynamic parameters, define all the terms needed in the design
of an adaptive control law for this robot so as to achieve global asymptotic tracking of a desired
joint trajectory qd(t), with qdi(t) = q0i + Ai(1 − cos (2πt/T ))ν (i = 1, 2, 3) of amplitude Ai and
period T , for an unlimited time t ≥ 0. Which is the minimum value of the integer ν ∈ N that
allows asymptotic exact tracking?

! !
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Figure 1: A cylindrical PRP-type robot mounted on a vertical wall, with its generalized coordinates
q = (q1, q2, q3) and relevant dynamic parameters.

Exercise 3

Consider an actuated pendulum that moves in the vertical plane under a joint torque u. The single
link is a uniform thin rod of mass m = 10 kg and length L = 2 m. The downward equilibrium is at
θ = 0. Suppose that the link is initially at rest in θ0 = 0, and that we want to regulate its angular
position to θd = π/3 rad using the control scheme

u = kp(θd − θ)− kdθ̇ + ui−1, i = 1, 2, . . . (4)

with kp = 500 and kd = 45. The constant feedforward ui−1 in (4) is updated at every new reached
equilibrium configuration θi, i = 1, 2, . . . , as

ui = ui−1 + kp(θd − θi), i = 1, 2, . . . , with u0 = 0. (5)

Will the error ei = θd − θi converge to zero for i→∞ with this iterative control scheme? Why, or
why not? If (or when) it does, can you predict which is the minimum number imin > 0 of iterations
guaranteeing that the error will satisfy |ei| < ε = 0.01 rad for all i ≥ imin?

[150 minutes; open books]
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Solution
February 5, 2018

Exercise 1

We first rewrite more explicitly eq. (2) as

η = ‖e‖ =
√
eTe = ‖rd − r‖. (6)

Since rd is constant, taking the time derivative of (6) yields

η̇ =
1

2

2 eT ė√
eTe

= −e
T ṙ

η
= −e

TJ(q)

‖e‖
q̇ = Jη(q)q̇, (7)

where J is the Jacobian matrix associated to the original task variables r. Thus, the new 1 × n
task Jacobian is

Jη(q) = −e
TJ(q)

‖e‖
. (8)

This matrix has rank one whenever e 6∈ N{JT (q)}. On the other hand, the condition e = 0
(i.e., exactly where the task is accomplished!) is critical because both the numerator and the
denominator go to zero, so that a further analysis is needed (which is out of the scope of this
exercise). Far from these situations, and similarly to (1), we define the control law as

q̇ = J#
η (q) k η +

(
I − J#

η (q)Jη(q)
)
q̇0, (9)

with the pseudoinverse J#
η of the row vector Jη being the column vector computed as

J#
η (q) = JTη (q)

(
Jη(q)JTη (q)

)−1
= − ‖e‖

eTJ(q)JT (q)e
JT (q)e. (10)

It is easy to see that (9) will work properly: in fact, plugging this q̇ in (7) leads to the exponentially
stable (scalar) error system

η̇ = −k η. (11)

Moreover, the projection matrix P = I − J#
ηJη in (9) has rank one, and the null space in which

we can now accommodate a desired extra motion q̇0 is now (n− 1)-dimensional.

For a visual servoing task with M = 2 point features, r = f ∈ R4, we need first to define the 4× 6
interaction matrix Jp, as well as the (generic) 6× n geometric Jacobian Jm, so that

ḟ = Jp(u,v,Z)

(
V

Ω

)
,

(
V

Ω

)
= Jm(q)q̇ ⇒ J = JpJm, (12)

being V ∈ R3 and Ω ∈ R3, respectively the linear and angular velocity of the eye-in-hand camera.
The interaction matrix takes the expression

Jp(u,v,Z) =

(
Jp1(u1, v1, Z1)

Jp2(u2, v2, Z2)

)
=



− λ

Z1
0

u1
Z1

u1v1
λ

−
(
λ+

u21
λ

)
v1

0 − λ

Z1

v1
Z1

λ+
v21
λ

−u1v1
λ

−u1

− λ

Z2
0

u2
Z2

u2v2
λ

−
(
λ+

u22
λ

)
v2

0 − λ

Z2

v2
Z2

λ+
v22
λ

−u2v2
λ

−u2


,

(13)
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with the camera focal length λ > 0. Moreover, from

f =
(
u1 v1 u2 v2

)T
, fd =

(
u1d v1d u2d v2d

)T
, e = fd − f , (14)

the scalar task takes the expression

η = ‖e‖ =

√
(u1d − u1)

2
+ (v1d − v1)

2
+ (u2d − u2)

2
+ (v2d − v2)

2
. (15)

The associated task Jacobian is compactly written as

Jη = −1

η
eT
(
Jp1(u1, v1, Z1)

Jp2(u2, v2, Z2)

)
Jm(q). (16)

Finally, the pseudoinverse (10) takes the form

J#
η = −η

JTm(q)
(
JTp1(u1, v1, Z1) JTp2(u2, v2, Z2)

)
e

eT
(
Jp1(u1, v1, Z1)

Jp2(u2, v2, Z2)

)
Jm(q)JTm(q)

(
JTp1(u1, v1, Z1) JTp2(u2, v2, Z2)

)
e

. (17)

Exercise 2

Following a Lagrangian approach, we compute first the kinetic energy T = T1 +T2 +T3. Since the
position of the center of mass of the third link will be an unknown dynamic parameter, we need to
define q3 in a purely kinematic way as the radial position of the distal end of the third link with
respect to the joint axis 2. The radial position of the center of mass of link 3 will then be given by
q3 − d3, being d3 > 0 the distance of the center of mass from the link end. With this and under
the other given assumptions, considering the sequence PRP of joint types we have

T1 = 1
2m1q̇

2
1 , T2 = 1

2m2q̇
2
1 + 1

2I2 q̇
2
2 ,

T3 = 1
2m3

(
q̇21 + (q3 − d3)2 q̇22 + q̇23

)
+ 1

2I3 q̇
2
2

⇒ T = 1
2 q̇

TM(q)q̇,

with

M(q) =

 m1 +m2 +m3 0 0

0 I2 + I3 +m3(q3 − d3)2 0

0 0 m3

 . (18)

For the Coriolis and centrifugal terms, the requested adaptive control law will use the factorization
c(q, q̇) = C(q, q̇)q̇ such that Ṁ−2C is a skew-symmetric matrix. This is automatically guaranteed
if the components of the Coriolis and centrifugal vector c(q, q̇) are computed using the Christoffel’s
symbols, i.e.,

ci(q, q̇) = q̇TCi(q)q̇, Ci(q) =
1

2

(
∂mi(q)

∂q
+

(
∂mi(q)

∂q

)T
− ∂M(q)

∂qi

)
, i = 1, 2, 3, (19)

being mi the ith column of the inertia matrix M . Using (18) and (19), we obtain

C1(q) = 0 ⇒ c1(q, q̇) = 0,

C2(q) =

 0 0 0

0 0 m3(q3 − d3)

0 m3(q3 − d3) 0

 ⇒ c2(q, q̇) = 2m3(q3 − d3) q̇2q̇3,

C3(q) =

 0 0 0

0 −m3(q3 − d3) 0

0 0 0

 ⇒ c3(q, q̇) = −m3(q3 − d3) q̇22 .
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A factorization that satisfies the skew-symmetric property is then given by

C(q, q̇) =

 q̇TC1(q)

q̇TC2(q)

q̇TC3(q)

 =

 0 0 0

0 m3(q3 − d3) q̇3 m3(q3 − d3) q̇2

0 −m3(q3 − d3) q̇2 0

 . (20)

For the potential energy due to gravity, Ug = U1 + U2 + U3, we have (up to a constant)

U1 = 0, U2 = 0, U3 = −m3g0 (q3 − d3) cos q2,

where we assumed that the third link is vertical and points downward for q2 = 0. Thus

g(q) =

(
∂Ug(q)

∂q

)T
=

 0

m3g0 (q3 − d3) sin q2

−m3g0 cos q2

 . (21)

The dynamic model of the robot, including the viscous friction term with F = diag{f1, f2, f3},
can thus be written in the linear parametrized form,

M(q)q̈ +C(q, q̇)q̇ + g(q) + F q̇ = Y (q, q̇, q̈)a = τ , (22)

with the 3× 7 regressor

Y (q, q̇, q̈) =

 q̈1 0 0 0 q̇1 0 0

0 q̈2 q23 q̈2 + 2q3 q̇2q̇3 + g0 sin q2 −2q3 q̈2 − 2 q̇2q̇3 − g0 sin q2 0 q̇2 0

0 0 q̈3 − q3 q̇22 − g0 cos q2 q̇22 0 0 q̇3


(23)

and the vector of dynamic coefficients

a =



a1

a2

a3

a4
a5

a6

a7


=



m1 +m2 +m3

I2 + I3 +m3d
2
3

m3

m3d3

f1

f2

f3


∈ R7. (24)

Defining q̇r = q̇d + Λe = q̇d + Λ(qd − q), with a diagonal matrix Λ > 0, two diagonal gain
matrices KD > 0 and KP = KDΛ > 0, and a diagonal estimation gain matrix Γ > 0, the
adaptive controller will have dimension 7 and the expression

u = M̂(q)q̈r + Ĉ(q, q̇)q̇r + ĝ(q) +KPe+KDė = Y (q, q̇, q̇r, q̈r)â+KPe+KDė

˙̂a = ΓY T (q, q̇, q̇r, q̈r) (q̇r − q̇) , â(0) = arbitrary,
(25)

where

Y (q, q̇, q̇r, q̈r) = q̈r1 0 0 0 q̇r1 0 0

0 q̈r2 q23 q̈r2 + q3(q̇2q̇r3+q̇r2q̇3) + g0 sin q2 −2q3q̈r2 −(q̇2q̇r3+q̇r2q̇3)− g0 sin q2 0 q̇r2 0

0 0 q̈r3 − q3 q̇2q̇r2 − g0 cos q2 q̇2q̇r2 0 0 q̇r3


(26)
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and
â =

(
â1 â2 â3 â4 â5 â6 â7

)T
. (27)

Finally, the desired trajectory is sufficiently smooth already with ν = 1 and guarantees thus
permanent exact tracking when the error e(t) = qd(t)−q(t) asymptotically vanishes. In particular,
we shall need the quantities

qdi(t) = q0i +Ai

(
1− cos

2πt

T

)
, q̇di(t) =

2πAi
T

sin
2πt

T
, q̈di(t) =

4π2Ai
T 2

cos
2πt

T
(28)

for i = 1, 2, 3.

Exercise 3

The dynamic equation of the pendulum is(
I0 +md2

)
θ̈ +mdg0 sin θ = u, (29)

with d = L/2 = 1 m and I0 = mL2/12, which is the inertia of a uniform thin rod of mass m and
length L around an orthogonal axis passing through its center of mass. However, note that the
value of I0 (as well as that of the total inertia I0 + md2) will be irrelevant in the solution of our
problem. Same for the gain kd.

The gradient of the gravity term can be easily bounded as∥∥∥∥∂g(θ)

∂θ

∥∥∥∥ = |mdg0 cos θ| ≤ mdg0 = 98.1 = α. (30)

Being
kp = 500 > 196.2 = 2α, (31)

the iterative scheme (4–5) will certainly converge to e = θd − θ = 0. Moreover, we can take out
from kp a factor 1/β in the following way

kp =
k′p
β

= 500 ⇒ k′p = 100 > 98.1 = α, 0 < β =
1

5
≤ 1

2
, (32)

so that we recognize the sufficient conditions for contraction of the iterative learning control (4–5).
From the proof of the related theorem and the value of β in (32), we have

‖ei‖ <
β

1− β
‖ei−1‖ ⇒ |θd − θi| = |ei| <

1
5

1− 1
5

|ei−1| = 0.25 |θd − θi−1| . (33)

As a result, we know in advance that the error will be reduced at least by a factor 4 from one
iteration to the other. Thus, starting with the known initial error

e0 = θd − θ0 =
π

3
= 1.0472, (34)

we can iteratively estimate upper bounds êi for the absolute errors |ei|:

|e1| = |θd − θ1| < 0.25 |e0| =
π

12
= 0.2618 = ê1,

|e2| = |θd − θ2| < 0.25 |e1| =
π

48
= 0.0654 = ê2,

|e3| = |θd − θ3| < 0.25 |e2| =
π

208
= 0.0164 = ê3,

|e4| = |θd − θ4| < 0.25 |e3| =
π

832
= 0.0041 = ê4 < 0.01 = ε.

(35)
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We can conclude that the absolute error with respect to θd will be reduced and kept below the
required tolerance ε starting with the iteration imin = 4. Note that the control scheme tolerates
a large uncertainty for the bound α on the gravity term. In the present case, we could handle
a link mass which is up to 250% larger than the nominal value and would still converge, though
progressively slower, without modifying the chosen proportional control gain (nor anything else).

We can do an exact calculation of the solution sequence of angles θi and feedforward torques ui, even
without performing a dynamic simulation but just knowing in advance the value M = mdg0 = 98.1.
In fact, every new equilibrium configuration θ = θi will have to satisfy the nonlinear equation

mg0d sin θ = kp(θd − θ) + ui−1, i = 1, 2, . . . (36)

We can solve numerically (36) using, e.g., the matlab function fsolve

theta(i) = fsolve(@(theta) M ∗ sin(theta)− kp ∗ (thetad− theta)− u(i− 1), theta(i− 1))

providing each time θi−1 as initial guess. We update then the feedforward torque ui using the
recursion (5). Table 1 shows the actual convergence of the iterative control process, and also
a comparison of the actual errors vs. their estimated bounds in (35). Indeed, the actual error
converges to zero faster than its estimated bound.

i θi ei êi ui

0 (init) 0 1.0472 1.0472 0

1 0.8942 0.1530 0.2618 76.4904

2 1.0318 0.0154 0.0654 84.1916

3 1.0458 0.0014 0.0164 84.888

4 (stop) 1.0471 0.0001 0.0041 84.9510

true 1.0472 0 − 84.9571

Table 1: Iterative learning process for regulation at θd = π/3 = 1.0472 rad with gravity torque
estimation. Iterations are stopped when êi ≤ ε = 0.01. Angles/errors in [rad], torques in [Nm].

∗ ∗ ∗ ∗ ∗
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